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Abstract byMankbadietal. [7],inwhich,thecomputedfluctuat-
ingsoundsourcein thenearfieldwasthenusedtoobtain

A zonalapproachfordirectcomputationof sound thefarfieldsoundthroughthe applicationof Lighthill's
generationandpropagatimfroma supersonicjet is in- theory.Duetothenon-compacmessofthe sourceandthe
vesfigated.The tn'esentworksplits thecomputational needtoaccountfortheretardedtime,accurateappfica-
domaininto a non-linear,acoustic-soarceregimeanda tim of Lighthili'stheoryrequiresprohibitivecomputer
linearacousticwavepropagationregime.Inthenon-fin- storage.Later,Mankbadietal. [8]extendedthe compu-
earregime,theunsteadyflowis governedby the large- rationaldomainto the acousticfield,wherelarge-scale
scale equations,which are the filteredcompressible equationsaresolvedforboth the soundsourceandthe
Navier-Stokesequations.In the linearacousticregime, acousticfieldsfor the axisymmetriccase.Theapproach
thesoundwavepropagationis describedby the linear- wasextendedin Shihet al. [9] to the threedimensional
izedEulerequations.03mpulafionalresultsarepresent- case,butwasrestrictedto thenearregiondoeto comput-
edfora supersonicjet atM=2.1.It is demonstratedthat er limitations.Analternativeapproachforextendingthe
no spuriousmodesaregeneratedin the matchingregion threedimensionalcomputationtothefar-fieldis needed.
andthecomputationalexpenseis reducedsubstantially Thisissueisaddressedin thispaper.
as opposedto fullylarge-scalesimulation.

Anacousticcalculationcanbeviewedasconsisting
1. Introduction of twopans, onedescribingthenon-lineargenerationof

sound,the otherdescribingthe linearpropagationof
In theory,directnumericalsimulation(DNS)based sound.All non-linearfloweffectsandsourcegeneration

on the compressibleNavier-Stokesequationsprovide areconfinedm the nearfield"andcanbe computedby
boththeflowfluctuationsandthe acousticfield.Howev- large-scaleequations.Thereareseveralapproachesto
er,theresolutionrequirementforhigh-Reynoldsnumber calculatethesoundpropagationoncethesourcehasbeen
turbulentflows makesdirectnumericalsimulationim- identified,suchasacousticanalogy,Kirchhoff'smethod
practicalduetocurrentcomputerlimitations.Itisknown [10],and lineariz_Eulerequations.Frenndet al. [11]
thatthelargescaleslmcmzeisresponsibleforthegener- havestudiedthe matchingof near/far-fieldequationsets
ationof thedominantpartof sapersonicjetnoise [1-6]. forcomputationsof waudynamicsound.Theirremltsof
•rnis indicatesthatit isappmtziateto performlarge-eddy an acousticsourceembeddedin a shearlayerusingfin-
simulations(LES)to accuratelycapturethe largescales earizedEulerequationsas the far-fieldequationsetare
of motionwhilemodellingthesub-gridscaleturbulence, encouraging.

Theuse of large-eddysimulations(LES)as a tool Inthe presentwork,the near-fieldsourceregionso-
forpredictionof thejet noisesourcehasbeen_sed lution includingall non-finearflow hydrodynamicsis

' obtainedthroughthe large-scaleequations[8],andis

• Senior_ Associate,memberAIAA matchedtothe solutionof the finearizedEulerequations
. **Seniorscientistand technicalleader,CAA,Associate governingthe acousticfield.The present researchcom-

fellowAIAA bines the large-scalesimulationand finearizedEuler
Thispaperis declareda workof the U.S. Government equationsapproachintoone computercode,resultingin
andis not subjectto copyrightIa'otectionin theUnited the savingof computerCPUtimeforextensionto three
States dimensionalacousticfieldpredictions.
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gas. Here,a tildedenotes Favre fitering,
2. Governing Equations

The computationaldomain, figure 1, is split into P
non-linearsource generationand linearacoustic pmpa- The unresolvedstresses _ijappearingin equations (46)
gation regions, which are governed by the large-scale need to be modeled.
and lin_ Euler equationsrespectively.

2,2LinearizedEulerEquations
2.1 Large-ScaleEquations

Startingfrom the full Navicr-Stokes equations in
The flow field of a supersonicjet is governedby the conservationform, neglecting viscosity, and lincarizing

compressH)leNavier-Stokes equations, and can be de- about a mean flow (U,V), the axisymmetric linearized
composed into filtc_d and residualfields, namely Eulerequationsmaybe writtenin cylindricalcoordinates

as:
f = r+t" (1)

where anovcrbardenotestheresolved(f'dtered)fieldand _t +.__. + _a__._(rG)=S (8)a (") denotes the tmresolved(subgrid)one. The meanof
the filteredfield is the meanof the total field. Upon sub- where

stimting this splitting in the full Navicr-Stokes equa- Q= [15,fi, 9, _] = [p', (pu)', (pv)', (pc)'] (9)
dons, the filteredcompressibleNavier-Stokesequations

in cylindrical coordina_ takestbe form r _ 1

;X2+OF.10. " _ [ (10)_--_+_--_trG) - S (2) F = P'+2fiU-P U2
/ ov+v-uv/

where L(p'+_)U+ (a- l_U)EJ
Q= _, Pfi. P', p_.]T (3)

Pfi _v+_u-Ouv
G = (11)

P+P_2-_xx-¢xx ] P'+ 29V-15V2 [IF= .. - (4)
puv- Oxr-'rxr L(P'+ 6)V + (9- 15V)EJ

IPo lS = (12)

p_
Pfi_- _xr- _xr and

o- o+,:_o_,. [ '--(: :)]P' = (T- 1) 6- (flU + 9V) + 2_ + (13)

_I- fiOxr- _Orr- k_rrT- Cvq In thisnotadon,U and V arethe meanaxiul andradialve-
locities.The velocities arenormalizedby thejet exit cen-

p tcrlinevelocity Ue, time by R/Ue, density by the mean

0 exit centcrlinevalue, and pressureby the exit dynamic
] o (6) pressure.

S = _ _6_- €_ 3. Subgrld-Scale Modening

Hex¢ Q is the unknownvector, F andG are the fluxes in The effectof unresolvedscales on the resolved rues

the x and r directions,respectively;,S is the source term is accountedfor throughthe use of Smgorinsky's sub-
that arisesin cylindricalpolar comdinalcs;andk is ther- grid-scale model [12]. The subgrid-scale turbulence
real conductivity.The totalenthalpyis I, thetotalenergy stress_arerepresentedas follows]:
is E, andaij arethe viscous stresses.This systemofequa-
lions is coupled with the equationofstatefora perfect
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ing, and most suitable for the jet computations. The

xij= -kg(Sij/3)+ 2pVR(Sij-_SijSmm) (14) presentwork employs the same boumiaty trealmentsasin references [8]. The schematic diagramof figure 1
wherekg is thekinetic energyof the residualturbulence shows various boundaryconditionsused at each bound-
andis neglectedwithreslx_t to thethermodynamicpros- ary.
sure.The strainrateof the resolved scale is given by

, . i(8_;i _j,_ Inthenon-linearacousticsourceregion,theinflow
= |_.. ) (15) boundaryis split Into hydrodynmnicdistm-banceandra-Sij 2-_,j + 8xi diatim regimes. A small disturbance,assumed to be

The summationSmmis zerofor incompressibleflow,VR mainly hydrodynamicin nature,is introducedat the in-
flow and is specified from the centerline to r/D=2. The

is the effective viscosity of the residualfield, disturbanceis assumed in tile form:

vR = (CsAf) 2. _2SmnSun (16) Eu, v, p, p] = • {_ (r)e i (ax- cat)] (19)
andAr is the f'dterwidth given by

1/2 Otr-Sommerf¢ldequationare solved to obtainthe com-t N

Af=/AxAr] (17) plex wave numbera as theeigenvalne correspondingto
For the heatequation,Edison[13] proposed the eddyvis-x / the frequencymand the radialfunctions O(r) as the cor-
€osity model w.qxmdingeigenfunctions.

VR_r_. O(r) = [il(r),9(r),_(r),_(r)] (20)

q = PPrtSxk (18) To obtainthe disturbancesolutiona meanflow mustbe specified.In the presentwork,the analyticalfunctions
wherePrt is the subgrid-scaleturbulentPrandtlnumber, proposedby TamandBurton[23] to fit theexperimental
which canbe takenas 0.5. Smagodnsky's constantC_in dataof TmuttandMcLaughfin[24] were used.The mean
equation (16) is 0.1 as was used in previousstudy [8]. axial velocity is given by

U = 1 forr<h

4. Numerical Method [_ (r_h(x)12 ]U = exp in (2) -_-_ forr>h (21)
The importanceof the dispersionand dissipation of where b(x) is thehalf-width of the annularmixing layer,

a given scheme, used in connection with the computa- and is fitted to the experimentaldata.The radiusof the
fional aeroacoastics, was highlighted by Hardin [14]. potentialore'e,h(x), is relatedto b(x) throughthe conser-Both effects are crucialin computationalaeroacoustics,
and canrenderthe computedunsteadypartof the sola- ration of mumenmm[23].

tion completelyunacceptable.As such,high-orderaccu- For the supersonicregime, all characteristicstravel
rate schemes arerequiredforproblemsin computational in the flow direction. Thus the primitive variablesare
aeaxmcoustics, given at x=Oas outlined above. In the subsonic regime,

A fourth-orderatcream in space, sccond-orderacvu- the following three characteristicsarespecified accord-
ratein time scheme is used, which is an extensionof the ing to thelinear stab'flitysolution:
McCormackscheme by Gottiich and Turkel [15]. This Pt+ pout = CI

seamm¢has been used extensively by other reseamhers 2
[16-21], to namea few. In this scheme, the operatoris Pt-C p = C2 (22)
split into two one-dimensional_ andappliedina
symmetricway to avoid biasing of the solution, pcvt = C3

The fourth chatactefis_ is outgoing and is obtained
5. Boundary Conditions from the interiorsolution:

Boundary condition is an importantissue in the Pt-pout = C4 (23)
computationof jet noise. Proper boundary treatment The fourcharacteristicequationsare then solved togeth-

_ shouldallowwaves topassthroughtheboundarywith- ertoobtainthetimederivatives ofthevariables,which
outgeneratingreflectingwaves. Several boundarytreat- are used to update the solutionat the inflow boundary.
meats were considered [22], and it was shown that the
lmmdaryumunents asedin [8] were stable, non-reflect- In the radiation regime (r/D>2), the conventional



acousticradiationconditionapplies:. _ted in Figure 1. No boundarycondition is needed

rxA +rA +Q] in the matchingregion. The schemerequlres fluxesatQt = -r(o) L_X _t_ r (24) two gridpoiats oatside of the domaintoupdatevariables
where: at the boundary.An overlappingregion, consisting of 4

gridpoints in the radialdirection, is made to allow vari-
Q = [u, v, p, p] ables at interiorpoints to be passed between two do-

_x 2 mains.The variablesof thetwo solutiondomainsare theR = + r2 (25) filtered quantifiesand the fluctuation quantities. The

[_ J (_)2] mean ofthef'dteredfieldisthemeanofthetotalfield.
r(0) = c M+ 1- M Therefore, it is straightforwardto set up a matching

scheme at the intJ:rface.At every time step, atl linear
and M is the local Math number,c is the sonic velocity, acoustic region variablesin the overlapregion are con-
The spatialderivativeswhich appearin equatim(24) are vetted tonon-linearregion variablesandused to evuluate
evaluatedin an identicalmanneras the innerflow deriv- the fluxes in the non-linearregion. LF_wise at every
mives, timestep, all non-linearregion variablesarcconvertedto

linearacousticregionvariables and used to evaluat_the
The outflow treatmentis based on the asymptotic fluxes in the acoustic region. Freund et aL [10] pointed

analysis of the linearizedequationsasgiven by Tamand out thatgridstretchingand interpolationinduce error in
Webb [25]. The pressureconditionis the sameasthatoh- the calculation,thoughreducingthe computing expense.
tained by Bayliss and Turkel [26], Enquist and Majda The present simulationuses identical uniform grids in
[27], and HariharanandHagstrom[28], namely:, the overlappingregionto avoid suchgenerationof spuri-

E_ Rpr _R] ous waves.Pt = -r(e) px + + (26)

However, fer updatingthe restof the primitivevariables, 7. Results and Discussion
TamandWebb haveshown thatthe momentumandcon-
finuity equationsshould be used to accountfor the pres- The numericalsimulationwas conductedfor a cold,
encc of entropy and vorticity waves at the outflow nearlyperfectly expandedaxisymmetri¢supersonicjet
boandavy, of Math number2.1. The test case has been simulated

ixeviously [8] usinglarge-scaleequations.The total tern-

For theoutflow regime of largeradiuswith the local peratmeof the jet is 294° K, and thejet exit pressureis
Math numberless than0.01, the outflow condition is re- 0.0515 _ The Reynolds numberbased m exit condi-
placed by the conventionalacoustic radiationcondition, rices is appruximalcly70000. In the _nt calculation,
equation (24). the jet is excited at a Stmuhal number of 0.2 with the

Slrouhal numberdefined as St=fD/Ue, where D is the
The results presented herein are for axisymmetric nozzle exit diameterandUe is the jet exit centerlineve-

_J_xrbance, for whichthe boundarycondition atr=0 can Iocity.
bestatedas

_._,, The computationaldomainfor thisproblemextends1%P] = 0;v = 0 (27) axially fromx/D=2.5 to x/D=35, and radiallyfromcen-or t."
tedine to r/D=16, as shown in figure I. Due to the steep

Tno contorlinetrealmentfor non-axisymmetricdismr- meanflowgradientencounteredat th_jetexit.thecom-
bancesisnotobvions,andwasaddressedbyShihetal putationulgridwasbegunat anaxialdistancex/D=2.5
[9]. from the uctnaljet exit. The computationalgridconsists

of 391 equallyspac_l puints in theaxial direction. In the
In the linear acoustic region, radiation boundary radial direction, 150 points are used and stretchedbe-

condition of equation (24) is used since only acoustic tween centerlineandr/D=2.5 with conventrationof grid
waveis of significancein this region, points aroundr/D=0__. Between r/D=2.5 and r/D=16,

130 equallyspacedpoints areused witha spacingequal
6. Matching to thatof thelaststrewhed points. The interfacebetween

the non-linearand linearacoustic regions was chosen at
In the presentwork, this scheme is applied to both r/D=5, abovewhichthe meanflow is uniformthroughout

thelarge-scale equationsand linearizedEuler equations, the domain.
A schematic diagram of the computationaldomain is
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Hgure2 showsthe iustanmncousdism'bufionof p, [8].AspointedoutinreferenceIS],thecomputedresults
p, uandv att=lS0, wheret is thec_c timede- showa downswutmshiftof thelobeswhencompanxlto
freedas fileratioof nozzleexitradiustothejetexitcen- theexperimentalmeasurements.Thiscanbe explained

. terlinevelocity.Thehodzoatallineatr/D=5inthefigure thatthecal_lationsareforaxisymmetriccase,whilethe
indicatestheboundarybetweenthe two domains.One mea.qn'emeatsshowedthatexcitedmotionof thejet is
cansee smoothsolutionsacrossthematchingregion,al- dominatedby thefirsthelicalmodein additiontotheax-

, thoughsomekinksareobservedin theaxialvel_ity dis- isymmetricmede[24].
tribufiomThedistmbancesgeneratedin theshearlayer
pmpugatethroughthematchingregionto the farfield Figure9 showsthecalculatedsoundfielddirectivity
withoutanydistortion.Thewave-likenatureof theflow atacircleofradius24Dwithcenteratthejetexitceater-
field is evidentand thesolutionis cleanfromboundary line.Theangle is measuredfromthejet exitcentcdine.
reflectious. Thecalculatedpeakoccursaround15degrees,whichis

thesameastheonepredict! by previouswork[8].
Figure3 shows contoursof the root-mean-square

valuesof thepressureandaxialmomentumdism_tions. Thesolutionsensitivityto matchingboundaryloca-
Thecontourlevelsare0.00035and0.0025for themot- tion,whichwaschosenatr/D=5and7.5 te_ectively, is
mean-squarevaluesof pressureandaxialmomenlmnre- alsoinvestigated.Y_,mre10showsthecomparisonof the
spc_vely. Nospuriousdisturbancesaregeneratedin the axialdistributionof rootmeansquarevaluesof pressure
matchingregion,and thepreferredforwardemisdm is atr/D=5 and7.5. As onecansee thatthesolutionis in-
clearlyshownin the figure, dependentof thematchingboundarylocation,whichis

denotedby RMin thefigure.
Figures4 showstheaxialdevelopmentof the axial

momentumfluctuatiouson thenozzlelipline.Thecom- 8. Conclusions
putedresultsobtainedusing the large-scaleequations
throughoutthecomputationaldomain[8]arealsoshown A zonalapproachfordirectcomputationof sound
in thisfigure.Thepresentzonalapproachgivesthede- generationandpropagationfroma supetsmicjet is in-
velopmentof axialmomentumfluctuationsidenticalto vestigated.Thecomputationaldomainis splitintoa non-
thoseobtainedinreference[8], as wasexpected.Hgure linearacousticsourcegenerationregimeanda linear
5 shows theaxialdevelopmentof themot-mean-square acousticwave_n regime.Theunsteadyflowin
valuesof the Ia'Cssureon thenozzlelip line.Again,the thenon-linearacousticsourceregionis governedby the
resultof zonalapproachis identicalto thosein refe;_nce large-scaleequations,whicharethe filteredcompress-
[8]. iblcNavier-Stokesequations.ThelinearizedEulerequa-

tionsareusedtodescribethesoundwavepropagationin
Figure6 comparesthe amplitudeofpressuredistur- the linearacousticregion.The computedresultsshow

banceat r/D=-12alongtheaxialdirectionat St=0.2with thatno spuriouswave is generatedin the matchingre-
theresultsfromrefexence[8]. Dueto theuseof linear- glonandthecomputatictmlcostis reducedby30%when
ized Eulerequationsin thisregion(noviscousdissipa- comparedwiththe directsimulationusinglarge-scale
lion), slightlyhigherpeakwasobtainedby thepresent equationsalone.Thissubstantialreductionin computa-
appro_h_Theoveralldistributionis consistentwiththe tlonalcostbecomessignificantwhentheapproachis ex-
previouslarge-scalecomputedresults, tendedtothreedimeusio-._!simulations.
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Fig.2 Instantaneousdistributionsof (a)density(b) axialvelocity(c)pressure(d) radialvelocity,
at t=150.

(3a) (3b)

Fig. 3 Contours of root mean square values of (a) pressure (b) axial momentum.
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Fig. 8a Sound pressure level contours for Fig. 8b Sound pressure level contours for large-
large-scale calculations, scale and linearized Euler calculations.
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Fig. 9 Directivity of jet noise at R/D=24.

0._14

Fig. 10a Comparisonof root meansquarevalue
of pressureat r/D-5.
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Fig. 10b Comparison of root mean square value
of pressureat r/D=7.5.
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