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Abstract

A zonal approach for direct computation of sound
generation and propagation from a supersonic jet is in-
vestigated. The present work splits the computational
domain into a non-linear, acoustic-source regime and a
linear acoustic wave propagation regime. In the non-lin-
ear regime, the unsteady flow is governed by the large-
scale equations, which are the filtered compressible
Navier-Stokes equations. In the linear acoustic regime,
the sound wave propagation is described by the linear-
ized Euler equations, Computational results are present-
ed for a supersonic jet at M=2.1. It is demoanstrated that
no spurious modes are generated in the matching region
and the computational expense is reduced substantially
as opposed to fully large-scale simulation,

1. Introduction

In theory, direct numerical simulation (DNS) based
on the compressible Navier-Stokes equations provide
both the flow fluctnations and the acoustic field. Howev-
er, the resolution requirement for high-Reynolds number
turbulent flows makes direct numerical simulation im-
practical due to current computer limitations. It is known
that the large scale structure is responsible for the gener-
ation of the dominant part of supersonic jet noise [1-6).
‘This indicates that it is appropriate to perform large-eddy
simulations(LES) to accurately capture the large scales
of motion while modelling the sub-grid scale turbulence.

The use of large-eddy simulations (LES) as a tool
for prediction of the jet noise source has been proposed
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by Mankbadi et al. [7], in which, the computed fluctuat-
ing sound source in the near field was then used to obtain
the far field sound through the application of Lighthill’s
theory. Due to the non-compactness of the source and the
need to account for the retarded time, accurate applica-
tion of Lighthill’s theory requires prohibitive computer
storage. Later, Mankbadi et al. [8] extended the compu-
tational domain to the acoustic field, where large-scale
equations are solved for both the sound source and the
acoustic fields for the axisymmetric case. The approach
was extended in Shih et al. [9] to the three dimensional
case, but was restricted to the near region due to comput-
er limitations. An alternative approach for extending the
three dimensional computation to the far-field is needed.
This issue is addressed in this paper.

An acoustic calculation can be viewed as consisting
of two parts, one describing the non-linear generation of
sound, the other describing the linear propagation of
sound. All non-linear flow effects and source generation
are confined to the near field, and can be computed by
large-scale equations. There are several approaches to
calculate the sound propagation once the source has been
identified, such as acoustic analogy, Kirchhoff’s method
[10), and lincarized Euler equations. Freund et al. [11]
have studied the matching of near/far-field equation sets
for computations of acrodynamic sound. Their results of
an acoustic source embedded in a shear layer using lin-
earized Euler equations as the far-field equation set are
encouraging.

In the present work, the near-ficld source region so-
lution including all non-linear flow hydrodynamics is
obtained through the large-scale equations [8], and is
matched to the solution of the linearized Euler equations
goveming the acoustic field. The present research com-
bines the large-scale simulation and linearized Euler
equations approach into one computer code, resulting in
the saving of computer CPU time for extension to three
dimensional acoustic field predictions.



2. Governing Equations

The computational domain, figure 1, is split into
non-linear source generation and linear acoustic propa-
gation regions, which are governed by the large-scale
and linearized Euler equations respectively.

2.1 Large-Scale Equations

The flow field of a supersonic jet is governed by the
compressible Navier-Stokes equations, and can be de-
composed into filtered and residual fields, namely

f=1+f" )
where an overbar denotes the resolved (filtered) field and
a (*) denotes the unresolved (subgrid) one. The mean of
the filtered field is the mean of the total field. Upon sub-
stituting this splitting in the full Navier-Stokes equa-
tions, the filtered compressible Navier-Stokes equations
in cylindrical coordinates takes the form
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Here Q is the unknown vector, F and G are the fluxes in
the x and r directions, respectively; S is the source term
that arises in cylindrical polar coordinates; and k is ther-
mal conductivity. The total enthalpy is I, the total energy
isE, and o;; are the viscous stresses. This system of equa-
tions is coupled with the equation of state for a perfect
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The unresolved stresses T;; appearing in equations (4-6)
need to be modeled.

2,2 Linearized Euler Equations

Starting from the full Navier-Stokes equations in
conservation form, neglecting viscosity, and linearizing
about a2 mean flow (U,V), the axisymmetric linearized
Euler equations may be written in cylindrical coordinates
as:
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Inﬂusnotanon,UandVarelhemmaxmlandradialve-
locities. The velocities are normalized by the jet exit cen-
terline velocity U,, time by R/U,, density by the mean
exit centerline value, and pressure by the exit dynamic
pressure,

3. Subgrid-Scale Modelling

The effect of unresolved scales on the resolved ones
is accounted for through the use of Smagorinsky’s sub-
grid-scale model [12]. The subgrid-scale turbulence
stresses are represented as follows]:
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where k; is the kinetic energy of the residual turbulence

and is neglected with respect to the thermodynamic pres-
sure. The strain rate of the resolved scale is given by
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‘The summation Smm is zero for incompressible flow, vg
is the effective viscosity of the residual field,
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and A; is the filter width given by
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For the heat equation, Edison [13] proposed the eddy vis-
cosity model
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RdT
Prtaxk

where Pr, is the subgrid-scale turbulent Prandtl number,
which can be taken as 0.5. Smagorinsky’s constant C, in
equation (16) is 0.1 as was used in previous study [8].

4. Numerical Method

The importance of the dispersion and dissipation of
a given scheme, used in connection with the computa-
tional aeroacoustics, was highlighted by Hardin [14].
Both effects are crucial in computational acroacoustics,
and can render the computed unsteady part of the solu-
tion completely unacceptable. As such, high-order accu-
tate schemes are required for problems in computational
aeroacoustics.

A fourth-order accurate in space, second-order accu-
rate in time scheme is used, which is an extension of the
McCormack scheme by Gottlicb and Turkel [15]. This
scheme has been used extensively by other researchers
[16-21), to name a few. In this scheme, the operator is
split into two one-dimensional operators and applied ina
symmetric way to avoid biasing of the solution.

5. Boundary Conditions

Boundary condition is an important issue in the
computation of jet noise. Proper boundary treatment
should allow waves to pass through the boundary with-
out generating reflecting waves. Several boundary treat-
meats were considered [22], and it was shown that the
boundary treatments used in [8) were stable, non-reflect-

ing, and most suitable for the jet computations. The
present work employs the same boundary treatments as
in references [8]. The schematic diagram of figure 1
shows various boundary conditions used at each bound-
ary.

In the non-linear acoustic source region, the inflow
boundary is split into hydrodynamic disturbance and ra-
diation regimes. A small disturbance, assumed to be
mainly hydrodynamic in nature, is introduced at the in-
flow and is specified from the centerline to r/D=2. The
disturbance is assumed in thie form:

[ vp o] = R{@me @93 a9)

Omr-Sommerfeld equation are solved to obtain the com-
plex wave number « as the eigenvalue corresponding to
the frequency o and the radial functions &Xr) as the cor-
responding eigenfunctions.

@(r) = [A(r), ¥(r), D (r), P (r)] (20)
To obtain the disturbance solution a mean flow must
be specified. In the present work, the analytical functions
proposed by Tam and Burton [23] to fit the experimental
data of Troutt and McLaughlin [24] were used. The mean

axial velocity is given by
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where b(x) is the half-width of the annular mixing layer,
and is fitted to the experimental data. The radius of the
potential core, h(x), is related to b(x) through the conser-
vation of momentum [23].

For the supersonic regime, all characteristics travel
in the flow direction. Thus the primitive variables are
given at x=0 as outlined above. In the subsonic regime,
the following three characteristics are specified accord-
ing to the linear stability solution:

P +pcu, = Cl

2

pev, = C3

The fourth characteristic is outgoing and is obtained
from the interior solution:

pl_ Pcut = C4 (23)
The four characteristic equations are then solved togeth-

er to obtain the time derivatives of the variables, which
are used to update the solution at the inflow boundary.

In the radiation regime (r/D>2), the conventional



acoustic radiation condition applies:

Q = T®[3Q,+50,+3] @4
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and M is the local Mach number, ¢ is the sonic velocity.
The spatial derivatives which appear in equation (24) are
evaluated in an identical manner as the inner flow deriv-
atives.

The outflow treatment is based on the asymptotic
analysis of the linearized equations as given by Tam and
‘Webb [25]. The pressure condition is the same as that ob-
tained by Bayliss and Turkel [26], Enquist and Majda
[27], and Hariharan and Hagstrom [28], namely:

X r
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However, for updating the rest of the primitive variables,
Tam and Webb have shown that the momentum and con-
tinuity equations should be used to account for the pres-
ence of entropy and vorticity waves at the outflow

boundary.

For the outflow regime of large radius with the local
Mach number less than 0.01, the outflow condition is re-
placed by the conventional acoustic radiation condition,

equation (24).

The results presented herein are for axisymmetric
disturbance, for which the boundary condition at r=0 can
be stated as

g;[u.p,p] =0y =0 @n

The centerline treatment for non-axisymmetric distur-
bances is not obvious, and was addressed by Shih et al
9).

In the linear acoustic region, radiation boundary
condition of equation (24) is used since only acoustic
wave is of significance in this region.

6. Matching
In the present work, this scheme is applied to both

the large-scale equations and linearized Euler equations.
A schematic diagram of the computational domain is

presented in Figure 1. No boundary condition is needed
in the matching region. The scheme requires fluxes at
two grid points outside of the domain to update variables
at the boundary. An overlapping region, consisting of 4
grid points in the radial direction, is made to allow vari-
ables at interior points to be passed between two do-
mains. The variables of the two solution domains are the
filtered quantities and the fluctuation quantities. The
mean of the filtered ficld is the mean of the total field.
Therefore, it is straightforward to set up a matching
scheme at the interface, At every time step, all linear
acoustic region variables in the overlap region are con-
verted to non-linear region variables and used to evaluate
the fluxes in the non-linear region. Likewise at every
time step, all non-linear region variables are converted to
linear acoustic region variables and used to evaluate the
fluxes in the acoustic region. Freund et al. {10] pointed
out that grid stretching and interpolation induce error in
the calculation, though reducing the computing expense.
The present simulation uses identical uniform grids in
the overlapping region to avoid such generation of spuri-
ous waves.

7. Results and Discussion

The numerical simulation was conducted for a cold,
nearly perfectly expanded axisymmetric supersonic jet
of Mach number 2.1. The test case has been simulated
previously [8] using large-scale equations. The total tem-
perature of the jet is 294° K, and the jet exit pressure is
0.0515 atm. The Reynolds number based on exit condi-
tions is approximately 70000. In the present calculation,
the jet is excited at a Strouhal number of 0.2 with the
Strouhal number defined as St=fD/U,, where D is the

nozzle exit diameter and U, is the jet exit centerline ve-
locity.

The computational domain for this problem extends
axially from x/D=2.5 to x/D=35, and radially from cen-
terline to 1/D=16, as shown in figure 1. Due to the steep
mean flow gradieat encountered at the jet exit, the com-
putational grid was begun at an axial distance x/D=2.5
from the actual jet exit. The computational grid consists
of 391 equally spaced points in the axial direction. In the
radial direction, 150 points are used and stretched be-
tween ceaterline and 1/D=2.5 with concentration of grid
points around 1/D=0.5. Between 1/D=2.5 and 1/D=16,
130 equally spaced points are used with a spacing equal
to that of the last stretched points. The interface between
the non-linear and linear acoustic regions was chosen at
1/D=5, above which the mean flow is uniform throughout
the domain.



Figure 2 shows the instantaneous distribution of p,
P, uand v at t=150, where t is the characteristic time de-
fined as the ratio of nozzle exit radius to the jet exit cen-
terline velocity. The horizontal line at 1/D=5 in the figure
indicates the boundary between the two domains. One
can see smooth solutions across the matching region, al-
though some kinks are observed in the axial velocity dis-
tribution. The disturbances generated in the shear layer
propagate through the matching region to the far field
without any distortion. The wave-like nature of the flow
field is evident and the solution is clean from boundary
reflections.

Figure 3 shows contours of the root-mean-square
values of the pressure and axial momentum distributions.
The contour levels are 0.00035 and 0.0025 for the root-
mean-square values of pressure and axial momentum re-
spectively. No spurious disturbances are generated in the
matching region, and the preferred forward emission is
clearly shown in the figure.

Figures 4 shows the axial development of the axial
momentum fluctuations on the nozzle lip line. The com-
puted results obtained using the large-scale equations
throughout the computational domain (8] are also shown
in this figure. The present zonal approach gives the de-
velopment of axial momentum fluctuations identical to
those obtained in reference {8], as was expected. Figure
5 shows the axial development of the root-mean-square
values of the pressure on the nozzle lip line. Again, the
result of zonal approach is identical to those in reference

I8].

Figure 6 compares the amplitude of pressure distur-
bance at 1/D=12 along the axial direction at St=0.2 with
the results from reference [8]. Due to the use of linear-
ized Euler equations in this region (no viscous dissipa-
tion), slightly higher peak was obtained by the present
approach. The overall distribution is consistent with the
previous large-scale computed results.

Figure 7 presents the pressure spectra at x/D=25, 1/
D=12 for both zonal and large-scale approach. The am-
plitude at fundamental frequency, St=02, is slightly
higher for the zonal approach, while becomes lower at
successive harmonics, than the large-scale simulation re-
sults, Previous linearized Euler computation along [29]
did not show any generation of successive harmonics ex-
cept for the fundamental one.

Figure 8 shows the sound pressure level distribution
in the far field for the present and previous calculations.
It is seen that the computed patterns of the sound pres-
sure level contours are consistent with the previous work

[8]. As pointed out in reference [8], the computed results
show a downstream shift of the lobes when compared to
the experimental measurements. This can be explained
that the calculations are for axisymmetric case, while the
measurements showed that excited motion of the jet is
dominated by the first helical mode in addition to the ax-
isymmetric mode [24].

Figure 9 shows the calculated sound field directivity
ata circle of radius 24D with center at the jet exit center-
line. The angle is measured from the jet exit centerline.
The calculated peak occurs around 15 degrees, which is
the same as the one predicted by previous work [8].

The solution sensitivity to matching boundary loca-
tion, which was chosen at 1/D=5 and 7.5 respectively, is
also investigated. Figure 10 shows the comparison of the
axial distribution of root mean square values of pressure
atr/D=5 and 7.5. As one can see that the solution is in-
dependent of the matching boundary location, which is
denoted by RM in the figure.

8. Conclusions

A zonal approach for direct computation of sound
generation and propagation from a supersonic jet is in-
vestigated. The computational domain is split into a non-
linear acoustic source generation regime and a linear
acoustic wave propagation regime. The unsteady flow in
the non-linear acoustic source region is governed by the
large-scale equations, which are the filtered compress-
ible Navier-Stokes equations. The linearized Euler equa-
tions are used to describe the sound wave propagation in
the linear acoustic region. The computed results show
that no spurious wave is generated in the matching re-
gion and the computational cost is reduced by 30% when
compared with the direct simulation using large-scale
equations alone. This substantial reduction in computa-
tional cost becomes significant when the approach is ex-
tended to three dimensional simulations.
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Fig.2 Instantaneous distributions of (a) density (b) axial velocity (c) pressure (d) radial velocity,
at t=150.
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Fig.3 Contours of root mean square values of (a) pressure (b) axial momentum.
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