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ABSTRACT

Studying the properties of young planetary systems can shed light on how the dynamics and structure of planets
evolve during their most formative years. Recent K2 observations of nearby young clusters (10–800Myr)
havefacilitated the discovery of such planetary systems. Here we report the discovery of a Neptune-sized planet
transiting an M4.5 dwarf (K2-25) in the Hyades cluster (650–800Myr). The lightcurve shows a strong periodic
signal at 1.88 days, which we attribute to spot coverage and rotation. We confirm thatthe planet host is a member
of the Hyades by measuring the radial velocity of the system with the high-resolution near-infrared
spectrograph Immersion Grating Infrared Spectrometer. This enables us to calculate a distance based on
K2-25ʼs kinematics and membership to the Hyades, which in turn provides a stellar radius and mass to ;5%–10%,
better than what is currently possible for most KeplerM dwarfs (12%–20%). We use the derived stellar density as a
prior on fitting the K2 transit photometry, which provides weak constraints on eccentricity. Utilizing a combination
of adaptive optics imaging and high-resolution spectra, we rule out the possibility that the signal is due to a bound
or background eclipsing binary, confirming the transits’ planetary origin. K2-25b has a radius (3.43 0.31

0.95
-
+ R⊕) much

larger than older Kepler planets with similar orbital periods (3.485 days) and host-star masses (0.29 Me). This
suggests that close-in planets lose some of their atmospheres past the first few hundred million years. Additional
transiting planets around the Hyades, Pleiades, and Praesepe clusters from K2 will help confirm whether this planet
is atypical or representative of other close-in planets of similar age.

Key words: planetary systems – stars: fundamental parameters – stars: individual (K2-25) –
stars: late-type – stars: low-mass – stars: statistics

1. INTRODUCTION

Planets and their host stars evolve with time, and the first few
hundred million yearsare thought to be the most formative.
Final assembly of rocky terrestrial planets is predicted to occur
in 10–100Myr (Morbidelli et al. 2012). Regular accretion of
residual planetesimals would continue to influence physical and
chemical conditions on these planets (Hashimoto et al. 2007;
Abramov & Mojzsis 2009). More rapid rotation and magnetic
activity drive elevated X-ray and ultraviolet emission and
coronal mass ejections from the host star, potentially eroding
the primordial atmospheres of close-in planets on this timescale
(Lammer et al. 2014).

M dwarfs play a disproportionately large role in the
discovery of Earth-size planets, particularly those planets with
theoretical equilibrium temperatures permissive of liquid water
(Muirhead et al. 2012; Dressing & Charbonneau 2013, 2015;
Gaidos 2013; Mann et al. 2013b). This is because M dwarfs
have smaller radii than solar-type stars, permitting the detection
of smaller planets, and much lower luminosities, such that
close-in and detectable planets will also be cooler. The
dynamical and structural evolution of these systems may be

qualitatively different from that of Sun-like stars; M dwarf stars
take much longer (∼108 yr) to drop onto the main sequence and
remain active much longer than their solar-type counterparts
(Ansdell et al. 2015; West et al. 2015). These characteristics
could have consequences for the climatic states and atmo-
spheric evolution of M dwarf planets (Luger & Barnes 2015).
While thousands of exoplanets have been discovered, most

by the NASA Kepler transiting planet survey mission (Borucki
et al. 2010), the vast majority of these orbit old (?1 Gyr) stars.
However, the repurposed Kepler spacecraft (K2;Howell
et al. 2014) has observed 10–800Myr old clusters (i.e., Upper
Scorpius, Pleiades, Hyades, and Praesepe). The TESS

(Ricker 2014) and PLATO (Rauer et al. 2014) missions will
also observe many starsin both young clusters and nearby
young moving groups. These surveys will populate the
temporal dimension of exoplanet parameter space, allowing
us to statistically deduce how their orbits, masses, and
atmospheres change with time.
Until catalogs from the Gaia mission become available, stars

in well-studied clusters are usually easier to characterize than
their counterparts in the field. Precise abundances can be
determined from the Sun-like membersand can be applied to
late-type stars where abundance determinations are more
complicated. The distances to most of the nearest young
clusters are wellestablished (van Leeuwen 2009; Melis
et al. 2014). While one cannot use the exact cluster distance
for individual members of large clusters like the Hyadesthat
have members >20 pc from the cluster center, it is still possible
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to derive an accurate (5%–10%) “kinematic distance,” i.e., the
distance that yields Galactic kinematics (UVW) consistent with
the cluster or moving group (e.g., Röser et al. 2011; Malo
et al. 2013). For M dwarfs the combination of distance, flux,
and temperature can yield radius estimates accurate to 5%–10%
(Delfosse et al. 2000; Bayless & Orosz 2006; Mann
et al. 2015). This is significantly better than the 13%–15%
errors for most Kepler M dwarfs based on spectroscopy (e.g.,
Muirhead et al. 2014; Newton et al. 2015) and is less subject to
systematic biases that have plagued stellar characterization of
Kepler targets from photometry alone (e.g., Mann et al. 2012;
Gaidos & Mann 2013; Gaidos et al. 2013). Perhaps more
significant, the common age of all members can be established
by applying different methods (e.g., asteroseismology, iso-
chrone fitting, lithium depletion boundary) to the full set of
stars.

A handful of planets have already been discovered around
stars in young open clusters, i.e., by the Doppler radial velocity
(RV)method in the Hyades (650–800Myr) and Praesepe
(650–800Myr) clusters (Sato et al. 2007; Quinn
et al. 2012, 2014) and by Kepler in the ∼1Gyr old
NGC6811 cluster (Meibom et al. 2013). Owingto the
sensitivity of the Doppler method, the former sample is limited
to Jupiter-mass planets, which represent only a tiny fraction of
the total planet population. The latter is limited to two Neptune-
sized planets in a single, distant (≈1100 kpc, and therefore
difficult to study) cluster. K2 is observing much closer clusters
with a range of ages and has already proved precise enough to
find close-in (P20 days), Neptune-size and smaller planets
(e.g., Crossfield et al. 2015; Foreman-Mackey et al. 2015;
Petigura et al. 2015; Vanderburg et al. 2015).

Herewe present the K2 discovery and our validation and
characterization of a Neptune-sized planet transiting a mid-M-
type dwarf (EPIC210490365, 2MASS J04130560+1514520,
K2-25) in the Hyades cluster. This object was identified by
visual inspection of the host starʼs K2 light curve shortly after
public release. In Section 2 we describe our spectroscopic and
imaging follow-up, as well as literature photometry of the host
star and extraction of the K2 light curve. We use these data and
others from the literature in Section 3 to show that this is a true
member of the Hyades cluster. Using the membership status of
K2-25, we derive a kinematic distance to K2-25, which in turn
we utilize in Section 4 to derive accurate stellar parameters of
the star. Our fit to the transit light curve is described in
Section 5. In Section 6 we combine our stellar and planetary
parameters with our adaptive optics (AO) and high-resolution
observations to confirm the planetary nature of this transit. In
Section 7 we conclude with a brief summary and discussion of
the tentative implications for this system, the key differences
between this planet and those found by Kepler around old M
dwarfs, and the need for additional follow-up.

2. ARCHIVAL AND FOLLOW-UP OBSERVATIONS

2.1. Archival Photometry/Imaging

We compiled optical BV photometry from the eighth data
release of the AAVSO All-Sky Photometric Survey (APAS-
S;Henden et al. 2012), near-infrared (NIR)JHKS photometry
from The Two Micron All Sky Survey (2MASS;Skrutskie
et al. 2006), griz photometry from the Sloan Digital Sky Survey
(SDSS;Ahn et al. 2012), and W W W1 2 3 infrared photometry
from the Wide-field Infrared Survey Explorer (WISE; Wright

et al. 2010). We retrieved proper motions for K2-25 from Röser
et al. (2011), which combined PPMXL (Roeser et al. 2010) and
UCAC3 (Zacharias et al. 2010) proper motions. These basic
data on K2-25 are given in Table 1.
The SDSS images are sufficiently deep to detect faint

background stars (r′<21) that might fall within the K2
aperture (provided they are?1″ from the star) and contaminate
the light curve or generate a false positive (if they are eclipsing
binaries). The DSS image complements this, by offering a view
directly behind the star when the target was ∼7″ away owingto
its large proper motion between the epoch of the Palomar
Observatory Sky Survey (POSS, 1953) and K2 (2015)
observations. We utilized these images as part of our false-
positive analysis described in Section 6.

Table 1

Parameters of K2-25

Parameter Value Source

Astrometry
α R.A. (hh:mm:ss) 04:13:05.61 EPIC
δ Decl. (dd:mm:ss) +15:14:52.00 EPIC
μα (masyr−1

) 120.6±3.3 Röser et al. (2011)
μδ (masyr−1

) −21.1±3.2 Röser et al. (2011)

Photometry
B (mag) 17.760±0.289 APASS
V (mag) 15.881±0.030 APASS
g (mag) 16.730±0.010 SDSS
r (mag) 15.235±0.031 SDSS
i (mag) 13.760±0.010 SDSS
z (mag) 12.820±0.010 SDSS
J (mag) 11.303±0.021 2MASS
H (mag) 10.732±0.020 2MASS
Ks (mag) 10.444±0.019 2MASS
W1 (mag) 8.443±0.023 WISE

W2 (mag) 8.424±0.021 WISE

W3 (mag) 8.322±0.055 WISE

Derived Properties
Rotation period (days) 1.88±0.02 This paper
Barycentric RV ( km s−1

) 38.64±0.15 This paper
U ( km s−1

) −42.4±1.2 This paper
V ( km s−1

) −18.4±3.2 This paper
W ( km s−1

) −1.8±2.4 This paper
X (pc) −39.8±6.3 This paper
Y (pc) +1.2±0.2 This paper
Z (pc) −18.8±3.0 This paper
Distance (pc) 45.7±3.3 This papera

EW (Hα) (Å) −3.1±0.1 This paper
v isin

*
(kms−1

) 7.8±0.5 This paper
i* (degrees) > 72 This paper
Spectral type M4.5±0.3 This paper
[Fe/H] 0.15±0.03 This paperb

Teff (K) 3180±60 This paper
M* (Me) 0.294±0.021 This paper
R* (Re) 0.295±0.020 This paper
L* (Le) (8.4±1.4)×10−3 This paper
ρ* (ρe) 11.3 1.5

1.7
-
+ This paper

Notes.
a The distanced derived from cluster membership and kinematics of K2-25b
(see Section 4).
b This is the weighted mean of our own measurements from SpeX and
literature measurements for the Hyades cluster (see Section 4).
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2.2. K2 Light Curve

K2-25 was observed by the repurposed Kepler satellite (K2;
Howell et al. 2014) for ;71 days from 2015 February 8 to
April 20. Telescope pointing for K2 is unstable owingto the
loss of two reaction wheels, so the telescope drifts slowly.
When the roll angle deviates too far from the desired position,
the thrusters fire to correct the pointing. As the point-spread
function of the star shifts during the roll and subsequent thrust,
the total measured flux from the star changes owingto pixel-to-
pixel sensitivity variations. The resulting systematic noise is on
timescales matching the thrust and roll (∼6 hr). Fortunately,
these deviations can be corrected for or at least mitigated
(Vanderburg & Johnson 2014; Armstrong et al. 2015). We
retrieved the lightcurve of K2-25 provided by Vanderburg &
Johnson (2014), who generate lightcurves from K2 pixel data
accounting for the nonuniform pixel response function by
fitting out correlations between the flux levels and spacecraft
pointing. We also downloaded the lightcurve provided by the
Kepler and K2 Science Center to test our sensitivity to the
corrections applied by Vanderburg & Johnson (2014).

2.3. Optical Spectrum

We obtained an optical spectrum of K2-25 with the
SuperNova Integral Field Spectrograph (SNIFS;Aldering
et al. 2002; Lantz et al. 2004) on the University of Hawaii
2.2 m telescope on Mauna Kea. SNIFS provides simultaneous
coverage from 3200 to 9700 Å by splitting the beam with
a dichroic mirror onto blue (3200–5200 Å) and red
(5100–9700 Å) spectrograph channels. Although the spectral
resolution of SNIFS is only R ;1000, the instrument provides
excellent spectrophotometric precision (Mann et al. 2011;
Buton et al. 2013). Three optical spectra were taken of the
target in succession (each integrated for 900 s) under cloudy
conditions. After reduction, the three spectra were stacked to
yield a signal-to-noise ratio (S/N) of ;200 (per pixel) in the
r band.

Reduction of SNIFS data was split into two parts; the first
part was done by the SuperNova Factory (SNF) pipeline, which
performs basic reduction (e.g., bias and flat correction) and
extraction of the one-dimensional spectrum. The second
section, carried out by our pipeline, applies flux and telluric
correctionand places the star in its rest frame. Extensive details
of the SNF pipeline can be found in Bacon et al. (2001) and
Aldering et al. (2006);and details of our pipeline can be found
in Gaidos et al. (2014) and Mann et al. (2015).

2.4. NIRSpectrum

AnNIR spectrum was taken with the updated SpeX
spectrograph (Rayner et al. 2003) mounted on the NASA
Infrared Telescope Facility (IRTF) on Mauna Kea. SpeX
observations were taken in the short cross-dispersed (SXD)

mode using the 0.3×15″ slit, yielding simultaneous coverage
from 0.8 to 2.4 μm at a resolution of R;2000. The target was
placed at two positions along the slit (A and B) and observed in
an ABBA pattern in order to subsequently subtract the sky
background. We took six exposures following this pattern for a
total integration time of 717 s, which, when stacked, provided
an S/N per pixel of 120 in the Hand Kbands.

SpeX spectra were extracted using the SpeXTool package
(Cushing et al. 2004), which performed flat-field correction,
wavelength calibration, sky subtraction, and extraction of the

one-dimensional spectrum. Multiple exposures were combined
using the IDL routine xcombspec. To correct for telluric lines,
we observed the A-type star HD 31295 immediately after the
target observations and within 0.1 airmasses. A telluric
correction spectrum was constructed from the A0V star and
applied using the xtellcor package (Vacca et al. 2003). Separate
orders were stacked using the xcombspec tool.
Following the method outlined in Mann et al. (2015), we

combined and absolutely flux-calibrated the optical and NIR
spectra using published photometry (Section 2.1) with the filter
profiles and zeropoints provided in Fukugita et al. (1996)10

and Mann & von Braun (2015). We show the combined
spectrum in Figure 1.

2.5. High-resolution NIR Spectra

We observed K2-25 at 10epochs spread over 36 days with
the Immersion Grating Infrared Spectrometer (IGRINS;Park
et al. 2014) on the 2.7 m Harlan J. Smith telescope at
McDonald Observatory. IGRINS provides simultaneous H-
and K-band (1.48–2.48 μm) coverage with a resolving power
of R;45,000. Similar to the SpeX observations, the target
was placed at two positions along the slit and observed in an
ABBA pattern. At each epoch we took four exposures (one
ABBA cycle), each 240–400 s (depending on conditions). For
each epoch we also observed an A0V star immediately before
or after the observations of K2-25 to aid with telluric
correction.
IGRINS spectra were reduced using version 2.1 of the

publicly available IGRINS pipeline package11 (Lee 2015). The
IGRINS pipeline performed flat, bias, and dark corrections, as
well as extraction of the one-dimensional spectrum of both the
A0V standard and target. An initial wavelength solution was
derived using the ThAr lines, followed by a full wavelength
solution derived from the sky lines. The resulting spectrum at
each epoch has an S/N of 30–60 per pixel in the center of the
Hand Kbands. We used the A0V spectra to correct for telluric
lines following the method outlined in Vacca et al. (2003).
Spectra with uncorrected telluric lines were used for measuring
RVs to improve the wavelength solution (see Section 3). A
single high-S/N spectrum was constructed by stacking the
10exposures after shifting them to the same RV. The final
stacked spectrum has an S/N of ∼120 in the Hband, which we
used to search for faint lines from an undetected companion
(Section 6) and calculate v isin

*
(Section 4).

2.6. AO Imaging

We obtained natural guide star (NGS;Wizinowich
et al. 2000) AO imaging of K2-25 with the facility imager,
NIRC2, on Keck II atop Mauna Kea. Observations were taken
with the K′ filter and the narrow camera. In this mode the pixel
scale is 9.952 mas pixel−1

(Yelda et al. 2010) and the field of
view (FOV) for the 1024×1024 pixel array is 10 2×10 2.
We took seven images, each with five co-adds, and each co-add
integrating for 2s. Basic reduction (dark, flat field, and bad
pixel correction) was applied to each of the images, which were
then registered and stacked to produce a single, deepimage.
No sources are visible in the FOV other than K2-25 down to
the resolution limit of the images (;0 07). From the reduced

10 See http://classic.sdss.org/dr7/algorithms/fluxcal.html
11 https://github.com/igrins/plp
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and stacked images we constructed a contrast curve using the
noise maps and the flux from the primary star following Bowler
et al. (2015), which we show in Figure 2.

Using the age of650Myr for Hyades, with the KS magnitude
and distance of K2-25(Section 4), and the models of Baraffe
et al. (2015), we converted our AO image into a sensitivity map
following the procedure from Bowler et al. (2015), which we
show in Figure 2. The result does not significantly change for
an age of 800Myr. This provides a probability of detecting a
star of a given separation and mass in the AO images and
accounts for the chance of detecting a companion at a random
place in its orbit.

3. HYADES MEMBERSHIP

K2-25 was previously identified as a member of the Hyades
in Röser et al. (2011) based on its proper motion and
photometry. Using the subset of their candidates with
parallaxes and a comparison of the density of the Hyades and
field stars, Röser et al. (2011) estimate that field star

contamination within 9 pc of the cluster core is negligibly
small, and they find K2-25 to be only 3.5 pc from the core.
Similarly, Douglas et al. (2014) calculate a 99% chance that
K2-25 is a member of the Hyades. Furthermore, our high-
resolution NIR spectra (Section 2.5), combined with the proper
motion (Section 2.1), enablea precise determination of this
starʼs kinematics and hence unambiguously confirmK2-25ʼs
membership in the Hyades.
We calculated a barycentric RV of K2-25 for each of the

10IGRINS epochs following the method from G. N. Mace
et al. (2015, in preparation), which takes advantage of the large
spectral grasp and stability of IGRINS. The procedure was
to(1) split each of 42 orders into eight suborders and remove
the two on each end where the SNR is lowest owingto the drop
in the blaze function, (2) cross-correlate the telluric spectrum to
find offsets in the wavelength solution due to temperature
changes and instrument flexures, (3) invert and cross-correlate
the remaining telluric-corrected suborders against a template
(or series of templates) to determine the offset in pixels,

Figure 1. Combined and absolutely flux-calibrated optical and NIR spectrum of K2-25. The spectrum is shown in black. Photometry is shown in red, with the
horizontal “error bars” indicating the width of the filter, and vertical errors representing combined measurement and zero-point errors. Blue points indicate the
corresponding synthetic fluxes from convolving the spectrum with the appropriate filter profile and multiplying by the zeropoint. Residuals are plotted in the bottom
panel in units of standard deviations. The inset panel shows a zoom-in of the blue part of the spectrum including the major Balmer and calcium H & K emission lines.

Figure 2. 7σ contrast curve (left) and sensitivity map (right) for K2-25 constructed from our AO imaging. The registered and stacked AO image is shown as an inset in
the left panel. The sensitivity map is a measure of the probability of detecting an object of a given mass and separation based on an age of 650 Myr and the distance
to K2-25 (Section 4). See Bowler et al. (2015) for more details.
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(4) convert the pixel offsets into RVs using the instrument
dispersion solution, (5) adopt the median of the RV measure-
ment after removing >4σ outliers, and (6) repeat steps 2–4 for
every available template with a known RV, allowing the RV of
each template to adjust according to their literature uncertain-
ties. In total we compared each observation with153 M2–M6
templates with known RVs. For each epoch the assigned RV
and error is the mean and standard deviation of the mean
for these 153 measurements. We use the mean of the RVs from
the 10epochs as the system RV. Nominally the statistical
error on the final barycentric RV is <50 m s−1, but it is limited
by the 153 m s−1 error in the zero-point velocity derived
from the templates. Our final barycentric velocity is
38.64±0.15 km s−1 and is reported in Table 1.

We estimated a photometric distance to the star by
comparing the spectral energy distribution of K2-25 (Sec-
tion 2.1) withthat of template M dwarfs with known distances
from Mann et al. (2015). For each star in Mann et al. (2015) we
calculated the reduced χ2

( 2cn) between the template and
K2-25ʼs BV griz JHKs photometry with the distance of K2-25
as a free parameter. We calculated the best-fit distance for K2-
25 from the median and standard deviation of the 10 stars with

32c <n . This yielded a distance of 44±7 pc, assuming
thatthe star is not an unresolved binary. We used the
coordinates, proper motion, RV, and photometric distance to
calculate Galactic position XYZand motion UVW with
corresponding errors, which we report in Table 1.

We calculated the probability that K2-25 is member of the
Hyades following the Bayesian framework from Rizzuto et al.
(2011) and Malo et al. (2013). For simplicity we only
considered the possibility that this staris member of the
Hyades or of the field. We adopted XYZ and UVW for the
Hyades from van Leeuwen (2009)and the XYZ and UVW

values for field stars from Malo et al. (2013). For the
priorMalo et al. (2013) give equal weights to membership in
each of the memberships considered;however, this is overly
optimistic for our case as there are far more field stars than
members of the Hyades. Instead we followed Rizzuto et al.
(2011) and selected a prior equal to the ratio of the number of

stars in the Hyades to the number of field stars in the same
region of the sky. We identified all stars within 10° of the target
in APASS that land within 5σ of the color–magnitude diagram
of stars in the Hyades drawn from the Röser et al. (2011) and
Goldman et al. (2013) catalogs. We conservatively assume
thatall of these stars not in Röser et al. (2011) and Goldman
et al. (2013) are field stars.
Pluggingthe XYZ and UVW values and errors for our target

and the Hyades, along with our prior estimatedabove, into
Equation(8) of Malo et al. (2013) gives a 99.99% chance that
K2-25 is a member of the Hyades as opposed to a field star.
This is relatively insensitive to our choice of prior; we would
have to decrease the prior by more than an order of magnitude
to drop the membership probability below 99.7% (3σ). Our
analysis does not consider the chance that K2-25 is a member
of another moving group, stream, or cluster (only the Hyades
and the field). However, the XYZUVW values of K2-25 are not
consistent with any other known moving group or cluster, so
we consider this possibility to have negligible probability.
K2-25 lands only ;3.4 pc from the core of the Hyades and

therefore is probably still gravitationally bound to the cluster.
We show the Galactic position (XYZ) for members of the
Hyades taken from Röser et al. (2011) and Goldman et al.
(2013) compared to that of K2-25 in Figure 3.

4. STELLAR PARAMETERS

Spectral type: We calculated TiO, CaH, and VO molecular
indices following the definitions from Reid et al. (1995) and
Lépine et al. (2013). We then derived a decimal spectral type
using the empirical relations between thestrength of these
molecular indices and the spectral type from Lépine et al.
(2013). This gives a final spectral type of M4.5 with an internal
error of �0.3 subtypes.
Hα: The optical spectrum shows noticeable Balmer series

and Calcium H & K emission (Figure 1), as expected for a mid-
M dwarf in the Hyades (West et al. 2008). We calculated an
Hα equivalent width of −3.1 Å (negative to denote emission),
following the continuum and feature definitions from Lépine

Figure 3. Galactic position (XYZ) of Hyades members (circles) and K2-25 (five-point star). All points are colored according to their MKS magnitude. The member list,
as well as distances and coordinates used in computing XYZ, was taken from Röser et al. (2011) and Goldman et al. (2013). The background contamination rate (false
members) is expected to be low (<7.5%) near the core (<18 pc), but significantly higher (>30%) for more distant stars.
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et al. (2013). The resulting value is consistent with other Hα
measurements of stars in Hyades and Praesepe clusters
(Douglas et al. 2014).

Metallicity: Our SpeX spectrum enables us to derive the host
starʼs metallicity from atomic indices in the Hand Kbands
(e.g., Rojas-Ayala et al. 2012; Terrien et al. 2012; Mann
et al. 2013a; Newton et al. 2014). However, the commonly
used Na lines at 2.2 μm could be affected by stellar activity and
lower surface gravity (Deen 2013),although this effect should
be smaller for the Ca and K lines in the Hband (Terrien
et al. 2012). The H-band indices from Terrien et al. (2012) and
Mann et al. (2013a) give consistent values ([Fe/H] =

0.15±0.10, 0.17±0.08), and both are in agreement with
literature values for the cluster (0.12–0.18; Paulson et al. 2003;
Brandt & Huang 2015; Dutra-Ferreira et al. 2015). For our
analysis we adopted [Fe/H]=0.15±0.03, which captures
both our measurements and those from the literature within
1σand is far more precise than can be done on an individual M
dwarf.

Distance: Because K2-25 is a member of the Hyades, we can
derive a kinematic distance more precise than the photometric
distance we used in Section 3 (e.g., Kraus et al. 2014). To this
end, we recalculated UVW, but allowing distance to float
between 1 and 100 pc. We then found the distance that gives
UVW values consistent with the established value of the cluster
(van Leeuwen 2009). We allowed for a variation of 1.2 km s−1

in the cluster value due to dispersion from internal kinematics
(Palmer et al. 2014). Accounting for this, as well as errors in
the proper motion and RV, gave a distance of 45.7 ± 3.3 pc.

Luminosity: We first calculated the bolometric flux by
integrating over our combined and absolutely flux-calibrated
optical and NIR spectrum (Section 2). This gives a bolometric
flux of (1.301±0.015) ×10−10 erg s−1 cm−2. Errors on the
bolometric flux account for random and correlated (e.g., slope
errors in the flux calibration) errors in the combined spectrum,
as well as measurement and zero-point errors in the
photometry, as detailed in Mann et al. (2015). When combined
with the kinematic distance, this yields a luminosity of
(8.4±1.4) ×10−3 Le.

Effective temperature: We derived an effective temperature
(Teff ) from our optical spectrum following the procedure from
Mann et al. (2013b). To briefly summarize, Mann et al. (2013b)
compare optical spectra of M dwarfs withBT-SETTL CIFIST
models12 (Allard et al. 2011). By masking out regions of the
spectrum that are poorly reproduced by the models, Mann et al.
(2013b) reproduced the Teff scale from long-baseline inter-
ferometry (Boyajian et al. 2012) to 60 K, which we adopted as
the error on our measurement. This procedure yields a Teff of
3180±60 K.

Mass, radius, and density: To estimate the stellar mass,
radius, and density, we used the Mann et al. (2015) relations
between absolute Ks-band magnitude (MKs) and metallicity and
stellar radius/mass. The radius relation was calibrated using
angular diameter measurements from long-baseline optical
interferometry (Boyajian et al. 2012). The mass relation is
slightly modeldependent, but reproduces the empirical mass–
luminosity relation from Delfosse et al. (2000), and in
combination the mass and radius relations reproduce the
mass–radius relation from low-mass eclipsing binaries (Feiden
& Chaboyer 2012; Mann et al. 2015) within errors. Accounting

for errors in the distance, [Fe/H], Ks magnitude, and scatter in
the relations, we derived a radius of 0.295±0.020 Re and a
mass of 0.294±0.021Me. For the stellar density we also
considered that errors are correlated, i.e., if the distance is
greater, both the mass and radius increase together. Accounting
for this via Monte Carlo simulation, we find a density
of 11.3 1.5

1.7r-
+

.
Mann et al. (2015) relations are primarily based on stars

older than 1 Gyr, while K2-25 is relatively young
(650–800Myr). However, at this age K2-25 is expected to be
on the main sequence, and the Mann et al. (2015) relations
include some stars with similar activity levels (as measured by
Hα) as K2-25. As a check we also derived the stellar radius
using the Stefan–Boltzmann law and our above luminosity and
Teff . This yields a radius of 0.301±0.032 Re, <1σ from our
estimate above. We note that this method is not completely
independent of the M RKs – *

relation, as they both rely on the
same distance and Ks measurement.
Rotation period: The light curve from Vanderburg &

Johnson (2014) shows ∼1% amplitude periodic variation due
to rotation and spot coverage. We calculated the autocorrelation
function of the lightcurve and found a peak at
P=1.881±0.021 days, with a harmonic at 0.940±0.005
days; we consider the former the rotation period of the star.
Errors on the rotation period were determined by fitting the
autocorrelation function around the peak as a Gaussianand do
not consider (potential) sources of systematic error such as
aliasing, differential rotation, or short-lived spots (e.g., Aigrain
et al. 2015). However, periodicity does not change over the 71-
day observing period from K2 despite changes in the
amplitude. Further, this rotation period is consistent with stars
of similar mass and age in the Hyades and Praesepe clusters
(Figure 4).
v isin

*
13: We estimated the level of rotational broadening in

K2-25 from our stacked IGRINS spectrum. We compared our
IGRINS spectrum with a BT-SETTL model with a Teff , log g,
and [M/H] of 3200, 5.0, and 0.0, respectively (roughly
consistent with our calculations above), which we artificially
broaden with the IDL code lsf_rotate (Gray 1992; Hubeny &
Lanz 2011). Each of the IGRINS orders isfit separately,
excluding those for which the SNR is too low (<20). We
normalized each order and the appropriate region of the model
with a 150-pixel (much larger than a given feature) running
median after masking out regions of strong (>30%) telluric
absorption. To account for instrumental broadening, we
simultaneously fit the telluric lines in each order, which we
extract from the A0V star spectrum (see Section 2.5). We
assume thatinstrumental broadening is Gaussianand that the
telluric lines have negligible intrinsic width. The instrumental
broadening typically has an FWHM of 0.3–0.5 Å, consistent
with the resolution of the spectrograph. We applied the
broadening derived for each order to the model. We then fit
the model to the spectrum, letting v isin

*
float from 0 to

50 km s−1, calculating χ2 at each step. We adopted the median
and standard deviation of the v isin

*
measurements across all

fit orders as the final measurement and error, which was
7.8±0.5 km s−1.
Sky projected inclination: The combination of our v isin

*
,

rotation period, and stellar radius enables us to calculate the
(sky-projected) rotational inclination (i*) of K2-25. We first

12 https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011

13
i* is used for the stellar sky-projected inclination to distinguish it from i, the

inclination of the planetʼs orbit.
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calculate the equatorial velocity (Veq):

V
R

P

2
, 1eq

rot

( )*
p

=

where Prot is the stellar rotation period. This yields a velocity of
7.9±0.5 km s−1. We follow the formalism from Morton &
Winn (2014) to convert v isin

*
and Veq to a posterior in cos(i*),

which handles regions of the posterior where v isin
*
>Veq

(which is physically impossible). The resulting posterior gives
a lower limit on stellar inclination of i*>52° at 99.7%
confidence (3σ), and i*>72° at 68.3% (1σ).

All derived stellar parameters for K2-25 are listed in Table 1.

5. K2 LIGHT-CURVE ANALYSIS

For our analysis we relied on the light curve from
Vanderburg & Johnson (2014), which used a 3×3 pixel
aperture centered on K2-25. We also downloaded and repeated
our analysis using the Pre-search Data Conditioning (PDCSAP;
Stumpe et al. 2012) light curve released by the Kepler and K2
Science Center. Both lightcurves are shown in Figure 5. Our
final results were consistent using either lightcurve, although
the residuals of our transit analysis were smaller when using the
reprocessed Vanderburg & Johnson (2014) light curve, so we
report values from that analysis.

K2-25b was initially identified by eye in the PDCSAP
lightcurve, as the periodic 1% dips (Figure 5) can be seen even
through the strong rotational variability.

5.1. Search for Additional Transiting Planets

We performed a systematic search for other transit signals in
the K2 lightcurve of K2-25. We started with the light curve
from Vanderburg & Johnson (2014) and applied several
additional corrections to filter stellar rotational variability and
flaring. First, a power spectrum was generated using the Lomb–
Scargle algorithm (Scargle 1981), and significant, isolated
peaks were identified with false-positive probability
(FAP) < 0.01. These frequencies were filtered from the

lightcurve, and a running median with a 1-day window was
also removed (the window is much larger than the expected
duration of any transit). A robust standard deviation was
calculated using the algorithm of Tukey (1977), and >3σ
positive excursions were replaced with median values. This
data set was then searched for periodic transit-like signals using
the box-least-squares algorithm from Kovács et al. (2002). A
second-order trend in the power spectrum was removed, and
signals with FAP<0.01 were identified by calculating the
Signal Detection Efficiency (Equation(6) in Kovács et al.
2002) and evaluating the significance using the cumulative
Gaussian with the parameters set to the values found by Kovács
et al. (2002) for pure noise. These candidate signals were then
analyzed in detail and their S/N calculated. Besides the 3.485-
day signal investigated here, no other signals with periods
between 0.3 and 20 days were detected.

5.2. Simultaneous-fit K2 Light Curve

The Vanderburg & Johnson (2014) pipeline is optimized for
producing lightcurves of slowly rotating stars, and K2-25ʼs
rapid high-amplitude photometric variability resulted in
uncorrected systematic effects in the original Vanderburg &
Johnson (2014) lightcurve. Once we identified the transit, we
reprocessed the K2 lightcurve using the same procedure as
Becker et al. (2015), simultaneously fitting for the stellar
activity signal, the K2 flat field, and the transits of K2-25b
using a Levenberg–Marquardt minimization algorithm (Mark-
wardt 2009). We modeled the stellar variability as a spline with
breakpoints every 0.2 days, the K2 flat field as splines in K2
image centroid position with breakpoints roughly every 0 4,
and the transits with a Mandel & Agol (2002) model, while
taking into account the 30-minutelong-cadence integration
time. This processing effectively removed the systematics from
the K2 pointing jitter and resulted in improved photometric
precision. We show both lightcurves as well as the PDCSAP
lightcurve in Figure 5.

5.3. Transit Fitting

We fit the flattened lightcurve with a Monte Carlo Markov
Chain (MCMC) by utilizing the emcee Python module
(Foreman-Mackey et al. 2013) and the batman tool (Kreid-
berg 2015), which utilizes the Mandel & Agol (2002) transit
model. We oversampled and binned the model to the Kepler
cadence to handle light-curve distortion from long integration
times (see Kipping 2010, for a discussion of this issue). We
sampled the planet-to-star radius ratio (RP/R*), impact
parameter (b), orbital period (P), epoch of the first transit
midpoint (T0), two parameters that describe the eccentricity and
argument of periastron ( e sin( )w and e cos( )w ), bulk stellar
density (ρ*), and two limb-darkening parameters (q1 and q2).
We assumed a quadraticlimb-darkening law and use the
triangular sampling method of Kipping (2013) in order to
uniformly sample the physically allowed region of parameter
space. MCMC chains were run using 100 walkers, each with
200,000 steps after a burn-in phase of 10,000 steps.
The transit duration is uniquely determined from the other

fitted transit parameters following the formulae from Seager &
Mallén-Ornelas (2003), but using ρ* as the free parameter
rather than transit duration enables us to apply a prior on ρ*
using our values derived in Section 4. This in turn let us

Figure 4. Rotation period as a function of stellar mass for stars in the Hyades
and Praesepe clusters taken from Agüeros et al. (2011), Scholz et al. (2011),
and Delorme et al. (2011). Praesepe targets are similar in age to that of the
Hyades (both 650–800 Myr) and have more rotation period measurements at
low masses in the literature. K2-25 is shown in red. Errors on mass
measurements are typically ;10%.
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constraine and ω, which are generally hard to measure owing
totheir minimal impact on the observed light curve (similar
methods are used inDawson & Johnson 2012; Kipping
et al. 2012). As explained in Van Eylen & Albrecht (2015),
directly exploring e and ω biases the eccentricity to higher
values owingto the cutoff at zero, while sampling uniformly in
e sin( )w and e cos( )w between −1 and 1 is unbiased and

still provides uniform sampling in e and ω (see Lucy &
Sweeney 1971; Ford 2006; Anderson et al. 2011; Eastman
et al. 2013, for more detailed discussions of this issue).

We applied a prior drawn from the model-derived limb-
darkening coefficients from Claret & Bloemen (2011) assum-
ing a quadratic limb-darkening law. We interpolate our stellar
parameters (logg, Teff , [Fe/H];see Section 4) onto the Claret
& Bloemen (2011) grid of limb-darkening coefficients from the
PHOENIX models, accounting for errors from the finite grid
spacing, errors in stellar parameters, and variations from the
method used to derive the coefficient (Least-Square or Flux
Conservation). This yielded priors of 0.45±0.1 and
0.35±0.1 for the linear and quadratic limb-darkening
coefficients, respectively, which we propagated to q1 and q2
using the formulae in Kipping (2013). We uniformly sampled
theimpact parameter over −1.2 to +1.2 (to allow for grazing
transits), orbital period over 0 to 100 days, and mid-time of the
first transit over±1.5 days (about half the period) from the
value identified in our L-S analysis (Section 5.1).

We fit the light curve twice: once with e sin( )w and
e cos( )w fixed at 0 and no prior on ρ*, and once with

e sin( )w and e cos( )w limited to −1 to +1 and under
uniform priors, and with a prior on ρ* using our values derived
in Section 4. We report the results of both transit fits in Table 2.
For each parameter we report the median value with the
“errors” as the 84.1 and 15.9 percentile values (corresponding
to 1σ for Gaussian distributions). The model lightcurve with
the best-fit parameters (highest likelihood) is shown for the
latter fit in Figure 6 alongside the K2 data. We also show
posteriors and correlations for asubset of parameters in
Figure 7.
Both fits have a noticeable tail in the RP/R* distribution

owingto poor sampling of the transit duration and a
degeneracy with impact parameter. The transit duration is only
slightly longer than the integration time, so it is difficult to
completely rule out partially grazing (b>0.9) orbital solu-
tions. The MCMC is able to achieve a reasonable fit to the
data with large RP/R* values by simultaneously adjusting
the impact parameter and transit duration. However, such
solutions are also disfavored compared to solutions with a
lower impact parameter and shorter transit duration (although
less so for the fit with the prior on ρ*). This issue could be
further complicated if model limb-darkening parameters turn
out to be systematically erroneous for cool stars, although
fits of high-quality lightcurves suggest that the model
parameters are at least roughly correct (e.g., Kreidberg
et al. 2014; Swift et al. 2015). We note that follow-up
observations from the ground at higher cadence could
significantly mitigate this degeneracy by resolving the transit

Figure 5. Light curve of K2-25 taken by the K2 spacecraft. The top panel is the PDCSAP flux provided by the Kepler and K2 Science Center. The middle panel is the
Vanderburg & Johnson (2014) lightcurve with simultaneous fitting of the K2 flat field, while the bottom panel shows the Vanderburg & Johnson (2014) light curve
with simultaneous fitting of the flat field and stellar variability (see Section 5.2). All lightcurves have been normalized to 1 and the time zeroed to the start of the K2
observations. Some data points (<1%) that we attribute to flares are off the top of the panels. The shape and features seen in the light curves are insensitive to choice of
aperture size, as the region is free of significant contaminating flux from background stars (see Figure 8).
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duration, particularly NIR observations,where limbdarkening
has a smaller impact.

The two different MCMC fits give consistent values for all
fit values. The main difference is thatthe fit with the ρ* prior
favors a higher impact parameter and hence has power at large
radii. The ρ*-prior fit is consistent with e=0, although a
modest value (e;0.3) is slightly favored. Again, better data to
resolve the transit duration would help significantly here, as e is
highly degenerate with b and τ when using a prior on ρ*. We
adopt the second fit for our planet parameters as the additional
constraints on ρ* should provide a more accurate picture of the
true planet parameters. Further, K2-25b has a tidal circulariza-
tion timescale of ∼1 Gyr (Goldreich & Soter 1966)and hence
probably has not lost its initial eccentricity. Combined with our
stellar radius from Section 4, the latter fit yields a planet radius
of 3.43 0.31

0.95
-
+ R⊕.

6. FALSE-POSITIVE ANALYSIS

6.1. Background Star

We calculated a posterior probability that an unrelated
background star could be responsible for the transit signal, i.e.,
as an eclipsing binary (EB). We followed the procedure
described in detail in Gaidos et al. (2015a), which is
summarized here. The Bayesian probability was calculated
with a prior based on a model of the background stellar
population and a likelihood calculated from observational
constraints, i.e., (1) a background star has to be bright enough
to produce a transit signal given a maximum possible eclipse
depth of 50%, (2) the density of the star must be consistent with
the transit duration; (3) the star is not visible in the 1953 POSS
red and blue image in which K2-25, owingto its proper motion
over 6decades, is displaced by about 7″ (Figure 8); and (4) the
star is not visible in our NIRC2 AO imaging (Section 2.6).
We used a model stellar population calculated byTRILE-

GAL version 1.6 (Vanhollebeke et al. 2009). We calculated the
stellar population at the position of K2-25 to Kp=22
equivalent over a field of 10square degrees (to reduce
counting noise). The faint limit is several magnitudes deeper
than the faintest EB diluted that could possibly produce the
transit signal after dilution by K2-25 (Kp=14.53 mag). The
false positive probability (FPP) was calculated by the method
of Monte Carlo; model stars were placed at random locations
in a circular field 16″ (4 Kepler pixels) in radius centered on
K2-25. Stars were discarded or retained based on the contrast
criterion K R2.5 logp ( )dD < - , where δ=0.012 is the transit
depth and R is a pixel response function interpolated from the
Kepler Instrument Handbook supplement values for the
appropriate detector channel (13). We also discarded stars
brighter than Kp=19 mag based on the DSS POSS 1 image
and stars with a contrast in the infrared K band brighter than the
7σ detection limit in our Keck II-NIR2-AO imaging. We
weighted each remaining star with the probability that a transit
of an object with the observed orbital period (3.485days)
would have the observed duration (;47minutes) if placed
around the background star, versus being placed around K2-25.
This calculation requires a probability distribution for the
orbital eccentricity e,and we adopted a Rayleigh distribution
with mean e=0.1, appropriate for short-period binaries. We
then summed up the number of stars in the 16″ circle and
divided by the ratio of the circular solid angle to 10square
degrees. We find an FPP of ≈4.5×10−8, a consequence of the
depth of the transit, brightness of K2-25, and the low
background star counts at this moderate Galactic latitude.

6.2. Eclipsing Companion to K2-25

Because of the short orbital period, small stellar size, and
long observing cadence, a V-shaped transit is expected for a
low-eccentricity orbit, even if the eclipse/transit is partial.
However, the Vshape we see also leaves open the possibility
that the observed transit is actually a grazing eclipse from a
stellar companion with a 3.485-day orbital period. This is
reflected in the tail in the posterior of the RP/R* distribution.
Although the posterior never passes into values consistent
with stars, the fits assume thatthe eclipsing body is not
luminous,and hence this alone does not rule out the possibility
that the transit is due to a star. Further, although no secondary
eclipse is seen and the even and odd transits have consistent

Table 2

Transit Fit Parameters

Parameter Fit 1a Fit 2a (Preferred)

Period (days) 3.484552 0.000044
0.000036

-
+ 3.484552 0.000037

0.000031
-
+

RP/R* 0.1028 0.0037
0.0080

-
+ 0.1065 0.0065

0.0286
-
+

T0 (BJDb-2400000) 57062.57935 0.00024
0.00049

-
+ 57062.57935 0.00024

0.00049
-
+

Impact parameter 0.35 0.25
0.36

-
+ 0.60 0.42

0.29
-
+

Durationc (hours) 0.74 0.04
0.06

-
+ 0.79 0.17

0.09
-
+

Inclinationc (degrees) 89.5 0.9
0.4

-
+ 88.3 0.7

1.2
-
+

Eccentricity 0 (fixed) 0.27 0.21
0.16

-
+

ω (degrees) 0 (fixed) 62 39
44

-
+

RP
d

(R⊕) 3.31 0.25
0.34

-
+ 3.43 0.31

0.95
-
+

Notes.
a Fit 1 is done with e and ω fixed at 0 and a uniform prior on ρ*, while fit 2 is
done with e sin( )w and e cos( )w limited to −1 to +1 under uniform priors
and with a prior on ρ* from our analysis in Section 4.
b BJD is given in Barycentric Dynamical Time (TBD) format.
c For both fits stellar density and impact parameter are the fitted parameters
(instead of transit duration and orbital inclination). We report the duration and
inclination derived from the other fit parameters here for convenience.
d Planet radius is derived using our stellar radius from Section 4.

Figure 6. Phase-folded light curve of K2-25ʼs transit (black points). The red
line shows the best-fit (highest likelihood) model from our MCMC fit
(Section 5). The bottom panel shows the fit residuals.
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depths, there are regions of inclination, e, and ω space where
there would be no secondary eclipse.

Instead, we can rule out this possibility using the RVs
derived from our IGRINS spectra (see Sections 2.5, and 3). In
theory the relative RVs from our IGRINS data should be more
precise than the absolute velocities, but this does not account
for astrophysical jitter common to young stars. Empirical
measurements of Hyades-age Sun-like stars in the optical
suggest variations of 50 m s−1 from activity (Paulson
et al. 2004; Hillenbrand et al. 2015). Based on the amplitude
of spot variations we see in the K2 light curve and the v isin

*
measured from our IGRINS spectrum, the spot-induced RV
jitter should be ∼120 m s−1 in the Kepler bandpass, but
observations of TTauri stars suggest thatthis is smaller by a
factor of two to three at the wavelength of our IGRINS data
(2.2 μm;Crockett et al. 2012).

Another complication is the stability of IGRINS for
precision RVs. The use of telluric lines to correct the
wavelength scale should reduce instrumental variability to
5–20 m s−1

(e.g., Figueira et al. 2010; Blake et al. 2010), but
correlated errors may persist and RV stability should be tested
empirically. So instead of the expected errors of 50 m s−1

derived from the scatter in RV variations between orders, we
adopt the larger error (typically 150–160 m s−1

) derived from
scatter from using different RV templates. We report the
resulting velocities and errors for each epoch in Table 3. We
show the RVs in Figure 9 phased against both the planetʼs
orbital and the starʼs rotation period.

Although the velocity scatter is too large to measure the
mass of K2-25b, we set a limit to the mass on the transiting
body by assuming thatit is the source of all variation in the
RV. To this end we fit the RV data with a simple least-squares
minimization (Markwardt 2009), fixing P to the value from
the transit fit, e to 0, and limiting the eclipse time to a 3σ range
given from the transit fits (but thatare otherwise unconstrained)
and the inclination to >80°. We found that the largest mass
that is still consistent with the RV values at 5σ is 3 Jupiter
masses, ruling out a grazing EB. Although this alone does not
rule out the possibility of a grazing Saturn- or Jupiter-sized
planet, such a solution is strongly disfavored by our transit fit
(Section 5).

6.3. Eclipsing Binary Companion to K2-25

We considered the possibility that the transit signal is due to
an EB bound to K2-25 (we consider background EBs in
Section 6.1). To be missed by our AO images, any companion
must be within ;10 AU or be too faint (ΔKp>4 mag) to
reproduce the transit depth (Figure 2). Kraus et al. (in review)

show that planet formation is suppressed by >85% inward of
60 AU. We tested the binary companion hypothesis with our
Doppler data because the stellar components of a 3.5day-
period system would exhibit significant RV variation over the
baseline of our observations, producing multiple, variable sets
of lines in the IGRINS spectra. We see no second set of lines in
any of our NIR spectra, nor is there a second peak in the cross-
correlation function. We determine the significance of this
nondetection by simulating ternary (K2-25 plus EB compa-
nion) systems, adding companions to K2-25 drawn randomly
from the observed binary mass ratio from Duchêne & Kraus
(2013), but with the companion as a 3.485-dayEB with a mass
ratio randomly drawn from a uniform distribution. We added
BT-SETTL synthetic spectra to our stacked spectrum of K2-25
andthen searched for a second set of lines or a second peak in
the cross-correlation function. We found that 99.8% of our
simulated systems eitherareinsufficiently bright to produce
the observed transit depth, would be seen in the AO image, or
produce a second peak in the cross-correlation function of one
or more of our IGRINS observations. This simulation is also
likely an overestimate, as it only simulates triple systems.

7. SUMMARY AND DISCUSSION

As members of the Hyades have common and well-
established ages, metallicities, and distances, their other
properties can be constrained more precisely, allowing more
rigorous studies of how planets evolve structurally and
dynamically with time. M dwarfs are especially interesting
targets for exoplanet searches in clusters because their small
size facilitates the discovery of smaller planets. To this end we
have begun the KELP project to find transiting exoplanets
around low-mass cluster members monitored by K2. K2-25
represents the first discovery in our search, as well as the first
discovery of a transiting planet in the Hyades.

Figure 7. Posteriors from our MCMC fit. Median values for each parameter are marked with red dashed lines. Gray scaling corresponds to 1σ, 2σ, and 3σ (from light
to dark). The left panel shows the fit with eccentricity and argument of periastron fixed at 0 and no prior on density, while the right panel shows a fit with e sin( )w
and e cos( )w allowed to float and a prior on stellar density from our analysis in Section 4. For the latter fit we show the eccentricity posterior, but since eccentricity is
fixed in the former, we instead show the transit duration posterior.
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We obtained moderate-resolution optical and NIR spectra
of K2-25, used to measure its temperature and luminosity.
Multiple epochs of high-resolution, NIR spectra with the
IGRINS spectrograph enabled us to confirm K2-25ʼs member-
ship in the Hyades cluster and rule out the possibility that the
transit signal is due to a grazing EB. Because the star is a
member of the Hyades, we were able to derive a kinematic
distance and correspondingly precise stellar parameters. We
took advantage of these tight constraints on stellar density to
improve the transit fit by applying a prior on ρ*, enabling weak
constraints on e and better constraints on b. Using RVs from
the IGRINS spectra, AO imaging, and the lack of background
stars seen in the 1953 POSS data (during which K2-25 was in a

different location), we are able to confirm the planetary nature
of the transit signal.
Owing to the excellent precision of Kepler, M dwarf KOIs

usually have small errors on RP/R*; instead, errors on
planetary radii are usually dominated by errors in the stellar
radius (e.g., Muirhead et al. 2012, 2015). This has motivated a
plethora of follow-up programs and efforts to improve methods
to constrain M dwarf radii (e.g., Rojas-Ayala et al. 2012; Neves
et al. 2014; Zhou et al. 2014; Hartman et al. 2015; Newton
et al. 2015). K2 M dwarfs are statistically closer than Kepler M
dwarfs, but still have poorly constrained stellar radii (e.g.,
Crossfield et al. 2015; Montet et al. 2015). Like stars with
known parallaxes (e.g., MEarth; Dittmann et al. 2014), because
we know the (kinematic) distance of K2-25, its other
parameters are more precisely established (e.g., a 6%–7% error
in R*). However, because the 30-minutecadence of the
Kepler photometry is comparable to the transit duration
(;45 minutes), even K2ʼs high-precision lightcurves leave us
with an RP/R* value that is only well constrained in one
direction (1σ error is +26%, −6%). Thus,K2-25b represents

Figure 8. Archive images of K2-25 from DSS (top) and SDSS (bottom). Both
images have the same scale, and a 20″ bar is shown in blue on the DSS image.
The current location of the object is shown as a red circle in both images.
Because the DSS image is from 1953, the target was ∼7″ from its current
position, revealing potential unresolved background stars. Boxes corresponding
to K2 apertures (5×5 and 3×3 K2 pixels) are shown in green and teal in the
SDSS image. We use the smaller (9 pixel) aperture to cut out the faint
background star. Because of the large K2 PSF, two background stars visible in
SDSS still contaminate the smaller aperture, but both of these stars are too faint
to reproduce the 1% transit depth.

Table 3

Relative Radial Velocities

JD-2,400,000 RV ( m s−1
)
a σRV ( m s−1

)

57288.92269 +300 161
57289.89553 −42 159
57293.85944 −238 161
57295.86940 +192 158
57319.84005 −109 158
57320.83534 −172 159
57321.83510 +232 159
57322.88659 +114 159
57323.79641 −85 159
57324.76798 −191 159

Note.
a Radial velocities are quoted with respect to the mean. For the system
(absolute) velocity see Table 1.

Figure 9. RVs from IGRINS phased to the planetʼs orbital period (top,
3.485 days) and starʼs rotation period (bottom, 1.88 days). Two phases are
shown, but repeat measurements are shown in gray. In the top panel the
expected signal from a Neptune-mass, Jupiter-mass, and 3×-Jupiter-mass
planet (with e=0 and P=3.485 days) are shown as teal, blue, and red lines,
respectively. In the bottom panel we show the predicted jitter from the ∼1.5%
spot-induced variations in the K2 light curve and the v isin

*
measurement of

∼8 km s−1, although this is expected to be smaller in the Kband.
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a case where the limiting factor in planet parameters is the
lightcurve, and not the stellar parameters.

High-cadence photometry from the ground could signifi-
cantly improve the planet parameters. While K2-25 is quite
faint in the optical (V=15.9) by moving to the near-infrared
(z=12.8, K=10.4) a modest-sized (�2 m) telescope could
achieve the requisite precision (mmag) with a cadence of
<5 minutes. This is sufficient to resolve out the transit duration
and likely rule out or confirm the high impact parameter that is
present in our transit fit posteriors (Section 5).

The activity lifetime of an M dwarf is 1.2±0.4 Gyr for a
spectral type M2, rising to 4.5 1.0

0.5
-
+ Gyr at M4 and 7.0±0.5 Gyr

at M5 (West et al. 2008). The lack of Hα emission seen in the
Kepler M dwarf planethosts (Mann et al. 2013b) of similar
spectral type suggests that they are all >1 Gyr, significantly
older than K2-25. A comparison to other transiting planets
gives us some insight into how planets evolve beyond the
Hyades’ age (650–800Myr).

In Figure 10 we show the radius K2-25b as a function of host
star mass and planet irradiance compared to transiting planets
found by Kepler and MEarth with orbital periods <100 days
and host star masses M*<0.5. Parameters for Kepler planets
and stars are drawn from Gaidos et al. (2015b), which are
derived in a manner consistent with our own, and parameters
for GJ1214b and GJ1132b are taken from Anglada-Escudé
et al. (2013) and Berta-Thompson et al. (2015), respectively. It
is clear that K2-25b is unusually large for its host star mass and
orbital period. Only one Kepler planet orbiting an M*<0.5
star has a larger radius than K2-25b (KOI 4928.01), but its host
star is ∼50% more massive than K2-25. GJ1214b (Charbon-
neau et al. 2009) is the closest match, as the planet is notably
smaller, but it also orbits a significantly less massive star.

GJ 581 has a similar mass (;0.3Me) and harbors a
nontransiting giant planet, so such large planets are possible.
However, it is clear thatlarge planets around very lowmass
stars are rare. Both Kepler and MEarth searched
;1000M*<0.5Me stars (Berta et al. 2013; Gaidos

et al. 2015b), and each found just ∼one large planet, while
K2-25b was found after searching just ∼70 candidate members
of the Hyades with M*<0.5Me. Detection biases probably
cannot explain the lack of such planets in the Kepler sample;
close-in, Neptune-sized transiting planets should be obvious in
the Kepler data, unless they were flagged as eclipsing binaries
owing to a short transit duration.
One possible explanation for the large size of K2-25b is that

it is evolving under the influence of the environment of its
young host star. M dwarfs, like most stars, pass through a
juvenile phase of elevated UVand X-ray emission, flares, and
coronal mass ejections. Models predict this activity to be
capable of removing any weakly bound, primordial hydrogen/
helium envelopes from rocky planets on close-in orbits
(Lammer et al. 2014) and are supported by the ejection of
alarge cloud of neutral hydrogen around the Neptune-mass
GJ436b (Ehrenreich et al. 2015). K2-25b could represent an
early or intermittent phase of planetary evolution where the loss
of a distended atmosphere has not yet reached completion.
Detection and characterization of additional planets in young
clusters are needed to test such scenarios. While there are only
∼100 M dwarfs in the Hyades observed in Campaign 4, many
more will be observed in Campaign 13 and even more M
dwarfs in Praesepe and Pleiades. Although Praesepe and
Pleiades are more distant and hence their M dwarf members are
much fainter, the Pleiades is significantly younger (∼110Myr;
Dahm 2015), and planets as large as K2-25b should be quite
obvious around even relatively faint M dwarfs.
The deep transit of K2-25b makes it a useful target for

atmospheric characterization. Follow-up of similar-sized
objects, such as GJ 1214b, hasmostly suggested hazy,
featureless atmospheres (e.g., Berta et al. 2012; Knutson
et al. 2014; Kreidberg et al. 2014). However, no one has
examined the atmosphere of such a young Neptune-sized
planet, and it is not known whetherthe atmosphere will show
features that are no longer present in older counterparts. A high

Figure 10. Planet size as a function of host star mass (left) and planet irradiance (right) for EPIC210490365 (red) compared to transiting planets discovered by Kepler
(black) and from the ground by MEarth (blue). Only planets orbiting stars with host masses <0.5 Me and orbital periods <100 days are included.
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volatile content in the transmission spectrum also might explain
K2-25bʼs unusual size.

A measurement of K2-25bʼs mass would yield constraints on
the planet density, possibly providing insight on the unusual
size of this planet. Assuming thatthe planet is Neptune-mass
on a near-circular orbit, the Doppler amplitude is expected to
be ∼15 m s−1. The scatter in our RV measurements is
significantly larger than this (>200 m s−1

) even after account-
ing for the expected measurement error (;50 m s−1

). We
adopted a more conservative measurement of the error
(;150 m s−1

) to account for jitter common to young stars
and the untested long-term stability of IGRINS at the 50 m s−1

level.
The RV scatter may also be due to a nontransiting planet.

Additional RV measurements could resolve this question. Even
if the source of the noise is astrophysical, it might be possible
to remove signals that do not follow a Keplerian trend
consistent with the orbital period of K2-25b. The faint optical
magnitude and spot-induced jitter are limitations, but K2-25
would be an ideal target for monitoring by NIR spectrographs
like CARMENES (Quirrenbach et al. 2012), the Infrared
Doppler instrument (Kotani et al. 2014), SPIRou (Artigau
et al. 2014), and the Habitable-zone Planet Finder (Mahadevan
et al. 2010).
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