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Abstract

Summary: Complex human diseases can show significant heterogeneity between patients with the same phenotypic
disorder. An outlier detection strategy was developed to identify variants at the level of gene transcription that are of
potential biological and phenotypic importance. Here we describe a graphical software package (z-score outlier detection
(ZODET)) that enables identification and visualisation of gross abnormalities in gene expression (outliers) in individuals,
using whole genome microarray data. Mean and standard deviation of expression in a healthy control cohort is used to
detect both over and under-expressed probes in individual test subjects. We compared the potential of ZODET to detect
outlier genes in gene expression datasets with a previously described statistical method, gene tissue index (GTI), using a
simulated expression dataset and a publicly available monocyte-derived macrophage microarray dataset. Taken together,
these results support ZODET as a novel approach to identify outlier genes of potential pathogenic relevance in complex
human diseases. The algorithm is implemented using R packages and Java.

Availability: The software is freely available from http://www.ucl.ac.uk/medicine/molecular-medicine/publications/
microarray-outlier-analysis.
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Introduction

Many human diseases, such as inflammatory bowel disease and

type 1 diabetes, are complex, multifactorial syndromes with

genetic and environmental determinants. Substantial heterogene-

ity with regards to causation and disease progression exists

between individual patients with the same phenotypic disorder.

It has been postulated that rare or low frequency variants,

structural rearrangements such as deletions, insertions, transloca-

tions, and epigenetic variation could be important in the

pathogenesis of these complex disorders and account for the

observed heterogeneity [1]. All of these are incompletely assessed

by current genome wide association studies (GWAS). Many of

these genetic changes would be expected to be associated with

alterations in gene expression, possibly of large biological effect,

ultimately giving rise to phenotypic abnormalities. A recent paper

combined population-scale human genomic sequence data with

transcriptomic data and identified an enrichment of rare variants

associated with outlier gene expression [2]. They concluded that

across multiple tissues and developmental stages, an individual

would be expected to have hundreds of rare variants with large

effects on gene expression. The examination of significantly over-

expressed genes in individual patients (or subgroups of patients)

has successfully been employed in the field of cancer genomics [3].

There are a number of methods for outlier detection currently in

the literature, such as the gene tissue index (GTI), cancer outlier

profile analysis (COPA) and outlier robust test (ORT), each of

which use different algorithms in order to identify probes that are

abnormally expressed in subgroups of patients [4–6]. Here we

describe a software package based on z-score outlier detection

(ZODET) that enables identification of potentially biologically

relevant abnormalities in gene expression (outliers) in individuals

with complex disorders compared with a comparison population,

using whole genome microarray data. By concentrating on

individual outliers, we provide a valuable addition to commonly

used microarray analysis tools, such as SAM [7].

Materials and Methods

Software Implementation
Implementation of this software has used two programming

technologies: The R statistical programming environment (http://

www.R-project.org), utilising the Biobase package from the

Bioconductor platform; and the Java programming language [8].

The analysis can be run via a configurable Graphical User

Interface (GUI) or on the command line (Figure 1). Installation

and configuration instructions are provided in the technical

documentation supplied with the software (http://www.ucl.ac.uk/
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medicine/molecular-medicine/publications/microarray-outlier-analysis).

The software is freely available and can be run on either Windows or

Mac OSX operating systems.

The purpose of this software is the identification and visual

analysis of outlier probes (or genes) from microarray gene

expression data. To identify the potential outliers a control group

of samples and the experimental samples are defined prior to

analysis (Figure 2A). Currently, the software supports five

alternative methods for defining which sub-set of individual

samples the potential outliers may occur in and the group of

samples (control group) which each is compared to. These five

methods of comparison are:

1. Test Individual vs Control Group

2. Test Individual vs All Samples

3. Test Individual vs Test Group

4. Control Individual vs Control Group

5. Control Individual vs All Samples

For each of the samples selected for outlier analysis, an iterative

procedure is carried out on the expression data. Two adjustable

thresholds (which both have to be met) are used to identify the

probe outliers: (i) the significance level of the standardised

deviation of the expression levels from the experimental sample,

when compared to the average (mean) expression levels of the

control group; and (ii) the (log2) fold-change between the

expression level from the experimental sample and the average

of the control group. This method assumes that the expression

values are normally distributed. Therefore, caution should be

taken to ensure the normality of the data, especially when using

small sample sizes (e.g., less than 30).

Figure 1. The Graphical User Interface (GUI) allows the user to set the analysis parameters, the required fold change, statistical test
(p-value, q-value or Bonferroni corrected p-value) and statistical threshold. The analysis can be conducted using the whole experimental
group or a specific individual can be chosen.
doi:10.1371/journal.pone.0081123.g001
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To assess the significance of the standardised deviation of the

experimental sample expression values from the control group

average, a Z-score is calculated for each probe (or feature) on the

microarray:

Z~

Esample{m

s
ð1Þ

Where: Esample is the expression level of the microarray gene probe

for the experimental sample; and m and s are the mean and

standard deviation of the expression levels of the gene probe for

samples in the control group. From the Z-scores, p-values are then

calculated with reference to a standard normal distribution where

the p-value is the probability that the probe z-score of the sample

being tested falls within the distribution of the control group

samples. These p-values - or those corrected for multiple

hypothesis testing, on a per gene basis, using either the Bonferroni

or q-value method - can be used to assess the significance [9]. The

default p-value threshold is 0.01, but this can be easily modified

before each analysis run.

The fold-change between the expression level of the experi-

mental sample, and the control group, is calculated for each probe

on the array using the following method.

foldC~Esample{m ð2Þ

This provides an additional measure of the difference in the

expression level of the experimental and the control groups and

also determines whether the potential outlier-probe is under or

Figure 2. Overview of experimental design and output from the ZODET analysis. A. Microarray experimental design will contain two
groups, a control group which will provide the data for the normal distribution of each probe and an experimental group (C1–3). The software runs
each test group member independently against the control group and identify probes that are expressed at levels significantly outside the normal
distribution. B. For each experimental subject the software generates a scatter plot of all of the expressed probes from subject C1 against the mean
value from the control group. Probes that are classified as up- or down-regulated are highlighted in red and green, respectively. A Volcano plot is
generated to visualise p-value and fold change information for all probes, with over and under expressed outliers highlighted in red and green,
respectively. The vertical and horizontal lines represent the fold-change and p-value thresholds used, respectively. A combined dendrogram and
heatmap shows the expression level of probes identified as down-regulated in C1, compared to the control group and two additional experimental
subjects (C2 and C3). C. The software also generates outlier analysis results for all experimental subjects (C1–3). The total up-regulated and down-
regulated probes are tabulated for all test subjects along with the results for the three available statistical tests. Combined dendrogram and
heatmaps are generated for all of the up-regulated and down-regulated probes identified and hierarchical clustering on both probes and subjects
performed. Over and under expressed probes are highlighted in red and green, respectively.
doi:10.1371/journal.pone.0081123.g002
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over expressed, relative to the control group. In equation 2: foldC is

the fold-change; Esample is the expression level of the test sample;

and m is the mean expression level of the control group. To

correctly estimate the fold-change between sample classes all gene

expression levels used as input to this software should be in

normalised log2 format. The software is designed to not be

microarray platform specific and can be used to analyse any log2
transformed microarray expression data (e.g., from Affymetrix,

Illumina or other arrays). The default fold-change threshold is 1,

which can be easily modified before each analysis run. User

defined annotation files can also be used to associate the

microarray probes with the relevant gene descriptions.

To aid the interpretation and visualisation of the results a

number of clearly formatted graphs and tables are automatically

generated by the software during the analysis, including:

For each individual (Figure 2B):

N Scatter plot of the correlation between the individual and

mean control group expression values, with under and over

expressed outlier probes colored green and red respectively

(Figure 2B);

N Volcano plot (Figure 2B) highlighting the detected outlier

probes: with fold-change and2log10(p-value) on the horizontal

and vertical axes, respectively. Under and over expressed

outlier-probes are colored green and red respectively;

N Heatmap of outlier probes for each individual (Figure 2B): the

probes are clustered on the outlier expression data, using

hierarchical clustering in the heatmap.2 function from the gplots

R package (http://CRAN.R-project.org/package = gplots);

N Gene list tables: containing expression values, probe IDs and

gene names of the identified outliers.

For the experimental group (Figure 2C):

N Combined heat-maps: containing all identified outliers;

N Combined gene list summary tables: containing all identified

outliers showing which individual samples the specific outlier

was detected in and thus allowing identification of individuals

with common outlier probes.

Patient Recruitment
These studies were approved by the Joint UCL/UCLH

Committee for the Ethics of Human Research (project numbers

02/0324). Forty volunteers were recruited from University College

London Hospital (UCLH)/University College London (UCL).

Written consent was obtained from all volunteers.

Monocyte derived macrophage isolation and culture
Peripheral venous blood was collected from subjects into

syringes containing 5 U/ml heparin. Mononuclear cells were

isolated by differential centrifugation (800 g, 30 min, 20uC) over

Lymphoprep and washed twice with sterile phosphate-buffered

saline (PBS; GIBCO, Paisley, UK) at 500 g (5 min, 20uC). Cells

were resuspended in 10 ml RPMI-1640 medium (Invitrogen)

supplemented with 100 U/ml of penicillin (GIBCO), 100 mg/ml

streptomycin (GIBCO) and 20 mM HEPES pH 7.4 (Sigma-

Aldrich), and plated at a density of approximately 56106 cells/ml

in 8 cm2 NunclonTM Surface tissue culture dishes (Nunc, Roskilde,

Denmark) at 37uC, 5% CO2. After 2 h, non-adherent cells were

discarded and 10 ml of fresh RPMI supplemented with 10% foetal

bovine serum (FBS; Sigma) added to each tissue culture dish. Cells

were then cultured for 5 days at 37uC, 5% CO2, with the addition

of a further 10 ml of fresh 10% FBS/RPMI after 24 h. Cells were

then washed twice in PBS, scraped and spun down at 500 g

(5 min, 20uC). Cells were resuspended into X-vivo-15 medium

(Cambrex, MD, USA) and plated at a density of 106 cells per

8 cm2 NunclonTM dish for a further 25 h at 37uC, 5% CO2.

RNA purification
Total RNA was prepared from monocyte-derived macrophages,

using the RNeasy Mini Kit with RNase–free DNase treatment

(Qiagen GmbH, Hilden, Germany). Optical density readings were

determined for OD260/OD280 and OD260/OD230 using a

NanoDrop ND-1000 spectrophotometer (Fisher Scientific, Lough-

borough, UK) to assess protein and solvent contamination

respectively.

Whole genome microarray analysis
For each sample, 500 ng of total RNA was amplified and

purified using the Illumina TotalPrep-96 RNA Amplification kit

(Ambion, UK), according to the manufacturer’s instructions.

Biotin-Labelled cRNA was then normalised to a concentration

of 150 ng/ml and 750 ng was hybridised to Illumina Human-WG6

v3.0 Expression BeadChips (Illumina CA, USA) for 16 h at 58uC.

Following hybridisation, beadarrays were washed and stained with

streptavidin-Cy3 (GE Healthcare, UK). Beadarrays were scanned

using the Beadarray reader and image data was then processed

using Genome Studio software (Illumina, CA, USA). The cubic

spline normalised data and subject information can be found at

http://www.ucl.ac.uk/medicine/molecular-medicine/publications/

microarray-outlier-analysis. The microarray data has also been

deposited in the Gene Expression Omnibus (GEO) under accession

GSE51256.

Due to the relatively low sample sizes, the dataset was tested for

normality using the lillie.test function from the R-package nortest

(http://cran.r-projects.org/web/packages/nortest/) [10]. All

20,019 probes on the array were assessed for normality using a

p-value of 0.05, followed by correction for multiple testing. This

resulted in a very small number of probes (240) found to be not

normally distributed indicating that the vast majority of probes are

normally distributed and can therefore be used as input to the

ZODET method.

Genomic DNA extraction, PCR verification and
sequencing
Peripheral blood samples were collected in an ethylenediamine-

tetraacetic acid disodium salt vacutainer (BD Bioscience, UK) and

gDNA extracted using the QIAamp DNA blood Mini Kit (Qiagen

GmbH), in accordance with the manufacturer’s instructions. PCR

verification of the chromosome translocation involving G-protein

receptor-128 (GPR128) and TRK-fused gene (TFG) was deter-

mined using TFG forward primer CCACAGCCTACCTGT-

GAGTG, GPR128 reverse primer

TGGGTTGTTTGTGGAAAT. Verification of the intact

GPR128 gene was performed using the reverse primer listed for

the translocation in combination with forward primer

GCAGGCTTTCTTTCTTGAGG. A/G single-nucleotide poly-

morphism at the exon 7 splice-acceptor site (rs10774671) within

29-59-oligoadenylate synthetase 1 (OAS1) was determined following

the method describes previously [11].

Generation of Simulated Expression Dataset
A series of simulated expression datasets were generated to

contain a total of 20,000 ‘‘genes’’ (or probes) and 100 samples. The

samples were divided into equally sized groups of 50 control

samples and 50 experimental samples, with the gene expression

ZODET: Analysis of Outlier Genes in Microarrays
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values for each group generated from a standard normal

distribution (i.e., with a mean value of 0 and standard deviation

of 1). In order to simulate example cases of gene outliers a range of

genes were randomly selected to contain an equal number (20, 50,

100, 250, 500, and 1000) of up- and down-regulated patient

samples relative to the control group. For each of these simulated

outlier genes, we randomly assigned a number of samples from the

experimental test group (between 5 and 10) to correspond to

expression levels significantly different to the standard normal

distributions. These expression levels were randomly assigned so as

to correspond to p-values of being part of the standardised normal

sample distributions of between 0.05 and 161026.

Results

Comparison to Existing Gene Outlier Detection Methods
Recently, the GTI outlier detection algorithm was described

and compared to other existing gene expression outlier detection

methods [4]. It was shown that the GTI method performs

comparably to other outlier detection methods (including: cancer

outlier profile analysis (COPA); outlier sums (OS); and the outlier

robust t-statistic (ORT)) when using a simulated expression dataset

[5,6,12]. In order to benchmark our z-score based outlier

detection method ZODET against these existing methods we

performed a similar comparison to the GTI method, using both

simulated expression datasets and also an expression dataset

compiled from a cohort of human monocyte-derived macrophage

samples split into two equal sized groups.

Both the ZODET and the GTI methods were run on the

simulated expression datasets of 100 samples and 20,000 probes

and the resulting outputs compared. ZODET was run with the

default p-value detection method and threshold, of 0.01, and a

fold-change threshold of 0.5. The GTI method was also run with

default settings (except that an automatic log transformation of the

expression values was not carried out).

To compare the ability of the two methods to correctly identify

probes that correspond to the simulated outlier expression values

we used Receiver Operating Characteristic (ROC) curves on the

ranked outputs (Figure 3). The GTI output was ranked in

descending ‘‘GTI score’’ order and ZODET was ranked using the

number of samples that were detected to be associated with an

outlier probe. These methods of ranking highlight an important

difference between outlier detection using ZODET and the GTI

method; that is, the GTI method only detects whether a particular

gene (or microarray probe) contains outlier samples, whereas

ZODET detects the likelihood that a gene (or probe) is an outlier

for each of the individual test samples. Therefore, ZODET has the

advantage of being able to identify both the genes and the specific

test experimental samples that are significantly associated with

outlier gene expression values.

Interestingly, both methods consistently performed well when

identifying the up-regulated true positive outliers in the simulated

expression dataset, resulting in an area under the ROC curve

(AUC) of 1.0 (Figure 3). When identifying the down-regulated

outliers, ZODET, clearly out-performed the GTI method, with

average AUC values of 0.998 and 0.476, respectively (Figure 3).

This was expected because the GTI method is specifically designed

to identify outliers that are over-expressed relative to the control

group, whereas ZODET detects both under- and over-expressed

outliers equally well.

In summary, the two methods performed equivalently when

identifying the up-regulated outlier genes from the simulated

dataset, but importantly ZODET is also able to detect down-

regulated outliers to a high level of accuracy.

Identification of outlier genes in a monocyte-derived
macrophage microarray dataset
An example microarray dataset is available on our webpage

(http://www.ucl.ac.uk/medicine/molecular-medicine/publications/

microarray-outlier-analysis). This dataset consists of two data files: (i)

an ‘‘EXPRESSION DATA’’ file - containing the microarray expression

data from monocyte-derived macrophages collected from 40

volunteers split into two equal sized groups labeled control (A1 to

20) and experimental (B1 to 20); and (ii) an ‘‘EXPERIMENT

INFORMATION’’ file - containing associated experimental parame-

ters. The technical specifications of these input files are described in

the provided software documentation.

A ZODET analysis was performed with the thresholds set at a

log2 fold-change .1.75 and unadjusted p-value ,0.0001.

Combining the ZODET analysis results from subjects B1 to B20

identified 19 up- and 14 down-regulated probes in this population

(Table 1). Three probes corresponding to two genes were

identified as significantly up-regulated in three or more individuals

within the experimental cohort. Three individuals were found to

over-express either G-protein coupled receptor 128 (GPR128)

(ILMN_2125395 and ILMN_1808078) or chemokine (C-C motif)

ligand 3-like 1 (CCL3L1)(ILMN_1773245). Two probes corre-

sponding to two genes were found to be down-regulated in three

or more individuals in the experimental population. 29-59-

oligoadenylate synthetase 1 (OAS1) (ILMN_1658247) and ribo-

somal protein S23 (RPS23) (ILMN_1772459) were significantly

attenuated in six and three of the twenty subjects tested,

respectively. However, the probe for RPS23 (ILNM_1772459)

contains a recognised single nucleotide polymorphism (SNP)

(rs3738) which accounts for the three down-regulated outliers

identified in the experimental cohort. The SNP results in poor

probe hybridisation and not a genuine reduction in gene

expression. PCR verification should be conducted on all identified

probes in order to discount false positives resulting from poor

probe hybridisation.

A GTI analysis was also performed on the same data set and the

results compared to the output from ZODET (Table 1). In

accordance with the simulated data analysis, the GTI software was

only capable of identifying the up-regulated probes and gave the

highest ranking to both of the GPR128 probes which were also

identified using ZODET.

In order to determine if the abnormal gene expression results

from genetic mutations, both GPR128 and OAS1 genes were

sequenced in the subjects identified as outliers. No mutations were

found in any of the individuals who over-expressed GPR128 (data

not shown). However, a previous report identified a chromosome

translocation involving GPR128 and TRK-fused gene (TFG) which

results in the generation of an in-frame TFG-GPR128 fusion

transcript [13]. This transcript was found to be constitutively

expressed in all tissues and could be the possible cause of GPR128

over expression identified in these individuals. PCR analysis and

sequencing was performed on the three outlier subjects (Figure 4A).

The results confirmed the presence of the TFG-GPR128 translo-

cation in the three patients identified as outliers for the GPR128

gene. Further PCR analysis was carried out on the remaining 17

experimental subjects and 20 controls. One additional experi-

mental subject was found to carry the translocation and from the

expression data the increased levels of GPR128 can be seen but

the thresholds applied to the ZODET analysis meant that this

individual was not identified as an outlier (Figure 4B, green arrow).

None of the control subjects carried the translocation. Therefore

the ZODET analysis identified three out of the four experimental

subjects that were carriers of the TFG-GPR128 translocation. The

most common under-expressed outlier gene was OAS1 which was

ZODET: Analysis of Outlier Genes in Microarrays
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found in six experimental individuals. The gene was sequenced in

all six subjects and was found to be homozygous for a known A/G

single-nucleotide polymorphism at the exon 7 splice-acceptor site

(rs10774671) in the OAS1 gene (Figure 4C) [11]. Further

sequencing of the remaining experimental subjects identified an

additional individual who was homozygous for the rs10774671

polymorphism (Figure 4D, green arrow). Therefore, the ZODET

analysis identified six of the seven individuals within the

experimental cohort that expressed an OAS1 splice variant. In

summary, the ZODET analysis identified a number of outlier

genes within the experimental population two of which we were

able to show resulted from a genetic abnormality. GTI identified

the translocation event but missed the splice site polymorphism

which resulted in attenuated gene expression and was present in

40% of the experimental population. As these abnormalities were

only present in a subset of the patients in the experimental group,

standard group-based statistics (e.g. a t-test) would fail to identify a

significant difference. These findings demonstrate a potential

advantage of the ZODET analysis over the currently available

software.

Discussion

We have described software designed for the identification,

analysis and visualisation of outlier genes and individual outlier

samples in microarray expression data via a user-friendly GUI.

This method implements a z-score based measure of the level of

deviation of individual microarray samples, for a particular gene,

from an assumed normal distribution of control comparison

samples. This differs in approach from the GTI method, which

calculates a score for each gene related to the proportion of

samples in a specific group that have gene expression levels above

a defined statistical outlier threshold. An important advantage of

the ZODET software is the user-friendly implementation of a z-

score based outlier detection method, which has been specifically

designed to be used by individuals with limited bioinformatic

experience through a GUI.

Since the GTI method was previously shown to perform

comparably to other outlier detection methods we benchmarked

the performance of ZODET to this method [4]. We have shown

that ZODET performs comparably to the GTI method when

identifying up-regulated outliers in a large simulated expression

dataset containing a defined numbers of outliers at varying levels

of statistical significance from the standardised population mean.

ZODET was also shown to perform with a very high accuracy and

very low false positive rate when identifying genes and samples

simulated to represent down-regulated outliers.

In addition to outlier analysis, other methods that use gene

expression variability between groups can be used to identify genes

that may have biological relevance [14–17]. However, in general

for these approaches a more robust and dynamic change in

expression is required, whereas outlier analysis methods, such as

ZODET, can identify an individual or small sub-groups within the

experimental population.

We have also demonstrated the power of the method for

detecting outlier genes of biological interest in a dataset containing

gene expression profiles from a cohort of primary monocyte

derived macrophages isolated from human subjects. In particular,

the most common under- and over-expressed genes identified by

ZODET were shown to result from germline mutations. A

functional consequence resulting from the TFG-GPR128 translo-

cation has so far not been reported. Whereas, a previous report

has shown that the OAS1 splice site mutation results in the loss of

the commonly expressed OAS1 enzyme (p46) and the generation

Figure 3. Receiver operating characteristic (ROC) curves for ZODET and GTI outlier detection. ROC curves are plotted based on simulated
outliers (for a range of up- and down-regulated probes) from a dataset of 20,000 probes.
doi:10.1371/journal.pone.0081123.g003

Table 1. Combined ZODET analysis and corresponding GTI
results from 20 experimental subjects.

Probe ID Symbol Count GTI Score GTI Rank

Up-Regulated Probes (p,0.0001, fc.1.75)

ILMN_2125395 GPR128 3 4.889 1

ILMN_1808078 GPR128 3 4.455 2

ILMN_1773245 CCL3L1 3 2.46 12

ILMN_1732198 UTS2 2 3.862 3

ILMN_1661861 CSF2 1 20.062 15671

ILMN_1668134 GSTM1 1 1.653 52

ILMN_1671818 UTS2 1 3.223 6

ILMN_1676256 TPSAB1 1 1.453 70

ILMN_1682775 EDN1 1 1.293 104

ILMN_1688423 FCER1A 1 0.446 1585

ILMN_1693269 GNG8 1 0.644 746

ILMN_1710186 CCL17 1 1.17 143

ILMN_1740418 CYP27B1 1 1.087 179

ILMN_1752965 GREM1 1 2.621 11

ILMN_1784532 COL22A1 1 2.995 8

ILMN_2100209 CCL4L1 1 1.661 51

ILMN_2169801 TPSAB1 1 2.454 13

ILMN_2289593 FXYD2 1 1.279 111

ILMN_2294762 AMY1A 1 0.727 579

Down-Regulated Probes (p,0.0001, fc.1.75)

ILMN_1658247 OAS1 6 20.758 22220

ILMN_1772459 RPS23 3 20.194 20017

ILMN_1682928 CPVL 1 0.288 3177

ILMN_1694400 MSR1 1 0.601 858

ILMN_1704291 LOC645317 1 0.068 9180

ILMN_1721035 MS4A6A 1 0.501 1281

ILMN_1722622 CD163 1 0.931 302

ILMN_1764709 MAFB 1 0.553 1027

ILMN_1777190 CFD 1 0.621 810

ILMN_1797731 MS4A6A 1 0.197 4894

ILMN_2054607 CYP4V2 1 0.216 4466

ILMN_2101278 RGS18 1 0.12 7121

ILMN_2359800 MS4A6A 1 1.153 152

ILMN_2379599 CD163 1 0.753 525

The GTI ranking is based on the 22,375 probes analysed. ZODET thresholds
were set at p,0.0001 and fold change .1.75. All identified probes are shown
along with, the gene symbol, the number of individuals who were classified as
outliers, the GTI score and GTI rank. The ‘‘count’’ shows the number of
individuals from the experimental group that were classified as outliers with
respect to the control group for each probe. The 19 up-regulated probes and 14
down-regulated probes are shown.
doi:10.1371/journal.pone.0081123.t001
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of a dual-function antiviral/proapoptotic isoform (p48) and a novel

isoform (p52) with no known role. (11) The fact that these genetic

alterations can be identified provides evidence that this form of

analysis could be of benefit in the study of complex heterogeneous

diseases. Proof that this form of analysis can provide disease-

relevant findings comes from the identification of the fusion of

TMPRSS2 and ETS transcription factor genes in prostate cancer

through the use of the COPA software [3].

Of particular note was the ability of ZODET to identify outlier

genes that were either significantly up- or down-regulated when

compared to the controls. ZODET is also capable of identifying an

individual gene expression abnormality in one experimental

subject, which may allow the identification of rare genetic events

that have extremely high disease penetrance. These properties

provide an important addition to other commonly used outlier

detection methods, such as COPA and GTI, which concentrate

solely on the identification of strongly up-regulated or amplified

genes in subgroups of patients. Each of these outlier detection

methods has advantages and disadvantages and they could well be

most effectively utilised in combination with each other, although

we have not attempted to do so in this study.
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Figure 4. Experimental validation of two genes identified by ZODET. A. PCR verification of the TFG-GPR128 translocation in individual B1
who was identified as an outlier for GPR128 using ZODET analysis. B. Expression profile for the GPR128 probe (ILMN_2125395) in controls and
experimental subjects. Green arrow identifies an individual who carries the TFG-GPR128 translocation, demonstrates elevated GFP128 levels but was
not identified by the ZODET analysis using the p,0.0001 and fold change.1.75 thresholds. C. Genomic DNA sequencing of the OAS1 gene revealed
a splice site polymorphism A.G (rs10774671) in all individuals who were identified as outliers by the ZODET analysis. All six individuals were shown
to be homozygous for the polymorphism. D. Expression profile for the OAS1 probe (ILMN_1658247) in controls and experimental subjects. Green
arrow identifies an individual who carries the splice site polymorphism, demonstrates reduced OAS1 levels but was not identified by the ZODET
analysis using the p,0.0001 and fold change .1.75 thresholds.
doi:10.1371/journal.pone.0081123.g004
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