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Abstract

A comprehensive review of zonal flow phenomena in plasmas is presented.

While the emphasis is on zonal flows in laboratory plasmas, planetary zonal

flows are discussed as well. The review presents the status of theory, numerical

simulation and experiments relevant to zonal flows. The emphasis is on

developing an integrated understanding of the dynamics of drift wave–zonal

flow turbulence by combining detailed studies of the generation of zonal flows

by drift waves, the back-interaction of zonal flows on the drift waves, and the

various feedback loops by which the system regulates and organizes itself. The

implications of zonal flow phenomena for confinement in, and the phenomena

of fusion devices are discussed. Special attention is given to the comparison

of experiment with theory and to identifying directions for progress in future

research.

This review article is dedicated to the memory of Professor Marshall N

Rosenbluth

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Zonal flows, by which we mean azimuthally symmetric band-like shear flows, are a ubiquitous

phenomena in nature and the laboratory. The well-known examples of the Jovian belts and

zones, and the terrestrial atmospheric jet stream are familiar to nearly everyone—the latter

especially to travellers enduring long, bumpy airplane rides against strong head winds. Zonal

flows are also present in the Venusian atmosphere (which rotates faster than the planet does!)

and occur in the solar tachocline, where they play a role in the solar dynamo mechanism.

In the laboratory, the importance of sheared E × B flows to the development of L-mode

confinement, the L-to-H transition and internal transport barriers (ITBs) is now well and widely

appreciated.

While many mechanisms can act to trigger and stimulate the growth of sheared electric

fields (i.e. profile evolution and transport bifurcation, neoclassical effects, external momentum

injection, etc) certainly one possibility is via the self-generation and amplification of E × B

flows by turbulent stresses (i.e. the turbulent transport of momentum). Of course, this is the

same mechanism as that responsible for zonal flow generation. It should be emphasized that it

is now widely recognized and accepted that zonal flows are a key constituent in nearly all cases
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Figure 1. New paradigm for the plasma turbulence.

and regimes of drift wave turbulence—indeed, so much so that this classic problem is now

frequently referred to as ‘drift wave–zonal flow turbulence’. This paradigm shift occurred

on account of the realization that zonal flows are ubiquitous in dynamical models used for

describing fusion plasmas (i.e. ITG, TEM, ETG, resistive ballooning and interchange, etc) in

all geometries and regimes (i.e. core, edge, etc), and because of the realization that zonal flows

are a critical agent of self-regulation for drift wave transport and turbulence. Both theoretical

work and numerical simulation made important contributions to this paradigm shift. Indeed,

for the case of low collisionality plasmas, a significant portion of the available free energy is

ultimately deposited in the zonal flows. Figure 1 presents energy flow charts which illustrate

the classic paradigm of drift wave turbulence and the new paradigm of drift wave–zonal flow

turbulence. The study of zonal flow has had a profound impact on fusion research. For

instance, the proper treatment of the zonal flow physics has resolved some of the confusion

[1] concerning the prospect of burning plasma, as has been discussed by Rosenbluth and

collaborators in conjunction with the design of the International Thermonuclear Experimental

Reactor (ITER). At the same time, the understanding of the turbulence–zonal flow system has

advanced the understanding of self-organization processes in nature.

We note here that, while zonal flows have a strong influence on the formation of transport

barriers, the dynamics of barriers and transitions involve evolutions of both the mean E × B

flow as well as the zonal E × B flow. The topics of mean Er dynamics, transport barriers and

confinement regime transitions are beyond the scope of this review.

In the context of tokamak plasmas, zonal flows aren = 0 electrostatic potential fluctuations

with finite radial wavenumber. Zonal flows are elongated, asymmetric vortex modes, and thus

have zero frequency. They are predominantly poloidally symmetric as well, though some

coupling to low-m sideband modes may occur. On account of their symmetry, zonal flows

cannot access expansion free energy stored in temperature, density gradients, etc, and are not

subject to Landau damping. These zonal flows are driven exclusively by nonlinear interactions,

which transfer energy from the finite-n drift waves to the n = 0 flow. Usually, such nonlinear

interactions are three-wave triad couplings between two high k drift waves and one low q = qr r̂

zonal flow excitation. In position space, this energy transfer process is simple one whereby
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Reynolds work is performed on the flow by the wave stresses. Two important consequences

of this process of generation follow directly. First, since zonal flow production is exclusively

via nonlinear transfer from drift waves, zonal flows must eventually decay and vanish if the

underlying drift wave drive is extinguished. Thus, zonal flows differ in an important way

from mean E × B flows, which can be sustained in the absence of turbulence (and are, in

strong H-mode and ITB regimes). Second, since zonal flows are generated by nonlinear

energy transfer from drift waves, their generation naturally acts to reduce the intensity and

level of transport caused by the primary drift wave turbulence. Thus, zonal flows necessarily

act to regulate and partially suppress drift wave turbulence and transport. This is clear from

numerical simulations, which universally show that turbulence and transport levels are reduced

when the zonal flow generation is (properly) allowed. Since zonal flows cannot tap expansion

free energy, are generated by nonlinear coupling from drift waves, and damp primarily (but

not exclusively) by collisional processes, they constitute a significant and benign (from a

confinement viewpoint) reservoir or repository for the available free energy of the system.

Another route to understanding the effects of zonal flow on drift waves is via the shearing

paradigm. From this standpoint, zonal flows produce a spatio-temporally complex shearing

pattern, which naturally tends to distort drift wave eddies by stretching them, and in the process

generates large kr. Of course, at smaller scales, coupling to dissipation becomes stronger,

resulting in a net stabilizing trend. The treatment of zonal flow shearing differs from that for

mean flow shearing on account of the complexity of the flow pattern. Progress here has been

facilitated by the realization that a statistical analysis is possible. This follows from the fact

that the autocorrelation time of a drift wave-packet propagating in a zonal flow field is usually

quite short, and because the drift wave rays are chaotic. Hence, significant advances have been

made on calculating the ‘back reaction’ of zonal flows on the underlying drift wave field within

the framework of random shearing, using wave kinetics and quasilinear theory. Conservation

of energy between drift waves and zonal flows has been proved for the theory, at the level

of a renormalized quasilinear description. Thus, it is possible to close the ‘feedback loop’ of

wave–flow interactions, allowing a self-consistent analysis of the various system states, and

enabling an understanding of the mechanisms and routes for bifurcation between them.

From a more theoretical perspective, the drift wave–zonal flow problem is a splendid

example of two generic types of problems frequently encountered in the dynamics of complex

systems. These are the problems of nonlinear interaction between two classes of fluctuations

of disparate scale, and the problems of self-organization of structures in turbulence. The drift

wave–zonal flow problem is clearly a member of the first class, since drift waves have high

frequency and wavenumber (k⊥ρi ∼ 1, ωk ∼ ω∗) in comparison to zonal flows (qrρi ≪ 1,

� ∼ 0). Another member of this group, familiar to most plasma physicists, is the well-

known problem of Langmuir turbulence, which is concerned with the interaction between

high frequency plasma waves and low frequency ion acoustic waves. As is often the case in

such problems, fluctuations on one class of scales can be treated as ‘slaved’ to the other, thus

facilitating progress through the use of averaging, adiabatic theory and projection operator

techniques. In the case of the drift wave–zonal flow problem, great simplification has been

demonstrated via the identification of a conserved drift wave population density (i.e. action-like

invariant) which is adiabatically modulated by the sheared flows. Indeed, though superficially

paradoxical, it seems fair to say that such disparate scale interaction problems are, in some

sense, more tractable than the naively ‘simpler’ problem of Kolmogorov turbulence, since the

ratio of the typical scales of the two classes of fluctuations may be used to constitute a small

parameter, which is then exploited via adiabatic methodology.

Of course, it is patently obvious that the zonal flow problem is one of self-organization of a

large structure in turbulence. Examples of other members of this class include transport barrier
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and profile formation and dynamics, the origin of the solar differential rotation, the famous

magnetic dynamo problem (relevant, in quite different limits, to the sun, earth, galaxy and

reversed field pinch), and the formation of profiles in turbulent and swirling pipe flow. Table 1

summarizes these related structure formation phenomena, illustrating the objective of this

review. Most of these problems are attacked at the simplest level by considering the stability

of an ensemble or ‘gas’ of ambient turbulence to a seed perturbation. For example, in the

dynamo problem, one starts by considering the stability of some state of magnetohydrodynamic

(MHD) turbulence to a seed magnetic field. In the zonal flow problem, one correspondingly

considers the stability of a gas of drift waves to a seed shear. The incidence of instability

means that the initial vortex tilt will be re-enforced, thus amplifying the seed perturbation.

It should be noted that the zonal flow formation phenomenon is related to, but not quite the

same as, the well-known inverse cascade of energy in a two-dimensional fluid, which leads to

large scale vortex formation. This is because the inverse cascade proceeds via a local coupling

in wavenumber space, while zonal flow generation occurs via non-local transfer of energy

between small and large scales. Indeed, zonal shear amplification is rather like the familiar

α-effect from dynamo theory, which describes a non-local transfer of magnetic helicity to large

scale. We also note that the initial stage of pattern formation instability meets only part of the

challenge to a theoretical description of structure formation, and that one must subsequently

‘close the loop’ by understanding the mechanisms of saturation of the zonal flow instability.

The saturation of zonal flows driven by drift wave turbulence is now a subject of intensive

theoretical and computational investigation, worldwide.

As a related phenomena, convective cells have been subject to intensive study for a long

time. The convective cell is a perturbation which is constant along the magnetic field line but

changes in the direction perpendicular to the magnetic field. Such a structure is known to be

induced by background drift wave turbulence. The zonal flow can be considered as a particular

example of an anisotropic convective cell. However, the convective cells of greatest interest as

agents of transport are localized in the poloidal direction and extended radially, which is the

opposite limit of anisotropy from that of the zonal flow. Such cells are commonly referred to

as streamers.

As the zonal flow problem is a member of a large class of rapidly expanding research topics,

the perspective of this review is composed as follows. First, we present detailed explanations

of the physical understanding of drift wave–zonal flow turbulence. Second, we also stress

the view that studies on toroidal plasma turbulence enhance our understanding of turbulent

structure formation in nature. In this sense, this review is a companion paper to recent reviews

on the magnetic dynamo problem which, taken together, present a unified view that addresses

the mystery of structure formation in turbulent media. Third, the impact of direct nonlinear

simulation (DNS) is discussed in the context of understanding zonal flow physics, although a

survey of DNS techniques themselves is beyond the scope of this review. It is certainly the

case that DNS studies have significantly furthered our understanding of drift wave–zonal flow

turbulence. For these reasons, examples are mainly chosen from the realm of core plasma

(i.e. drift wave) turbulence. In order to maintain transparency and to be concise, this review

is limited in scope. Studies of edge turbulence and of general convective cell physics are not

treated in depth here. While these topics are closely related to the topic of this review, extensive

introductory discussions, which are too lengthy for this paper, are necessary. Hence, details

of these important areas are left for future reviews.

This paper reviews zonal flow dynamics, with special emphasis on the theory of drift

wave–zonal flow turbulence and its role in plasma confinement. The remainder of this review

paper is organized as follows. Section 2 presents a heuristic overview of the essentials of zonal

flow physics, including shearing, generation mechanisms, and multiple states and bifurcations.
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Table 1. Comparison between zonal flow in plasmas, dynamo, electromagnetic (EM) flow generation and flow structure formation.

Name of

concept Name

Main

small-scale

fluctuations

Generated

global

structure Examples

Equations in

fluid limit,

fundamental drive

Coverage

by this

review

Electromagnetic

flow drive

Flow dynamo EM and pressure

fluctuations

(drift waves)

Flow Zonal flow

in toroidal

plasmas

MHD equations

Plasma response

Pressure gradient

Yes

MHD flow

dynamo

EM and flow

fluctuations

Magnetized flow Bipolar jets MHD equation

Gravitational force

Coriolis force

No

Flow generation Neutral flow

‘dynamo’

Small-scale

thermal

convection

Zonal flow Jobian belt

Tidal current

Jet stream, etc

Navier–Stokes equation

Thermal convection

Coriolis force

Yes

Flow structure

formation

Small-scale

convection

Structured flow Swirling flow

Asymmetry

in pipe flow

Navier–Stokes equation

Drive of axial flow

Partly

Magnetic dynamo Dynamo Fluid motion

(thermal

convection)

Magnetic field Geodynamo

Solar dynamo

MHD equation

Thermal convection

Coriolis force

No

Magnetic

structure

formation

Magnetic

fluctuations

(kink, tearing)

Magnetic field RFP torus MHD equation

External toroidal

current

No
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Figure 2. Road map for the review.

Section 2 is aimed at general readers, non-specialists and others who want only to read a brief

executive summary. Section 3 presents a detailed description of the theory of drift wave–zonal

flow turbulence. Section 3.1 discusses neoclassical collisional friction damping. Section 3.2

is concerned with drive and amplification, from a number of perspectives and approaches. In

particular, both coherent and broad-band modulational stability calculations are explained in

detail, and extensions to regimes where waves are trapped in the flows are discussed as well.

Section 3.3 describes the feed back of zonal flows on drift waves, while section 3.4 discusses

nonlinear saturation mechanisms. An emphasis is placed upon unifying the various limiting

models. Section 3.5 presents a unified, self-consistent description of the various systems and

the bifurcation transitions between them. Section 3.6 deals with the effect of the zonal flows

on transport. Section 4 gives an overview of what numerical simulations have elucidated about

zonal flow dynamics in magnetized plasmas. Section 5 gives an introduction to zonal flow

phenomena in nature. Special emphasis is placed upon the well-known and visually compelling

example of belt and band formation in the atmosphere of Jupiter. Section 6 discusses advanced

extensions of the theory, including statistical and probabilistic approaches and non-Markovian

models. Section 7 surveys the state of experimental studies of zonal flow phenomena in

magnetically confined plasma. Section 8 gives a statement of conclusions, an assessment

of the current state of our understanding and presents suggestions for the future direction of

research. These structures are illustrated in the roadmap of figure 2. We note that an extended

version of the paper may be found in the form of a preprint [2].
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2. Basic physics of zonal flows: a heuristic overview

2.1. Introduction

We present an introduction to the basic physics of zonal flows. This section is directed toward

a general audience, which may include plasma and fusion experimentalists and other non-

specialists, as well as readers who desire only an ‘executive summary’ of this paper. Some of

the relevant, pioneering work on zonal flows can be found in [3–8]. The emphasis here is on

physical reasoning and intuition, rather than on formalism and rigorous deduction. This section

begins with a discussion of shearing [9–13] by a spectrum of zonal flows and its effect on the

primary drift wave spectrum. Considerations of energetics, in the quasi-linear approximation

[14, 15], are then used to describe and calculate the rate of amplification of zonal shears by

turbulence. We then discuss some basic features of the dynamical system of waves and zonal

flows, and its various states (figure 3). Using the example of drift wave turbulence with a

spatial scale length of ρi, the basic characteristics of zonal flows are summarized in table 2.

This table serves as a guide for the explanations in the following sections. In the study of zonal

flows, three principal theoretical approaches have been applied. These are: (i) wave kinetic and

adiabatic theory, (ii) parametric (modulational) theory and (iii) envelope formalism. In this

section, an explanation in the spirit of wave kinetics and adiabatic theory is given. The wave

kinetic theory, as well as parametric theory are described in depth in section 3. The envelope

formalism is discussed in section 6.

2.2. Basic dynamics of zonal flows

The zonal flow is a toroidally symmetric electric field perturbation in a toroidal plasma, which

is constant on the magnetic surface but rapidly varies in the radial direction, as is illustrated

in figure 4. The associated E × B flow is in the poloidal direction, and its sign changes with

radius. The zonal flow corresponds to a strongly asymmetric limit of a convective cell. The

key element in the dynamics of zonal flows is the process of shearing of turbulent eddies by

flows with a larger scale (i.e. with shear lengths Ls > �xc, where �xc is the eddy scale). The

fact that such shearing acts to reduce turbulence and transport is what drives the strong current

interest in zonal flows. In the case of a smooth, mean shear flow, it is well-known that shearing

tilts eddies, narrowing their radial extent and elongating them (figure 5). In some simulations,

sheared flows are observed to break up the large eddies associated with extended modes. At

the level of eikonal theory, this implies that the radial wavenumber of the turbulence increases

linearly in time, i.e.

kr = k(0)
r − kθ

∂Vθ (r)

∂r
t. (2.1)
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Table 2. Characteristics of zonal flow.

Spatio-temporal structures

eigenfunction

electrostatic perturbation is dominant; ñi/n0 ≃ 0

radial wave length q−1
r

aρi > q−2
r > ρ2

i or qr ∼ O(0.1)ρ−1
i , weak poloidal asymmetry

radial coherence length

can be ∼√
aρi (see also section 6.4)

real frequency �ZF

�ZF ≃ 0

autocorrelation time

νiiε
−1, and see section 3.5.1

amplitude

average vorticity is order ρ−1
i Vd (section 3.5)

Phase diagram for ZF

appearance: see sections 3.2.1 and 3.2.2

significant impact for turbulent transport: qrVZF > �ωk (see section 3.5)

Microfluctuation that is the origin of ZF

all instability in the range of ω∗; ρi and ρe

partition between ZF and turbulence: see sections 3.5.1 and 3.5.6

Impact on turbulence

significant impact if qrVZF > �ωk (see section 3.5)

scattering of drift wave-packet in (x, kx) space if ωbounce > �ωk (sections 3.4.6 and 3.4.7)

Interactions between ZFs

through modifying microfluctuations; no direct condensation/cascade so far

As a consequence, the eddies necessarily must increase the strength of their coupling to

small scale dissipation, thus tending to a quench of the driving process. In addition, the

increase in kr implies a decrease in �xc, thus reducing the effective step size for turbulent

transport [16].

In the case of zonal flows, the physics is closely related, but different in detail, since

zonal flow shears nearly always appear as elements of a spatially complex (and frequently

temporally complex) pattern (figure 6) [17–19]. This presents a significant complication to

any theoretical description. Fortunately, the problem is greatly simplified by two observations.

First, the drift wave spectrum is quite broad, encompassing a range of spatial scales from the

profile scale L⊥ to the ion gyro-radius ρi, and a range of time scales from (DB/L2
⊥)−1 to L⊥/cs.

Here DB = ρscs. In contrast, the dynamically relevant part of the zonal flow spectrum has

quite a low frequency and large extent, so that a scale separation between the drift waves and

zonal flows clearly exists. Second, the ‘rays’ along which the drift waves propagate can easily

be demonstrated to be chaotic, which is not surprising, in view of the highly turbulent state of

the drift wave spectrum. �k, the width of the drift wave spectrum satisfies �kρi ∼ 1. Thus, the

effective lifetime of the instantaneous pattern ‘seen’ by a propagating drift wave group packet

is |�(qrvg)|−1. Here, qr is the radial wavenumber of the zonal flow and vg is the group velocity

of the drift waves. This implies that the effective lifetime of the instantaneous shearing pattern,

as seen by the wave-packet, is τac ∼ |�(qrvg)|−1. For virtually any relevant parameters, this

time scale is shorter than the time scale for shearing, trapping, etc of the wave-packet. Note

that, on account of ray chaos, no ‘random phase’ assumption for zonal flow shears is necessary

[20]. Thus, the shearing process in a zonal flow field can be treated as a random, diffusive

process, consisting of a succession of many short kicks, which correspond to shearing events,
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Figure 4. Zonal electric field and zonal flow. The poloidal cross-section of toroidal plasma is

illustrated. The hatched region and the dotted region denote the positive and negative charges,

respectively: (a) The flow perturbation in the poloidal cross-section. (b) A birds-eye view of the

net flow associated with the zonal perturbation is illustrated.

Time

Figure 5. Shearing of the vortex.

so, the mean square wavenumber increases as

〈δk2
r 〉 = Dkt, (2.2a)

Dk =
∑

q

|kθVθqr|2τk,q, (2.2b)

where 〈· · ·〉 represents the average, Vθ,q represents the q-Fourier components of the poloidal

flow velocity and τk,q is the time of (triad) interaction between the zonal flow and the drift

wave-packet. This diffusion coefficient Dk is simply the mean square shear in the flow induced

Doppler shift of the wave (weighted by the correlation time of the wave-packet element

with the zonal flow shear), on the scale of zonal flow wavenumber q [21]. Thus, in contrast to

the case of coherent shearing for which the radial wavenumber increases linearly with time,

the root mean square (rms) wavennumber increases ∼ t1/2. However, the basic trend toward

coupling to smaller scales in the drift wave spectrum persists. Furthermore, this evolution is

adiabatic, on account of the separation in time and space scales between drift waves and zonal
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Figure 6. Sheared mean flow (a) and zonal flows, (b) are illustrated.

flows mentioned above. The use of adiabatic approximation methods greatly simplifies the

calculations [22–24].

As noted above, much of the interest in zonal flows is driven by the fact that they regulate

turbulence via shearing. However, it is certainly true that all low-n modes in a spectrum

of drift wave turbulence will shear and strain the larger-n, smaller-scale fluctuations. Indeed,

non-local shearing–straining interactions are characteristic of two-dimensional turbulence once

large scale vortices are established, as argued by Kraichnan and shown in simulations by Borue

and Orszag. This, in turn, naturally motivates the questions: what is so special about zonal

flows (with n = 0)? and why are other low-n modes not given equal consideration as regulators

of drift wave turbulence? There are at least three answers to this very relevant and interesting

question. These are discussed below.

First, zonal flows may be said to be the ‘modes of minimal inertia’. This is because

zonal flows, with n = 0 and k‖ = 0, are not screened by Boltmann electrons, as are the

usual drift-ITG (ITG = ion temperature gradient) modes. Hence, the potential vorticity of

a zonal flow mode is simply q2
r ρ2

s φ̂q , as opposed to (1 + k2
⊥ρ2

s )φ̂k , so that zonal flows have

lower effective inertia than standard drift waves do. The comparatively low effective inertia

of zonal flows means that large zonal flow velocities develop in response to drift wave drive,

unless damping intervenes. In this regard, it is also worthwhile to point out that in the case of

electron temperature gradient (ETG) turbulence, both zonal flows and ETG modes involve a

Boltzmann ion response n̂i/no = −|e|φ̂/Ti, since k⊥ρi ≫ 1 for ETG. Hence, it is no surprise

that zonal flow effects are less dramatic for ETG turbulence then for its drift-ITG counterpart,

since for ETG, zonal flows have an effective inertia comparable to other modes.

Second, zonal flows, with n = 0 and k‖ = 0, are modes of minimal Landau damping. This

means that the only linear dissipation acting on zonal flows for asymptotic times (i.e. t → ∞)

is due to collisions. In particular, no linear, time-asymptotic dissipation acts on zonal flows in

a collisionless system.

Third, since zonal flows have n = 0, they are intrinsically incapable of driving radial E×B

flow perturbations. Thus, they cannot tap expansion free energy stored in radial gradients.

Thus, zonal flows do not cause transport or relaxation, and so constitute a benign repository

for free energy. In contrast, other low n-modes necessarily involve a trade-off between shearing

(a ‘plus’ for confinement) and enhanced transport (a ‘minus’).
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Figure 7. Drift wave in sheared flow field. When a drift wave-packet is propagating in the x-

direction in the presence of flow shear, dVy/dx > 0, the wavenumber kx changes.

Having established the physics of shearing, it is illuminating to present a short,

‘back-of-an-envelope’ type demonstration of zonal flow instability. For other approaches,

see the cited literature [25–31]. Consider a packet of drift waves propagating in an ensemble

of quasi-stationary, random zonal flow shear layers, as shown in figure 6(b). Take the zonal

flows as slowly varying with respect to the drift waves (i.e. � ≪ ωk), i.e. as quasi-stationary.

Here, � is the rate of the change or frequency of the zonal flow and ωk is the characteristic

frequency of drift waves. The spatially complex shearing flow will result in an increase in 〈k2
r 〉,

the mean square radial wave vector (i.e. consider a random walk of kr, as described above).

In turn the generic drift wave frequency ω∗e/(1 + k2
⊥ρ2

s ) must then decrease. Here, ρs is the

ion gyro-radius at the electron temperature. Since � ≪ ωk , the drift wave action density

Nk = E(k)/ωk is conserved, so that drift wave energy must also decrease. As the total energy

of the system of waves and flows is also conserved (i.e. Ewave + Eflow = const, as shown in

section 3.2.2), it thus follows that the zonal flow energy must, in turn, increase. Hence, the

initial perturbation is reinforced, suggestive of instability. Note that the simplicity and clarity

of this argument support the assertion that zonal flow generation is a robust and ubiquitous

phenomenon.

A slightly larger envelope is required for a ‘physical argument’ which is also quantitatively

predictive. Consider a drift wave-packet propagating in a sheared flow field, as shown in

figure 7. Take ωk > |V ′
E| and |k| > |V ′

E/VE|, so that wave action density is conserved (i.e.

N(k) = N0), a constant. (VE is the E × B velocity and V ′
E is its radial derivative.) Thus, for

constant N , wave energy density evolves according to:

d

dt
ε(k) ∼=

(

2krkθρ
2
s

1 + k2
⊥ρ2

s

)

V ′
Eε(k). (2.3)

Equation (2.3) states that the drift wave-packet loses or gains energy due to work on the mean

flow via wave induced Reynolds stress [32]. Note that krkθE(k) ∼ 〈ṼrṼθ 〉, the Reynolds

stress produced by E × B velocity fluctuations. Note as well that the factor krkθE(k)V ′
E is

rather obviously suggestive of the role of triad interactions in controlling fluctuation–flow

energy exchange. For zonal flows, the shear is random and broad-band, so that VE → ṼE,

N → 〈N〉 + Ñ and NV ′
E → 〈ÑṼ ′

E〉. Hence, equation (2.3) may be rewritten as:

d

dt
ε(k) = −Vg,rkθ (Ṽ

′
EÑ). (2.4)
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To complete the argument, the correlator 〈ÑṼ ′
E〉 must now be calculated. To this end, we use

the wave kinetic equation (WKE)

∂N

∂t
+ (Vg + V ) · ∇N − ∂

∂x
(ω + kθVE) · ∂N

∂k
= γkN − �ωkN

2

N0

(2.5)

and the methodology of quasi-linear theory to obtain:

kθ 〈V ′
EÑ〉 = DK

∂〈N〉
∂kr

(2.6a)

DK = k2
θ

∑

q

q2|V 2
E,q |R(k, q) (2.6b)

R(k, q) = γk

(qVg,r)2 + γ 2
k

. (2.6c)

The term �ωkN
2/N0 represents drift wave nonlinear damping via self-interaction of the drift

waves (i.e. inverse cascade by local interaction). Here q is the radial wavenumber of the zonal

flow, and equilibrium balance in the absence of flow has been used to relate �ωk to γk . γk is

the growth rate of the drift mode. The wave energy then evolves according to:

dε(k)

dt
= 2ρ2

s DKkr

(1 + k2
⊥ρ2

s )2

∂〈N〉
∂kr

. (2.7)

As the total energy of the stationary wave–flow system is conserved,

d

dt

(

∑

k

ε(k) +
∑

q

|Ṽq |2
)

= 0.

The zonal flow generation rate is thus determined to be

γq = −2q2c2
s

∑

q

k2
θρ

2
s

(1 + k2
⊥ρ2

s )2
R(k, q)kr

(

∂〈η〉
∂kr

)

(2.8a)

〈η〉 = (1 + k2
⊥ρ2

s )〈ε〉. (2.8b)

Here 〈η〉 is the mean potential enstrophy density of the drift wave turbulence, (i.e. η(k) =
(1 + k2

⊥ρ2
s )2|φk|2) and may be thought of as the population density of drift wave vortices. Note

that for toroidally and poloidally symmetric shears, dkθ/dt = 0, so that the conventional wave

action density N(k) and the potential enstrophy density η(k) are identical, up to a constant

factor.

The result given above in equation (2.8a), obtained by transparent physical reasoning,

is identical to that derived previously by formal modulational stability arguments. Note that

∂〈η〉/∂kr < 0 (a condition which is virtually always satisfied in two-dimensional or drift wave

turbulence) is required for zonal flow growth. In addition, the argument above reveals that drift

wave ray chaos provides the key element of irreversibility, which is crucial to the wave–flow

energy transfer dynamics. Here ray chaos requires overlap of the �/qr = Vg resonances in

Dk , a condition easily satisfied for finite lifetime drift wave eddies and (nearly) zero frequency

zonal flows (i.e. �ωk ≫ �) [33]. Under these conditions neighbouring drift wave rays diverge

exponentially in time, thus validating the use of stochastic methodology employed here [34].

In the case where rays are not chaotic, envelope perturbation formalism [35, 36], methods from

the theory of trapping [37–39] or parametric instability theory [40] must be used to calculate

zonal flow generation.
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2.3. Self-consistent solution and multiple states

At this point, we have identified the two principal elements of the physics of the drift wave–

zonal flow system. These are:

(i) The shearing of drift wave eddies by the complex zonal flow field, resulting in a diffusive

increase in 〈k2
r 〉 and coupling to dissipation, reduction in transport, etc,

(ii) the amplification of zonal flow shears by modulational instability of the drift wave to a

‘test’ or seed shear.

Note that (i) and (ii) are, to some extent, different views of the same process of energy transfer

from the short wavelength drift wave spectrum to the long wavelength zonal flow spectrum.

This process of drift wave energy depletion results in a diffusive increase in the mean square

radial wavenumber of drift waves, and a transfer of drift wave population density to small

scale. In view of the fact that the drift wave population density is equivalent to the potential

enstrophy density, we see that the process of zonal flow generation is not unlike the dual cascade

phenomenon familiar from two-dimensional hydrodynamics. Here, the growth of zonal flow

shears corresponds to the inverse energy cascade, while the increase in rms of kr is similar

to the forward enstrophy cascade [41]. Unlike the case of two-dimensional hydrodynamics,

zonal shear amplification is a non-local coupling process in wavenumber space.

To proceed, we now examine the coupled evolution for 〈N〉, the drift wave quanta density,

and the zonal flow spectrum. These evolve according to:

∂

∂t
〈N〉 − ∂

∂kr

Dk

∂

∂kr

〈N〉 = γk〈N〉 − �ωk

N0

〈N〉2, (2.9a)

∂

∂t
|φq |2 = Ŵq

[

∂〈N〉
∂kr

]

|φq |2 − γd|φq |2 − γNL[|φq |2]|φq |2. (2.9b)

Equation (2.9a) is simply the quasi-linear Boltzmann equation for 〈N〉, while equation (2.9b)

describes zonal flow potential growth and damping by modulational instability (the first

term—proportional to the drift wave population gradient ∂〈N〉/∂kr), collisional damping (the

second term—due to the friction between trapped and circulating ions) [42, 43] and nonlinear

damping of zonal flows (the third term—which schematically represents a number of different

candidate zonal flow saturation processes). Note here that γNL is an unspecified function of

zonal flow intensity, and thus can represent a nonlinear damping process such as turbulent

viscous damping, etc. Together, equations (2.9a) and (2.9b) constitute a simple model of

the coupled evolution dynamics. This ‘minimal’ model could be supplemented by transport

equations which evolve the profiles used to calculate γk, the drift wave growth rate (i.e.

γk = γk[n−1dn/dr, T −1dT/dr, . . .]) [44]. The minimal system has the generic structure

of a ‘predator–prey’ model, where the drift waves correspond to the prey population and

the zonal flows correspond to the predator population [45–49]. As usual, the prey breeds

rapidly (i.e. γk is fast), and supports the predator population as the food supply for the latter

(i.e. Ŵq = Ŵq[〈N〉]). The predators regulate the prey by feeding upon them (i.e. Ŵq and Dk

conserve energy with each other) and are themselves regulated by predator death (at rate γd)

and predator–predator competition (γNL[|φq |2]). Taken together, equations (2.9a) and (2.9b)

describe a self-regulating system with multiple states.

The dynamics of the two population system are more easily grasped by considering a zero-

dimensional model for population N and V 2, instead of the one-dimensional model equations
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Table 3. State of drift wave–zonal flow system.

State No flow Flow (α2 = 0) Flow (α2 �= 0)

N (drift wave

turbulence level)

γ
�ω

γd

α

γd + α2γα−1

α + �ωα2α−1

V 2 (mean square

flow)

0
γ

α
− �ωγd

α2

γ − �ωγdα
−1

α + �ωα2α−1

Drive/excitation

mechanism

Linear growth Linear growth Linear growth

Nonlinear

damping

of flow

Regulation/inhibition

mechanism

Self-interaction

of turbulence

Random shearing,

self-interaction

Random shearing,

self-interaction

Branching ratio V 2

N
0

γ − �ωγdα
−1

γd

γ − �ωγdα
−1

γd + α2γα−1

Threshold (without noise) γ > 0 γ > �ωγdα
−1 γ > �ωγdα

−1

for 〈N(k)〉 and |φq |2. The zero-dimensional simplified model is this

∂

∂t
N = γN − αV 2N − �ωN2, (2.10a)

∂

∂t
V 2 = αNV 2 − γdV

2 − γNL(V 2)V 2. (2.10b)

The states of the system are set by the fixed points of the model, i.e. when

∂N/∂t = ∂V 2/∂t = 0. There are (at least) two classes of fixed points for the system. The

state with finite fluctuations and transport, but no flow is that with N = γ /�ω, V 2 = 0. This

corresponds to a state where turbulence saturates by local, nonlinear interactions. A second

state, with flow, is that with

N = α−1(γd + γNL(V 2)), (2.11a)

V 2 + α−2�ωγNL(V 2) = α−1(γ − �ωγdα
−1). (2.11b)

Note that the general form γNL(V 2) allows limit cycle solutions. Given the physically plausible

assumption that γNL(V 2) > 0 and increases with V 2 as V 2 → ∞, the Poincare–Bendixon

theorem implies that limit cycle solutions to (2.10a) and (2.10b) can be identified by the

appearance of unstable centres as fixed points of those equations. In general, the appearance

of such limit cycle attractors is due to the effects of time delays in the dynamical system of

zonal flows and drift waves. For the especially simple case where γNL(V 2) ∼ α2V
2, the

solution reduces to:

N = γd + α2γα−1

α + �ωα2α−1
, (2.12a)

V 2 =
[

γ − �ωγdα
−1

α + α2�ωα−1

]

. (2.12b)

Even this highly over-simplified model contains a wealth of interesting physics. The

properties of the two states are summarized in table 3, which we now discuss. Access to the

state of no flow requires only primary linear instability, i.e. γ > 0, while access to states

with finite flow requires γ > �ωγd/α, so that the excitation of the underlying drift waves

is sufficient to amplify the flow shear against collisional damping. In the no flow state,

N ∼ γ /�ω, consistent with the traditional picture of saturation of turbulence and transport via
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the balance of linear growth with nonlinear damping. With the presence of flow, N ∼ γdα
−1,

which directly ties the turbulence level to the flow damping [50]. This follows the fact that

in the finite flow state, the turbulence level is regulated by the shear flow, which is, in turn,

itself controlled by the flow damping. Thus, the fluctuation level is ultimately set by the flow

damping! This prediction has been confirmed by several numerical simulations [51]. In the

finite flow state, V 2 is set by the difference between the wave growth and flow damping.

Thus, the branching ratio of the zonal flow to drift wave energy scales as γ /γd. In particular,

for γd → 0, the dominant ultimate repository of expansion free energy are the zonal flows,

whose energy exceeds that of the drift waves. Note that the ratio γ /γd is the key control

parameter for manipulating the fluctuation energy branching ratio. It is interesting to note that

the rather special ‘Dimits shift’ regime [52], which is a state very close to marginal stability

in an effectively collisionless system, corresponds to the somewhat ill-defined case where

both γ → 0 and γd → 0, i.e. weak flow damping and drift waves near their marginal point.

The Dimits shift was discovered by DNS of ITG mode-driven turbulence in the collisionless

limit. In the Dimits shift regime, the drift wave fluctuations are just above the linear stability

threshold and nearly quenched by zonal flow effects which are large, on account of weak flow

damping at low collisionality. The Dimits shift regime is characterized by a large imbalance

between the energy in zonal flows and in n �= 0 fluctuations (with zonal flow energy much

larger), which gives the appearance of a ‘shift’ (i.e. increase) in the effective threshold for ITG

turbulence and transport. Thus, it is not surprising that the Dimits shift regime merits special

attention. Detailed discussion of the Dimits shift regime is given in section 3.

It is especially interesting to comment on the effects of nonlinear zonal flow damping, for

which α2 �= 0. The details of this process are a subject of intense ongoing research, and will be

discussed extensively later in this review. Candidate mechanisms include Kelvin–Helmholtz

(KH)-like instabilities of the zonal flows (which could produce a turbulent viscosity, resulting

in flow damping) [53–55], drift wave trapping, etc. Whatever the details, the effect of nonlinear

flow damping is to limit the intensity of the zonal flow spectrum. Since energy is conserved

between drift waves and zonal flows (within the time scales of the evolution of zonal flow),

this is equivalent to enhancing the fluctuation levels, in comparison to the case where α2 = 0.

This is, indeed, the case in the rhs column of table 3, where we see the effect of finite α2 is

to enhance N and reduce V 2 in comparison to the case where α2 = 0. Thus, nonlinear flow

damping may be viewed as a ‘return’ of expansion free energy to the drift wave ‘channel’,

which thus lowers the branching ratio V 2/N .

2.4. General comments

It should be clear that the drift wave–zonal flow problem is a particular example of the

more general problem of describing the nonlinear interaction between, and turbulence in,

two classes of phenomena of disparate-scale, and of understanding structure formation and

self-organization in such systems. Such problems are ubiquitous, and notable examples in

plasma physics are Langmuir turbulence and caviton formation, magnetic field generation and

the dynamo problem, and the formation of ionospheric structures, just to name a few. It is

interesting to note that the separation in spatio-temporal scales often facilitates progress on such

problems, via the use of adiabatic invariants, or systematic elimination of degrees of freedom

using the methodology of Zwanzig–Mori theory, etc. Thus, such nominally ‘more complex’

problems are often easier than the so-called classic ‘simple’ problems, such as homogeneous

turbulence. The general theory of turbulence in systems with multiple bands of interacting

disparate scales is reviewed in [56]. The Langmuir turbulence and collapse problems are

reviewed in [57]. The theory of the dynamo problem is discussed in great detail in [58–63].
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3. Theory of zonal flow dynamics

In this section, the theory of zonal flow dynamics is discussed in detail. As shown in the

heuristic discussion of section 2, the essence of the drift wave–zonal flow system dynamics

is that several mechanisms are at work simultaneously. The synergy of these mechanisms

results in the (self) organization of the self-regulating state. Here, we present a step-by-step

discussion of the theory of the basic elements, which are:

(i) linear damping (especially collisional) of the zonal flow

(ii) mechanisms for the excitation of zonal flows by background turbulence

(iii) mechanisms by which the spectrum of zonal flow shears limits and reacts back upon the

underlying drift wave turbulence

(iv) nonlinear damping and saturation mechanisms for zonal flow, especially in collisionless

or very low collisionality regimes

(v) the type of self-organized states which are realized from the interaction of elements (i)–(iv)

(vi) the effect of zonal flows on turbulent transport.

Elements (i)–(vi) are discussed below. Related illustrations, tests and analyses utilizing

numerical simulation are presented in section 4.

The remainder of section 3 is organized as follows. Section 3.1 presents the theory

of linear collisional damping of zonal flows—scale independent collisional damping is a

key energy sink. Special emphasis is placed upon the key, pioneering work of Rosenbluth

and collaborators. Section 3.2 presents the theory of zonal flow generation by modulational

instability of the ambient drift wave spectrum. The theory is developed for both the coherent

(i.e. parametric modulational) and broadband, turbulent (i.e. wave kinetic) limits. Critical time

scales which quantitatively identify these regimes are identified and discussed. The relations

and connections (vis-a-vis energetics) between modulational instability and shearing, k-space

diffusion, etc, are discussed and a unifying framework is presented. Emphasis here is on

electrostatic turbulence and zonal flows, but related discussions of electromagnetic turbulence,

zonal flows and geodesic acoustic modes (GAMs) are also included. The relationship between

zonal magnetic field dynamics and the classical dynamo problem is discussed. In section 3.3,

the theory of shearing and its effects on turbulence are discussed, for both mean field and

random (i.e. zonal flow) shearing. This discussion is important in its own right (as an element

in system self-regulation) and as a foundation for understanding the impact of zonal flows on

turbulent transport, etc. In section 3.4, zonal flow saturation is discussed, with special emphasis

placed upon collisionless or low collisionality regimes. As with generation, several different

applicable models are discussed, each in the context of its regime of relevance as defined

by time scales, degrees of freedom, etc. In particular, tertiary instability, nonlinear wave-

packet scattering, wave trapping and other mechanisms are discussed. After explaining the

elementary processes, a unifying classification of various possible system states is suggested

in terms of the Chirikov parameter and Kubo number, which characterize the turbulent state.

This classification scheme gives a global perspective on the nonlinear theory of zonal flows.

In section 3.5, the system dynamics of zonal flows and turbulence are presented. In the final

section 3.6, the effects of zonal flows on turbulent transport are discussed. Special attention

is given to zonal-flow-induced modification of the cross-phase and upon the scaling of the

turbulent transport flux with zonal flow parameters, such as shear strength, flow correlation

time, etc.
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3.1. Linear dynamics of zonal flow modes

Zonal flows are, first and foremost, plasma eigenmodes, albeit modes which are linearly

stable. In this subsection, we discuss the linear response of the plasma to a low frequency

electric field perturbation which is constant on a magnetic surface. This corresponds to

the m = n = 0 component, where m and n are the poloidal and toroidal mode numbers,

respectively. Two relevant regimes are explained. One is that of the slowly varying response,

for which |∂/∂t | ≪ ωt ≡ vTi/qR, where ωt is the ion transit frequency and VTi is the

thermal velocity of ions, VTi =
√

Ti/mi. In this case, the perturbation is called a zonal

flow. The plasma response is incompressible, and the poloidal E × B velocity is associated

with a toroidal return flow. The other is a fast-varying regime, where |∂/∂t | ∼ ωt. In this

case, poloidal asymmetry leads to plasma compression, so as to induce an oscillation in the

range of ω–ωt. This oscillation is called the GAM. We first describe the zonal flow and

then explain the geodesic acoustic mode. The damping of these modes by collisions and

ion Landau damping is explained. In this section (and throughout the review), we use the

word ’damping’ for the linear response mechanisms (e.g. collisional damping or collisionless

damping, like Landau damping). The nonlinear mechanisms that induce the decay of regulate

the flow are called ‘saturation mechanisms’ or, if necessary for clarity, ‘nonlinear damping

mechanisms’.)

3.1.1. Zonal flow eigenmode. In drift-ITG mode (ion temperature gradient turbulence

[64]), zonal flows have an electrostatic potential φ̃ which is constant on a magnetic surface,

and so have m = n = 0, k‖ = 0. Because of the vanishing k‖, the electron response

is no longer a Boltzmann response, so that the relation ñ/n ≃ eφ̃/T no longer holds.

The density perturbation is usually a small correction, in comparison with the potential

perturbation. Certain collisionless trapped electron mode (CTEM) regimes may be an

exception to this. Thus, zonal flows correspond to a highly anisotropic limit of the more general

‘convective cell mode’ [5, 65]. As discussed in section 2, zonal flows (but not GAMs) can be

thought of as convective cells of minimum inertia, minimum Landau damping and minimum

transport [66].

The spatial structure of the zonal flow is described here. The electrostatic perturbation

is constant on each magnetic surface. Each qr (qr r: radial wavenumber) component has the

linear dispersion relation [5, 65]

ω = 0. (3.1.1)

The vanishing real frequency is easily understood. The electrostatic perturbation with

m = n = 0 does not cause acceleration along the magnetic surface. The linear polarization

drift disappears, consistent with the ordering of ω ≪ ωt.

The plasma produces an E × B flow, VE×B = −Er/B. This flow is directed mainly in

the poloidal direction. Because of toroidicity, this flow component induces the compression

of plasma. To maintain incompressibility, this compression is compensated by a return flow

along the field line, so:

V = −Er

B





0

1

−2q cos θ



 (3.1.2)

to leading order in inverse aspect ratio ε = r/R [48]. This flow pattern is illustrated in figure 4.

On account of the secondary flow along the magnetic field line, the zonal flow in a toroidal

plasma is subject to a stronger damping then those in slab plasmas.
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The density perturbation remains a small correction. For the range of scales comparable

to the ion gyro-radius, it can be given as:

ñi

n
≃ q2

r ρ2
i

eφ̃

T
. (3.1.3)

3.1.2. Geodesic acoustic mode. Toroidal effects have been studied in conjunction with

the neoclassical transport theory [67–75], as reviewed in [76–78]. When one constructs an

eigenmode in the regime of fast variation, |∂/∂t | ∼ ωt, one finds the GAM [68]. The GAM is

a perturbation for which the m = n = 0 electrostatic potential is linearly coupled (by toroidal

effects) to the m = 1, n = 0 sideband density perturbation.

Working in the framework of standard fluid equations, one begins with, as governing

equations, the continuity equation and the equation of motion

∂

∂t
n + ∇ · nV⊥ + ∇‖nV‖ = S − ∇ · Ŵ, (3.1.4)

nmi

(

∂

∂t
V + V · ∇V

)

= −∇p + J × B + SmiV, (3.1.5)

together with the charge neutrality condition ∇ · J = 0 and Ohm’s law

E + V × B = 0. (3.1.6)

p = nT is the pressure, and the temperature gradient is neglected for simplicity. The source

terms S and Ŵ represent the (equilibrium) particle source and flux, respectively. These can

induce acceleration of the zonal flow if they are not homogeneous on a magnetic surface.

The so-called Stringer spin-up [69] is such an acceleration phenomenon. In this subsection,

we do not describe the response to S and Ŵ, but restrict ourselves to the dynamics of GAM

eigenmode.

The key mechanism for generating the GAM is seen in equation (3.1.5) [68, 79].

If one takes the poloidal component of equation (3.1.5), one obtains
∫

dsR2|∇ψ |−1Bp ×
(nmidV/dt + T ∇n) = 0. This relation is trivial in a cylindrical plasma. However, in toroidal

plasmas, toroidicity induces coupling between the m = n = 0 component of the electrostatic

potential and the m = 1, n = 0 component of the density perturbation. The dispersion relation

given as:

�2 − 2c2
s

R2
− q2

‖c
2 = 0. (3.1.7)

The resulting mode is the geodesic acoustic mode, the frequency of which is higher than the

ion acoustic wave, and is given by

ω2
GAM ≃ 2c2

s R
−2(1 + q−2/2). (3.1.8)

The density perturbation can be rewritten as

ñ

n0

= −
(

√
2qrps

eφ̃

Te

)

sin θ. (3.1.9)

The dispersion relation equation (3.1.7) was derived for general toroidal magnetic

configurations in [68]. The second term was given as the product of an integral of the geodesic

curvature multiplied by a relative perturbation amplitude. This is the reason that this mode

is called the geodesic acoustic mode or GAM.
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3.1.3. Collisional damping process. The mechanism of collisional damping of zonal flows

is now explained. In a slab plasma, the damping rate of the zonal flow is given by µiq
2
r , i.e.

in proportion to the ion viscosity µi = viiρ
2
i . However, in toroidal plasmas, the damping

rate is independent of scale. (See, e.g. for a review [76–78].) Progress in the theory of

the H-mode, [32, 80, 81] has stimulated a revival of detailed calculation [32, 42, 81–93] of

neoclassical damping rates. In this subsection, we first describe stationary flow which is

realized by the balance of collisional drag with pressure gradient drive. Relaxation processes

are then discussed. The case with |∂/∂t | ≪ ωt ≡ vThi/qR is discussed first. The case of

rapidly varying response (GAM), |∂/∂t | ∼ ωt, is explained next.

(i) Stationary flow driven by pressure gradient. The fluid velocity in an inhomogeneous

toroidal flow, projected on the poloidal cross-section is expressed as

Vθ = ε

q
V̄‖ + VE×B + Vd + VdT. (3.1.10)

Here VE×B is the E × B drift velocity, Vd is the diamagnetic drift velocity, VdT is the

ITG drift velocity, so that Vd = T/eBLn, VdT = T/eBLT , L−1
n = −d(ln n)/dr and

L−1
T = −d(ln Ti)/dr , and V̄‖ is the average of V‖ on a magnetic surface. In the absence

of torques (e.g. orbit loss, external momentum injection, etc), εq−1V̄‖ is an O(ε2) correction

with respect to VE×B (see, e.g. [92]). The equilibrium velocity is obtained as Vθ = CHVdT

where CH is a numerical coefficient, shown by Hazeltine to be [73] CH ≃ 1.17 (banana),

CH ≃ −0.5 (plateau), CH ≃ −2.1 (Pfirsch–Schlüter). Thus, the E × B drift velocity is

given as

VE×B = (CH − 1)VdT − Vd (3.1.11)

if there is no other force to drive plasma poloidal rotation. The velocity scales with the (density

and temperature) diamagnetic drift velocity. The radial electric field is easily deduced from

this relation, and is given by:

Er = (CH − 1)
T

eLT

− T

eLn

. (3.1.12)

The radial electric field is of the order of ion temperature gradient divided by the electron

charge, if the stationary state is governed by collisional transport processes.

(ii) Damping rate. The deviation of the radial electric field from the result given by

equation (3.1.12) is determined by the balance between damping and driving torques. Here

we survey the theories of collisional damping.

Collisional damping of zonal flows is controlled by ion–ion collision processes. When

a small element of phase-space fluid originally on the low field side moves to the high field

side, it is ‘stretched’ in the direction of the perpendicular velocity, v⊥, since v⊥ increases due

to the conservation of magnetic moment. On account of ion–ion collisions, the deformed

distribution tends to recover isotropy, which is shown by a thick solid line. In this relaxation

process, thermalization of ordered poloidal motion occurs, and so the poloidal velocity is

damped. From this argument, it is clear that this damping rate is independent of the radial

structure of the flow. This is not diffusive damping.

In the Pfirsch–Schluter regime, the damping rate is given as

γdamp = ω2
t ν

−1
ii . (3.1.13)

The mean free length in the poloidal direction, which is determined by ion collisions, is

inversely proportional to νii. Note that here γdamp = D‖/(qR)2 = ω2
t /νii is simply the time

for parallel diffusion of one connection length.
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Figure 8. Schematic drawing of the collisional damping rate for the zonal flow.

In the banana regime, stronger damping occurs due to collisions between transiting ions

and banana ions, because magnetically trapped particles do not circulate freely in the poloidal

direction. Reference [83] found, by using an improved evaluation of eigenfunctions, that the

damping rate increases as the toroidicity ε becomes small. A fitting formula was proposed as,

γdamp ≃ 1.5νD
ii (v)/

√
ε, where νD

ii (v) is the energy-dependent pitch-angle scattering coefficient.

In [85], an evaluation of the damping rate showed that the ε-dependence is more. (The

numerical solution in [85] can be fit by γdamp/vii ∝ ε−α with α ≃ 0.85 for 0.2 < ε < 0.8.)

An alternative fit

γdamp ≃ νD
ii (v)

ε
(3.1.14)

was also proposed. DNS of the drift kinetic equation [92] has supported the conclusion

that γdamp is a decreasing function of ε. It has also been pointed out that collisional

damping induces a real part of the total oscillation frequency for the zonal flow, so that

ω = ωr + iγdamp, ωr ≃ νii [85].

In the plateau regime, the dissipation rate is controlled by the transit frequency ωt and

γdamp ≃ ωth(ε), (3.1.15)

where h(ε) is weakly dependent on toroidicity. Direct numerical calculation has shown that

h(ε) ∼ εα , and a small positive parameter is observed in the range of α ∼ 1/3 [92].

Collisionless damping, if it exists, would influence poloidal rotation in high temperature

plasmas. The damping rate vanishes in the limit of νii → 0, in quiescent plasmas [42]. The

drive by turbulence (zonal flow drive) and other torque (e.g. orbit loss, external force, etc)

could balance collisional damping. Figure 8 summarizes the scaling trends of the collisional

damping rate.

The question of what the collisional damping rate is in the limit of high poloidal velocity

has attracted attention. It was noted that the damping rate γdamp can depend on the poloidal

velocity, if Vθ becomes of the order of εvThi/q. The damping rate then becomes a decreasing

function of Vθ [81, 94]. This is a possible origin of a bifurcation of the radial electric field.

(Examples include [95].) This mechanism, and the consequences of it, are explained in [48].

(iii) Geodesic acoustic mode. The GAM is also subject to collisional damping. After solving

the drift kinetic equation with the ordering of |∂/∂t | ∼ ωt, the dispersion relation has been

obtained in [92] as

ω2 − 7

8

c2
s

R2
+ i

νii

ω

c2
s

R2
= 0. (3.1.16)

(As compared to equation (3.1.7), the GAM frequency is evaluated with a slightly different

numerical coefficient. This arises because the velocity moment is taken after the drift kinetic
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equation is solved.) The damping rate of the GAM is estimated from equation (3.1.16) to be

γ GAM
damp ≃ 4

7
νii. (3.1.17)

The banana ions do not explicitly play a role in GAM damping, because the GAM frequency

is much faster than the bounce frequency of banana ions.

3.1.4. Rosenbluth–Hinton undamped component of zonal flows in collsionless plasmas. An

accurate treatment of the damping of self-generated zonal flows is an outstanding issue in

predicting confinement. Rosenbluth and Hintons’ (RH) analytic calculation has shown that

linear collisionless kinetic mechanisms do not damp the zonal flows completely [42]. This

prediction was later verified by various gyrokinetic codes [52, 96–98], while gyrofluid models

[99, 100] incorrectly predicted a total collisionless decay of poloidal rotation. A modification

of the gyrofluid approximation was attempted later, but only part of the RH undamped flow

has been recovered to date [101].

As discussed at the beginning of this section, zonal flow can be viewed as a superposition

of GAMs with a characteristic real frequency on the order of ωr ∼ vThi/R and with a

corresponding ion Landau damping rate ωr exp(−q2/2), and a zero frequency component

to which the RH calculation applies. (The damping occurs due to the transit time magnetic

pumping [72, 93]. One can identify the oscillation and decay of GAMs as well as the non-zero

asymptotic level of zonal flows predicted by RH.)

The RH calculation, which is based on the gyrokinetic equation, consists of following the

long time evolution of the zonal flow with an assigned finite initial value. Concentrating on

the long term behaviour t ≫ ω−1
b,i , RH calculates the bounce-averaged gyrokinetic response to

an initial perturbation. The nonlinear gyrokinetic Vlasov equation for zonal flow component

with q = (qr, 0, 0), i.e. n = m = 0 can be written as
[

∂

∂t
+ (v‖b̂ + vd) · ∇ − Cii

]

fi,q +
e

T
F0(v‖b̂ · ∇ + vd · ∇)φq = Si,q, (3.1.18)

where φq is the electrostatic potential of the zonal flow; fi,q and F0 are the perturbed and

unperturbed distribution functions of ions, respectively; and nonlinear interactions of ITGs

with k, k′ are considered as a noise source Si,q for zonal flows. Of course, equation (3.1.18)

should include a response renormalization, as well as noise. The corresponding gyrokinetic

Poisson’s equation (i.e. the quasi-neutrality condition expressed in terms of the guiding centre

density ni,q and polarization density) is −n0(e/Ti)ρ
2
i q2

r φq + ni,q = ne,q, where ne,q = 0, for

the adiabatic electron response with zonal flows, and the long wavelength approximation for

zonal flow ρ2
i q2

r ≪ 1 have been used.

In RH, a bounce-average of equation (3.1.18) has been performed for a high aspect

ratio, circular tokamak geometry with ρ2
i q2

r ≪ ρ2
θ,i q2

r ≪ 1. (ρθ,i is the ion gyro-radius

at the poloidal magnetic field.) The detailed calculation is not repeated here. The main result

is that an initial zonal flow potential φq(0) will be reduced to a level φq(t) as t → ∞, due to

the neoclassical enhancement of polarization shielding:

φq(t)

φq(0)
=

1

1 + 1.6ε−1/2q2
. (3.1.19)

In physical terms, the usual polarization shielding associated with finite Larmor radius effect

in a short term (after a few gyro-periods) ∼ ρ2
i q2

r is replaced by the neoclassical polarization

shielding associated with the finite banana width of trapped ions at long time (after a few bounce

periods), ∼ε1/2ρ2
b,iq

2
r ∼ ε−1/2ρ2

θ,iq
2
r . (ρb,i is the banana width of ions.) An accurate calculation

of the coefficient 1.6 requires a kinetic calculation which includes the contribution from passing

particles, but the correct scaling can be deduced from considering only trapped ions.
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The result in equation (3.1.19) has been useful in benchmarking various gyrokinetic codes.

After such a test, which is explained in section 4, the RH result has turned out to be highly

relevant, as indicated by numerous nonlinear simulations.

3.1.5. Further details of collisional damping of zonal flows. A frequently asked question

about zonal flow in toroidal geometry is: why is the radial electric field Er not associated

with zonal flow balanced by the toroidal flow, eventually satisfying the radial force balance

Er = VθBt?

To elucidate the relation between the RH result and this question, one should consider

the ion–ion collisional effect for the longer-term behaviour of zonal flows [43]. RH identified

several temporal-asymptotic phases of zonal flow response to an initial zonal flow potential

φq(0), which consist of:

(i) For times longer than a few ion bounce-times, the zonal flow potential reduces to a

non-zero residual value given by equation (3.1.19) due to a collisionless kinetic process

which includes the ion Landau damping of GAMs, transit time magnetic pumping and

neoclassical enhancement of polarization shielding.

(ii) For times of the order of ετii, where τii is the ion–ion collisional time, the potential

and poloidal flow decay due to pitch-angle scattering in a trapped-passing boundary layer.

Most of the collisional poloidal flow decay occurs in this phase (as confirmed by simulation

[50]), and zonal flow is mostly in the poloidal direction, up to this phase.

(iii) For times comparable to ε1/2τii, the potential approaches a non-zero steady state value

φq(t) = φq(0)B2
pB−2

t , consistent with Er = VθBt, and the poloidal flows decays

approximately exponentially.

(iv) For times longer than τii, damping of poloidal flow is due to energetic ions with small

collisional rates, resulting in a slow non-exponential decay due to ion drag. Note that the

collisional damping of the toroidal flow is a higher order process.

The main conclusion is that most of the collisional decay occurs on the time scale in

phase (ii). Thus one can define the net effective collisional decay time of zonal flow as 1.5ετii,

following RH.

As illustrated in appendix A, there exists a near isomorphism between ITG turbulence

and ETG turbulence. One crucial difference is that, while the adiabatic electron density

response due to electron thermalization along the magnetic field is zero for ITG zonal flows,

the adiabatic ion density response due to demagnetization is non-zero for ETG zonal flows.

Interesting consequences for ETG zonal flow damping, related to this difference, have been

investigated in [102].

3.2. Generation mechanism

The zonal flow is driven by nonlinear processes in the fluctuation spectrum or ensemble of

wave-packets in the range of the drift wave frequency. In this subsection, several elementary

processes for generation of zonal flow are presented. The mechanism for zonal flow generation

includes both parametric instability of a single drift wave and modulational instability of a

spectrum of drift waves. The modulational instability can be calculated via both eikonal

theory and wave kinetics, and by envelope formalism.

3.2.1. Generation by parametric instability. A single drift wave (plane wave) is shown to

be unstable to parametric perturbations [5, 103]. Via parametric instability, the drift wave can

generate convective cells for which the parallel wavenumber vanishes, k‖ = 0. The zonal
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flow is a special example, corresponding to extreme anisotropy of a convective cell with qr ≫
qθ ∼ q‖ ∼ 0. Note that the parametric instability process is the usual one, familiar from weak

turbulence theory, with the feature that one of the ‘daughter waves’ has zero frequency. In this

subsection, parametric instability of a simple drift wave φ̃(x, t) = φ̃d0 exp(ikd0 ·x− iωd0t)+c.c

is discussed.

Zonal flow in slab plasma. Two possible parametric instabilities occur for a plane drift wave.

In the study of parametric instability in slab plasmas, we use the coordinates (x, y, z) where

x is in the direction of the radius and z is in the direction of magnetic field. One is the

parametric decay instability [5, 103]. The primary drift wave, denoted by the wavenumber

kd0 and frequency ωd0, where the suffix d stands the drift wave, can induce a pairing of a

convective cell (wavenumber q and frequency �) and a secondary drift wave (wavenumber kd1

and frequency ωd1). This process occurs if conditions kd1 + q = kd0, ωd1 + � = ωd0 and

k2
d0 > k2

d1 are satisfied. The growth rate of parametric decay instability is easily shown to be:

γdi = csρs|kd0 × q|

√

Te

Ti

k2
d0 − k2

d1

q2

eφ̃d0

Te

, (3.2.1)

where φ̃d0 is the amplitude of the electrostatic potential perturbation associated with the primary

drift wave. The parametric decay instability is not effective for generating zonal flow. The

beat condition requires qx = 2kd0,x and kd1,x = −kd0,x . However, for this combination of

wave vectors, the relation k2
d0 = k2

d1 is forced, so the growth rate of parametric decay vanishes.

Thus, the zonal flow is not driven by the parametric decay instability.

The other possible parametric process is the modulational instability [25, 104–108]. In

this case, the primary drift wave (denoted by kd0 and ωd0) couples to the (modulating) zonal

flow (q and �) and so induces two secondary drift waves. The two induced drift waves are

denoted by d+ and d−, and have wavenumbers

kd+ = kd0 + q, and kd− = q − kd0. (3.2.2)

The modulational instability means that the radial structure of the wave function primary drift

wave is modified when the zonal flow is excited. We employ the potential vorticity conservation

equation (i.e. the Charney–Hasegawa–Mima equation)

∂

∂t
(n − �⊥φ) + [φ, (n − �⊥φ)] +

∂

∂y
φ = 0, (3.2.3)

where [φ, g] ≡ (b̂×∇⊥φ) ·∇g (b̂: unit vector in the direction of the magnetic field) represents

the advective nonlinear term, and the normalizations of space in unit of ρs and time in units of

Lnc
−1
s , together with n ≡ (Ln/ρs)ñ/n0, φ ≡ (Ln/ρs)eφ̃/Te, are employed for simplicity. In

the case of co-existing drift waves and zonal flows,

φ = φd + φZF and n = nd + nZF. (3.2.4)

Equation (3.2.3) is then separated into the vorticity equation for drift waves and the zonal

flows. The density response is given by the Boltzmann relation for drift waves nd = φd. For

zonal flows, the continuity equation holds, so that ∂nZF/∂t + 〈[φ, n]〉 = 0. That is,

nZF = 0 (3.2.5)

so long as � �= 0. Thus the vorticity equation for the zonal flow reduces to the Euler equation

for a two-dimensional fluid. The parametric modulational dispersion relation is obtained as

(ωd0 − ωd+ + �)(ωd0 + ωd− − �)

= |kd0⊥ × q|2
q2

(1 + k2
d0⊥ − q2)2

(

k2
d+⊥ − k2

d0⊥
1 + k2

d+⊥
+

k2
d−⊥ − k2

d0⊥

1 + k2
d−⊥

)

|φd0|2. (3.2.6)
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Figure 9. Growth rate of the zonal flow for the parametric modulational instability. A case of

eφ̃d0/Te = 0.2ρs/Ln and kd,x = 0 is shown.

where ωd+ = kd0,y(1 + k2
d+)

−1, and ωd− = kd0,y(1 + k2
d−)−1. In the limit of a long wavelength

of the zonal flow, |q| ≪ |kd⊥|, the condition for the instability to exist can be simplified to

φd0 >
|kd0,y |q2

√
2|kd0⊥ × q|

. (3.2.7)

The growth rate of the secondary perturbation is given from equation (3.2.6) and is expressed

in the long wavelength limit as

γZF =
√

2|kd0⊥ × q|
√

φ2
d0 − |kd0,y |2q4

2|kd0⊥ × q|2 . (3.2.8)

In the case that the drift wave is propagating nearly in the poloidal direction, kd,x ≃ 0,

equation (3.2.8) is simplified to

γZF = kd0⊥qx

√

2φ2
d0 − q2

x . (3.2.9)

The maximum growth rate is given as γZF ≃ kd0⊥φ2
d0 for |q| ≃ φd0. Figure 9 shows a plot of the

growth rate of the modulational instability as a function of the wavenumber of the zonal flow.

It is unstable in the long wavelength region. If the growth rate of the parametric instability is

larger than the collisional damping, growth of the zonal flow can occur.

Tokamak plasma. In tokamak plasma, a single drift wave eigenmode is not a plane wave, but

is given by a ballooning eigenfunction. Ballooning modes are similar to Bloch wavefunctions,

familiar from condensed matter physics. A ballooning mode has a single n-value (toroidal

mode number—the ‘good’ quantum number in the direction of symmetry), and consists of a

set of coupled poloidal harmonics, vibrating together with a fixed phase relation, which defines

the radial wavenumber. A similar analysis has been developed, and toroidal effects influence

the coupling coefficients [25]. The pump wave is expressed as [109]

φ̃0(r, t) = exp(−inζ − iω0t)
∑

m

�0(m − nq) exp(imθ) + c.c., (3.2.10)

where m and n are the poloidal and toroidal mode numbers, respectively, and �0(m − nq)

represents the poloidal harmonic wavefunction. As in the case of slab plasma, a single toroidal
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mode number n is kept. The zonal flow φ̃ZF and two nonlinear sidebands of the toroidal drift

waves (φ̃+ and φ̃−) may occur by modulational instability. They are given as

φ̃ZF(r, t) = exp(iqrr − i�t)�ZF + c.c. (3.2.11a)

φ̃+(r, t) = exp(−inζ − iω0t + iqrr − i�t)
∑

m

�+(m − nq) exp(imθ) + c.c. (3.2.11b)

φ̃−(r, t) = exp(−inζ + iω0t + iqrr − i�t)
∑

m

�−(m − nq) exp(imθ) + c.c. (3.2.11c)

This form is physically equivalent to the corresponding one in subsection (i), but the

toroidicity-induced coupling affects the structure of the eigenfunction. (The subscript ‘d’

denoting drift waves is dropped in order to reduce the complexity of notation.)

The modulational instability is analysed by a procedure similar to that for the slab plasma.

One obtains a dispersion relation for the modulational instability, namely

(ω0 − ω+ + �)(ω0 − ω− − �) = γ 2
mod, (3.2.12)

where

γ 2
mod = (2 + ηi)

1.6ε3/2

B2
θ

B2
ζ

k2
θq

2
r c2

s ρ
2
s |φ̃2

0 |, (3.2.13)

|φ̃2
0 | = 〈

∑

m |�0|2〉 is the amplitude of the primary drift wave, and the difference of the

eigenfrequencies is second order in the wavenumber of the zonal flow qr, i.e. |ω0 − ω±| ≃
ω0q

2
r ρ2

s . The factor of B2
θ /(1.6ε3/2B2

ζ ) in equation (3.2.13) is a consequence of the structure

of the dielectric constant of the plasma in toroidal geometry. If γ 2
mod > (ω0 − ω+)

2 holds, one

obtains the growth rate

� = i

√

γ 2
mod − (ω0 − ω+)2, (3.2.14)

using ω+ = ω−. The growth rate of the zonal flow has a similar dependence on qr as is

illustrated in figure 9. An estimate of the wavenumber at which the growth rate is maximum is

estimated to be qr ≃ kθ ŝ, where ŝ is the shear parameter. Finally, on account of the confluence

of nonlinear beat-induced coupling with linear, toroidicity-induced coupling, interaction with

neighbouring poloidal harmonics is possible, and has no slab counterpart. For this reason,

parametric modulational instability in a tokamak has sometimes been referred to as ‘four-

wave coupling’. This name is slightly confusing, and the reader should keep in mind that,

really, only three independent n modes are involved, as in the case of parametric modulational

instability in a slab.

As is the case for the slab plasmas, the zonal flow is expected to be amplified if the growth

rate equation (3.2.14) is larger than the collisional damping, as explained in section 3.1.3,
√

γ 2
mod − (ω0 − ω+)2 > γmod.

3.2.2. Zonal flow generation by a spectrum of drift wave turbulence. While the simplified,

truncated-degree-of-freedom models discussed in section 2 can elucidate and encapsulate some

aspects of the physics of zonal flow generation, the physically relevant problem requires an

understanding of the answer to the question: under what conditions is a spectrum of drift wave

turbulence unstable to a test zonal shear? Note that in this respect, the zonal flow generation

problem resembles the well-known magnetic dynamo problem, which seeks to answer the

question of: when is a spectrum of MHD turbulence unstable to a ‘test’ magnetic field? In the

(relevant) case of generation by a spectrum of drift waves, the test zonal flow might interact with

a broad spectrum of primary drift wave fluctuations, each of which has a finite self-correlation
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Table 4. Analogy between weak Langmuir turbulence and zonal flow generation.

Langmuir turbulence Drift waves and zonal flows

High frequency population:

plasmon/electron plasma wave Drift wave

ωk = ω∗e(1 + k2
⊥ρ2

s )

Low frequency structure:

phonon/ion acoustic Zonal flow

Drive Mechanism:

ponderomotive pressure Turbulent Reynolds stress

Wave population distribution:

action: plasmon number Potential enstrophy i.e., drift-ion number

N = (1 + k2
⊥ρ2

s )2

∣

∣

∣

∣

eφ

T

∣

∣

∣

∣

2

Modulational instability criterion:

population inversion needed Population inversion unnecessary

Regulator:

ion Landau damping of phonon Collisional damping of zonal flow

time. Thus, a statistical, random phase approximation (RPA)-type theory is necessary. The

essence of such a theory is to derive the zonal flow growth rate by:

(a) first averaging the zonal flow evolution equation (i.e. mean field evolution equation) over

an ensemble of drift wave realizations to relate ∂φZF/∂t to 〈φ̂2
DW〉, thus obtaining an

equation for mean field evolution in the presence of wave (i.e. pondermotive) pressures

and stresses,

(b) then computing the response of the drift wave spectrum to the test zonal flow shear, thus

‘closing the feedback loop’.

This procedure, which is typical of that followed in the course of modulational stability

calculations, ultimately rests upon:

(a) the separation in time scales between the low frequency zonal flow and the higher frequency

drift waves (i.e. �ZF ≪ ωk). This time scale separation enables the use of adiabatic theory

(i.e. eikonal theory and wave kinetics) to compute the response of the primary drift wave

spectrum to the test shear, and justifies the neglect of drift wave diffraction. Note that

the parametric instability calculation, discussed in section 3.2, also rests upon such an

assumption of time scale separation.

(b) the assumption of quasi-Gaussian distribution of drift wave phases.

It is worthwhile to note that the weak turbulence theory of zonal flow growth is quite closely

related to the classic problem of weak Langmuir turbulence [110]. In Langmuir turbulence,

low frequency test phonons (i.e. ion acoustic waves) grow by depleting the energy of a bath

of ambient plasmons (i.e. plasma waves). Since ωpe ≫ qcs, the zonal flow is the analogue

of the ion-acoustic wave, while the drift waves are the analogue of the plasma wave. Table 4

presents a detailed comparison and contrast of the weak Langmuir turbulence and zonal flow

problems. We will return to table 4 later, after discussing the theory of zonal flow growth.

(i) Zonal flow growth. As previously noted, the basic dynamics of zonal flows are governed

by the two-dimensional Navier–Stokes equation, since the density perturbation associated with

the zonal flow is negligibly small. Alternatively, the zonal flow structure is essentially two-

dimensional, as is a convective cell. Thus, in de-dimensionalized units, the zonal flow potential
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evolves according to a two-dimensional fluid equation:

∂

∂t
∇2

r φZF = −∂

∂r
〈ṽrd

∇2φ̃d〉 − γ
d
∇2

r φZF. (3.2.15)

Here γ
d

is a generic damping operator, which may be a scalar coefficient or an integro-

differential operator. Physically, equation (3.2.15) tells us that zonal flow vorticity evolves due

to the spatial flux of drift wave vorticity Ŵu = 〈ṽrd
∇2φ̃d〉. This observation is important, as it

establishes there is no net flow generation or momentum increase, up to boundary through put

terms. Rather, zonal ’flow generation’ is really a process of flow shear amplification. Zonal

flow evolution (i.e. velocity profile evolution) is transparently a process driven by vorticity

transport, just as temperature and density profile evolution are driven by thermal and particle

fluxes. Equation (3.2.15) may be rewritten as:

∂

∂t
∇2

r φ̃ZF = 1

B

∂2

∂r2

∫

d2kkrkθ |φd
k |2 − γ

d
(∇2

r φ̃ZF). (3.2.16)

Equation (3.2.16) directly relates the evolution of zonal flow potential to the slow variation

of the drift wave intensity envelope. By ‘slow variation’ we refer to the fact that |φd
k |2 varies

on a scale larger than upon which φd
k does, i.e. kr > (1/|φd

k |2)∂|φd
k |2/∂r . Also, it is now clear

that the scale of the drift wave intensity envelope is what sets the scale of the zonal flow.

Since wave population density (alternatively the ‘density of waves’) is conserved along

wave ray trajectories, tracking the evolution of N , the density of waves, is particularly

useful in evaluating the response of the drift wave spectrum to modulation by a test shear.

The convenience of N(k, r, t) follows, of course, from the fact that N obeys a Boltzmann

equation, with characteristic equations given by the eikonal equations for a drift wave.

In most cases, N(k, r, t) is the wave action density N = ε/ωk , where ε is the wave

energy density. In the case of drift wave turbulence, this question is complicated by

the fact that drift wave turbulence supports two quadratic conserved quantities, namely

the energy density ε = (1 + k2
⊥ρ2

s )2|φd
k |2 and the potential enstrophy density Z = (1 +

k2
⊥ρ2

s )2|φd
k |2. Thus, one can count either the local ‘wave’ density, given by the action

density N = (1 + k2
⊥ρ2

s )2|φd
k |2/ωk , or the local ‘vortex density’ (i.e. ‘roton’ number), given by

Nr = (1 + k2
⊥ρ2

s )2|φd
k |2. However, for zonal flow shears (which have qθ = 0), kθ is unchanged

by flow shearing, since dky/dt = −∂(kθVZF(x))/∂y = 0. The action density then becomes

N = (1 + k2
⊥ρ2

s )
2|φd

k |2/ω∗e where ω∗e is an irrelevant constant multiplier, thus rendering both

counts of exciton density the same. Hence, we can rewrite the zonal flow evolution equation

equation (3.2.16) as [15, 19, 111]:

∂

∂t
Ṽ ′

ZF = 1

B2

∂2

∂r2

∫

d2k
krkθ

(1 + ρ2
s k2

⊥)2

δN

δV̄ ′
ZF

(k, r, t)Ṽ ′
ZF − γdamp[Ṽ ′

ZF], (3.2.17)

where Ṽ ′
ZF = ∂ṼZF/∂r , and, at the level of coherent response theory for the modulation of N

by ṼZF, Ñ is given by Ñ(k, r, t) = (δN/δṼ ′
ZF)Ṽ

′
ZF. Note that equation (3.2.17) relates shear

amplification to the extent to which the modulation, induced in the drift wave population N by

Ṽ ′
ZF, tends to drive a Reynolds stress, which re-enforces the initial perturbation. An affirmative

answer to this question establishes that the drift wave spectrum is unstable to the growth of a

seed zonal velocity shear.

The modulational response δN/δṼ ′
ZF may now be calculated by linearizing the WKE

for N , which can formally be written as (by taking a model of nonlinear damping as

γNLN = �ωkN
2/N0):

∂N

∂t
+ (vg + Ṽ ZF) · ∇N − ∂

∂x
(ω + k · Ṽ ZF) · ∂N

∂k
= γkN − �ωk

N0

N2 (3.2.18)
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with characteristic equations for x and k evolution given by: dx/dt = vg + ṼZF, dk/dt =
−d(ω+k·ṼZF)/dx. For an ansatzed reference equilibrium spectrum N0(k), one has γk = �ωk ,

so that the linearized form of the WKE for zonal flow shears becomes:

∂Ñ

∂t
+ vg

∂Ñ

∂r
+ γkÑ = ∂

∂x
(kθ ṼZF)

∂〈N〉
∂kr

. (3.2.19)

Here 〈N〉 is the equilibrium value of the wave spectrum. Note that the +γkÑ damping

term arises from a partial cancellation between γkÑ and −2�ωk〈N〉Ñ/N0, after using the

approximate relations �ωk ≃ γk and N0 = 〈N〉. It follows that the modulation Ñq,� induced

by ṼZF is given by

Ñq,� = −qkθ ṼZF

(� − qvg + iγk)

∂〈N〉
∂kr

so the modulational instability eigenfrequency is given by

� = +q2

B2

∫

d2kk2
θ

(� − qvg + iγk)
kr

∂〈N〉/∂kr

(1 + k2
⊥ρ2

s )2
− iγd. (3.2.20)

This finally implies that the zonal flow growth rate is given by

Ŵq = −q2

B2

∫

dk2 k2
θ

(1 + k2
⊥p2

s )
2

γk

(� − qvg)2 + γ 2
k

(

kr∂〈N〉
∂kr

)

− γd. (3.2.21)

Several aspects of the structure of the zonal flow growth are apparent from

equation (3.2.21). First, note that growth requires ∂N/∂kr < 0. This condition is satisfied

for virtually any realistic equilibrium spectral density for drift wave turbulence. In contrast to

the well-known case of Langmuir turbulence, a population inversion (i.e. ∂N/∂kr > 0) is not

required for growth of zonal flows by RPA modulational instability. This is a consequence of

the fact that ωk decreases with increasing kr for drift waves, while ωk increases with increasing

k for Langmuir waves (i.e. see section 2). Thus, induced diffusion of kr will deplete the drift

wave population and drive zonal flows for d〈N〉/dkr < 0, while induced diffusion of kr will

deplete the plasmon population for d〈N〉/dk > 0.

It is also interesting to note that the leading behaviour of the zonal flow growth has the

form of negative viscosity or negative diffusion, i.e.

Ŵq ≃ q2D(q), (3.2.22)

where

D(q) ∼=
−1

B2

∫

d2k
k2
θγk

(1 + k2
⊥ρ2

s )2

kr

(� − qvg)2 + γ 2
k

∂〈N〉
∂kr

. (3.2.23)

This is, of course, consistent with expectations based upon the well-known inverse cascade

of energy in two-dimensional, although we emphasize that zonal flow growth is non-local

in wavenumber, and strongly anisotropic, in contrast to the inverse cascade. An order-of-

magnitude estimate of equation (3.2.22) is given with the help of equation (3.2.23). Assuming

that k2
⊥ρ2

s < 1 and that γk > qvg, integration by parts yields

D(q) ≃ k2
θ

B2

1

γdrift

|φ̃d|
2 = c2

s ρ
2
s

γdrift

k2
θ

∣

∣

∣

∣

∣

eφ̃d

T

∣

∣

∣

∣

∣

2

. (3.2.24)

This value is of the same order of magnitude in comparison to other transport coefficients

driven by turbulent drift waves. However, it should be noted that zonal flow growth occurs

over a region of size q−1, while conventional transport coefficients quantify the rate of diffusion
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across a profile scale length. Thus, zonal flow dynamics are mesoscopic phenomena, occurring

on spatial scales between those of the turbulence correlation length and characteristic scale

lengths of the profiles.

(ii) Energy conservation property. It is appropriate to demonstrate here that the RPA theory

of zonal flow growth, presented above, manifestly conserves energy. Equations (3.2.22)

and (3.2.23) give

d

dt
|ṼZF|

2 =
∑

q

2Ŵq |ṼZFq
|2 = −2

B2

∑

q

∫

d2k
q2|kθ ṼZFq

|2

(1 + k2
⊥ρ2

s )2
R(q, �)

∂〈N〉
∂kr

, (3.2.25)

R(q, �) = γk

(� − qVg)2 + γ 2
k

. (3.2.26)

The corresponding rate of change of the mean drift wave energy is

d

dt
〈ε〉 =

∫

d2k
1

(1 + k2
⊥ρ2

s )

d

dt
〈N(k, t)〉. (3.2.27)

Since a spectrum of sheared zonal flows induces diffusion of the drift wave population in radial

wavenumber, one can write:

d〈N〉
dt

= ∂

∂r
DK,K

∂〈N〉
∂r

, (3.2.28)

DK,K =
∑

q

1

B2
k2
θ |ṼZF|2q2R(q, �). (3.2.29)

Proceeding to integrate by parts, we obtain

d〈ε〉
dt

=
∫

d2k
2kr

(1 + k2
⊥ρ2

s )2
DK,K

∂〈N〉
∂kr

. (3.2.30)

It is thus abundantly clear that d(|ṼZF|2 + 〈ε〉)/dt = 0, so the theory conserves energy. Having

thus rigorously established energy conservation, we will make use of this actively in the future

to simplify calculations.

3.2.3. Relation between the RPA and single mode description. It is appropriate, at this point,

to establish some connection or correspondence between the coherent modulation instability

calculation discussed in section 3.2.1 and the RPA calculation discussed here in section 3.2.2.

To this end, it is interesting to note that the zonal flow growth rate equation (3.2.20) may be

re-expressed as a frequency, i.e.

� = −
∫

d2k
γ 2

coh(q, k)

(� − qvg + iγk)
, (3.2.31)

where γ 2
coh(q, k) = (k2

θq
2kr/(B

2(1 + k2
⊥ρ2

s )2))∂〈N〉/∂kr. Here the effect of ∂/∂kr on

(1 + k2
⊥ρ2

s )−2 and R has been neglected. In this limit, then equation (3.2.31) can be

rewritten as

�(� − qvg) = −γ 2
mod, (3.2.32)

where γ 2
mod = k2

θq
2
r 〈N〉(1 + k2

⊥ρ2
s )−2. This form is essentially the same as those obtained from

the parametric analyses of modulational instability, and gives the zonal flow growth rate as

γ 2
ZF = γ 2

mod −(qvg)
2, which is equivalent to equation (3.2.9). The result in the case of the plane

drift wave corresponds to the limiting case where the lifetime of the primary drift waves, γ −1
drift,

is much longer than the growth rate of the zonal flow. We emphasize, however, that the validity

of the coherent calculation not only requires that γmod > γk , but also γmod > q(dvg/dk)�k.
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Here (q(dvg/dk)�k)−1 is the autocorrelation of a dispersive drift wave-packet in the zonal flow

strain field. It measures the time for a packet of width �k to disperse as it propagates radially

across a zonal flow of scale q−1. Thus, validity of the coherent modulational theory requires

both proximity to marginal stability of the primary drift wave spectrum (so γmod > γk), and a

narrow spectrum (so that γmod > q(dvgr/dk)�k).

Building upon these considerations, one may construct an interpolation formula:

�

(

� − q
∂ω

∂kr

+ iγdrift

)

= −γ 2
mod, (3.2.33)

noticing that the coefficient Dkr,kr
defined by equation (3.2.29) satisfies the relation Dkr,kr

≃
q−2

r γ 2
modγ

−1
drift, within the approximation of equation (3.2.32). Equation (3.2.33) covers various

ranges. In the limit of plane wave, γdrift < γmod, the reactive instability equation (3.2.9)

or (3.2.14) is recovered, where γZF ∼ γmod ∝ qr holds. In the opposite limit, γdrift > γmod,

diffusive growth (γZF ∼ γ 2
mod ∝ q2

r ) results.

It might be useful here to note the cut-off of the zonal flow growth at large qr. It is explained

in the case of plane drift wave (parametric modulational instability) by equation (3.2.9)

or figure 9. A similar expression is obtained in the limit of RPA. In the expression of

the zonal flow growth rate in the RPA limit, e.g. equation (3.2.26), the response function

is evaluated by R(q, �) ∼ 1/γk. The lowest order correction of the wave dispersion

is written as R(q, �) ∼ γ −1
k (1 − q2

r v2
grγ

−2
k + · · ·). Thus one has an expression of γZF,

γZF = D(qr = 0)q2
r (1 − q2

r q−2
r0 ), where q2

r0 = v−2
gr γ 2

k represents the effect of the dispersion of

the drift waves. This is an expansion of equation (3.2.22) with respect to q2
r q−2

r0 .

3.2.4. Zonal flow drive by poloidal asymmetry. The particle flux driven by drift wave

fluctuations could be poloidally asymmetric. If such an asymmetry exists in the background

drift waves, a poloidal flow is induced in tokamak plasmas. This mechanism was first noted

by Stringer [69] and is called the Stringer spin-up. We briefly explain it here.

The continuity equation (3.1.4) describes the flow on the magnetic surface if there is

poloidal asymmetry in the net source term S −∇ ·Ŵ. Poloidal asymmetry of S −∇ ·Ŵ appears,

if the particle flux is not uniform in θ . We write

S − ∇ · Ŵ = 〈S − ∇ · Ŵ〉 + (S − ∇ · Ŵ)aF(θ), (3.2.34)

where 〈· · ·〉 is a poloidal average, and F(θ) is a function describing the poloidally

inhomogeneous part, so 〈F(θ)〉 = 0. The magnitude of poloidal asymmetry, (S − ∇ · Ŵ)a ,

and the shape of F(θ) are taken as prescribed here. In steady state, this inhomogeneity

induces a secondary flow on the magnetic surface Va,‖. The asymmetric flow Va,‖ is given by:

Va,‖ = qRn−1
0 (S − ∇ · Ŵ)a

∫ θ

0
dθF (θ).

In the presence of this flow, the parallel component of equation (3.1.5) is affected, in that

the r−1Vθ∂V‖/∂θ term in V · ∇V does not vanish. As a result, one has the dispersion relation

�3 − ω2
GAM� = −i

2c2
s

Rr
γas, (3.2.35)

where γas is the net particle ‘production’ rate of the asymmetric source, i.e.

γas = 1

n0

(S − ∇ · Ŵ)a

∫ 2π

0

dθ

2π
cos θF (θ). (3.2.36)

This result shows that instability is possible if F(θ) has an in–out asymmetry, like

F(θ) ∼ cos θ .
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Equation (3.2.36) predicts two possible types of instabilities. One is growth of the zero

frequency zonal flow with � ≪ ωGAM. In this case, equation (3.2.36) reduces to

� ≃ i
1

ω2
GAM

2c2
s

Rr
γas ≃ i

R

r
γas, (3.2.37)

which shows that poloidally symmetric flow spins up if γas > 0. The other case corresponds

to the excitation of the GAM. For the branch with γ ≃ ωGAM, equation (3.2.35) gives an

approximate solution

� ≃ ωGAM − i
1

ω2
GAM

c2
s

Rr
γas ≃ ωGAM − i

R

2r
γas. (3.2.38)

The GAM is destabilized if γas < 0. We note that the growth rate of the axisymmetric flow,

equation (3.2.37) or (3.2.38) does not depend on the radial extent of the flow, i.e. γas ∝ (qr)
0.

where qr is the radial wavenumber of the zonal flow. Hence, the Stringer spin-up mechanism

can be important for the case of small qr. The collisional damping rate in section 3.1.3 is also

independent of qr. Comparing equations (3.1.14) with (3.1.17), the excitation of a GAM with

long radial wavelength is expected to occur if γas < νii. It has recently been pointed out that

the shearing of the background turbulence by GAM induces poloidal asymmetry of the particle

flux Ŵ and that this mechanism can cause the GAM instability, and

Im(�) ∝ q2
r . (3.2.39)

In this case, the growth rate is proportional to q2
r and coefficients are given in [112].

3.2.5. Influence of turbulent momentum transport on the secondary flow. As is shown in

section 3.1.1, the zonal flow is associated with a secondary flow along the magnetic field line

that cancels the divergence of the perpendicular flow. The viscous damping of this secondary

flow due to toroidicity acts as a damping rate of the zonal flow, in addition to the collisional

damping. This damping rate is rewritten as [48]

γdamp = µ‖(1 + 2q2)q2
r , (3.2.40)

where µ‖ is the turbulent shear viscosity for the flow along the field line, and q is the safety

factor. Of course, µ‖ is a function of the drift wave intensity, and thus can be suppressed in the

regime of strong zonal flows, such as the Dimits shift. The Pfirsch–Schlüter coefficient 1+2q2

is replaced by 1 + 1.6q2/
√

ε in the collisionless limit. This damping term has dependencies on

the wavenumber qr and the intensity of the primary drift wave turbulence, which are similar to

those of the growth rate, given in section 3.2.3. The dependence on geometrical factors differs

from γZF. Therefore the safety factor q (and thus the Bθ (r) profile!) can play an important

role in determining the domain of zonal flow growth.

3.2.6. Electromagnetic effects. The discussion in the previous subsections is cast in the

framework of the electrostatic limit, in the interest of transparency of argument. Plasma

turbulence supports magnetic perturbations, and electromagnetic effects also have important

roles in the physics of zonal flows. One of the effects is known as the ‘finite-β effect’ on

drift waves [113], where β is the ratio of the plasma pressure to the magnetic field pressure,

β = 2µ0B
−2p. Frequently, the magnetic stress tends to compete against the Reynolds stress,

thus reducing zonal flow growth. The other is the generation of the (poloidally symmetric)

magnetic field bands by plasma turbulence. The generation of the magnetic field that has a

symmetry (on a larger scale than that of the background turbulence) has been known as the
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mean field dynamo. This dynamo is more akin to a ‘mesoscale dynamo’ then to a mean field

or small scale dynamo. Since the magnetic fields so generated have zonal symmetry and

structure, we refer to them as zonal fields. The study of zonal fields is a new direction from

which to approach the dynamo problem [60–63].

In the broad context of the zonal flows, two directions of research are explained here. One

is finite-β effects on drift waves and the zonal flow generation by them. This is discussed

in the context of parametric decay instability. The other is the magnetic field generation by

drift-Alfven waves. The zonal field calculation is approached using the methods of statistical

theory. Here, two examples are arranged as follows:

Subject Mechanisms for zonal flow growth

Zonal flow generation Modulational instability of

by finite-β drift waves a plane drift Alfven wave

Zonal magnetic Random Alfven wave refraction

field generation of Alfven wave turbulence

(i) Finite-β effect on the drift waves. In the finite-β plasmas, coupling between the drift wave

and shear Alfven wave occurs so as to form a drift-Alfven mode. The dispersion relation of

this mode has been given as

1 + k2
yρ

2
s − ω∗

ω
− ω(ω − ω∗)

k2
‖V

2
A

= 0, (3.2.41)

where VA is Alfven wave velocity.

The plane drift Alfven mode is also unstable to modulations. The method explained in

section 3.2.1 has been applied to the finite-β case [114–116]. Introducing the vector potential

perturbation ψ (the component of the vector potential in the direction of main magnetic field),

one writes the plane wave as (φ, ψ)0 = (φ0, ψ0) exp(ikyy +ik‖z− iω0t), where the subscript 0

stands for the primary wave with real frequency ω0 given by (3.2.41). The modulational

perturbation thus follows
(

φ

ψ

)

m

=
(

φZF

ψZF

)

exp(iqxx − i�t) +

(

φ+

ψ+

)

exp(iqxx + ikyy + ik‖z − iω+t)

+

(

φ−
ψ−

)

exp(iqxx − ikyy − ik‖z − iω−t), (3.2.42)

where φZF is the electrostatic potential perturbation that induces zonal flow, ψZF generates the

zonal magnetic field, � is the frequency of the zonal flow and field, and (φ+, ψ+) and (φ−, ψ−)

are the upper and lower drift-Alfven mode sidebands.

As was explained in section 3.2.1, nonlinearity induces the coupling between the primary

wave and the modulations. In the electromagnetic case, the primary nonlinearities consist of

the convective nonlinearity V⊥ · ∇ in the Lagrange time derivative, and the nonlinearity in

∇‖, due to the bending of magnetic field lines [117, 118]. A set of bilinear equations for the

variables (φ0, ψ0), (φZF, ψZF), (φ+, ψ+) and (φ−, ψ−) was derived. By using the estimate of

k‖ ∼ 1/qR, the growth rate of the zonal flow together with the zonal field γZF = Im � is

given by

yZF = qxkyρ
2
s ωci|φ0|

(

MA(1 − ω̂2
0k

2
yρ

2
s β̂) + MBω̂2

0q
2
xk

2
2ρ

4
s β̂ − q2

xρ
4
s ω̂2

0

2L2
n|φ0|2

)1/2

(3.2.43)
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with coefficients

MA = C−1(1 − ω̂0(2ω̂0 − 1)k2
yρ

2
s β̂ + (q2

x − k2
y)k

−2
⊥ (1 − ω̂−1

0 − k2
yρ

2
s )),

MB = −2k2
yC

−1k−2
⊥ (1 − ω̂−1

0 + k2
yρ

2
s ), C = 1 + k2

yρ
2
s − ω̂0(3ω̂0 − 2)k2

yρ
2
s β̂,

where |φ0| = |eφ̃0/T |, ω̂0 = ω0/ω∗ and β̂ = β(qR/Ln)
2/2 are used for convenience to

elucidate finite-β effects. The coefficient β̂ represents the ratio of the frequency to the shear-

Alfven wave frequency, i.e. (ω∗/k‖VA)2 ≃ k2
yρ

2
s β̂.

This set of equations is cast in terms of the parameters we now list: the amplitude of the

pump wave |φ0| = |eφ̃0/T |; the wavenumber of the pump wave kyρs; the wavenumber of the

zonal flow qxρs; and the normalized pressure, β̂. The fourth parameter appears as a result of

finite β. In the limit of β̂ → 0, the results of section 3.2.2 are recovered. In the limit of small β̂,

equation (3.2.43) tells that the growth rate of the zonal flow decreases as β increases. This

has also been discussed in terms of ‘Alfvenization’ of the zonal flow drive [119]. In addition

to the Reynolds stress, the divergence of the Maxwell stress is known to induce a force on

plasmas. The signs of the divergences of the Reynolds stress and Maxwell stress are opposite

for the drift-Alfven waves. For the shear-Alfven wave, the relation ṽ ∝ β holds. This implies

a cancellation of the Reynolds stress and Maxwell stress, and the consequent quenching of

the zonal flow drive. Thus, the finite-β effect, which introduces a coupling between the shear-

Alfven wave and drift wave, causes magnetic field perturbations that reduce the drive of the

zonal flow for fixed value of |φ0| = |eφ̃0/T |. Equation (3.2.43) includes terms quadratic in

β̂, which exceed the linear term on β̂, as β̂ increases. In [115], it has been shown that the

zonal flow growth rate starts to increase if β̂ exceeds a critical value, β̂ > β̂c, β̂c ≃ 2k−2
y ρ−2

s .

The origin of the reduction of turbulent transport at the high beta value that has been observed

in DNS [115] is attributed to this. We note here that an analogous effect in the theory of

differential rotation in stars is referred to as ‘omega (�) quenching.’

Another application of this type of analyses has been given for the Alfven ITG mode

[120]. The same structure of modulational instability (3.2.9) was found [114] in that case.

(ii) Zonal magnetic field generation. The amplitude of the zonal magnetic field ψZF is shown

to ‘seed’ the growth of modulational instability [114]. This effect is important for zonal field

growth. In the problem of the dynamo in space and astrophysical objects, the electric resistance

by collisions along the field line is weak enough that zonal magnetic field generation can

have substantial impact. The regime of low resistivity is also relevant to toroidal plasmas. In

addition, nonlinear MHD instability, like the neoclassical tearing mode [121], which illustrates

the critical role of the current profile in turbulent plasmas, can be ‘seeded’ by zonal field. Thus,

the study of zonal magnetic field that is associated with, and similar to, the zonal flow has

attracted attention.

An analysis of zonal field modulational instability is briefly illustrated here, and provides

an introduction to further study of dynamo and field amplification problems. The equation for

the ‘mean field’ is here considered to be that for the vector potential component in the direction

of the strong (toroidal) magnetic field [122]. The equation is given by the V‖ moment of the

electron drift kinetic equation, which is:

(1 − δ2
e ∇2

⊥)
∂

∂t
ψZF −

〈

Ẽ‖
ñ

n

〉

+
∂

∂r
ŴJ,r = η‖∇2

⊥ψZF. (3.2.44)

Here δe is the collisionless electron skin depth, c/ωpe, 〈Ẽ‖ñ/n〉 gives the average parallel

acceleration, ŴJ,r stands for the turbulent flux of current in the x direction, and η‖ is the

collisional resistivity. ŴJ,r is closely related to the mean magnetic helicity flux. By using
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quasi-linear theory as applied to the drift-kinetic equation, the terms 〈Ẽ‖ñ/n〉 and ŴJ,r , which

contribute to the generation of the mean magnetic field, are easily shown to be
〈

Ẽ‖
ñ

n

〉

= −πTe

e

∑

k

2k2
⊥ρ2

s

2 + k2
⊥ρ2

s

k‖
|k‖|

ω2
kf0

(

ωk

k‖

)

Nk, (3.2.45)

ŴJ,r = πTe

�

∑

k

2k2
⊥ρ2

s

2 + k2
⊥ρ2

s

kyω
3
k

k‖|k‖|
f0

(

ωk

k‖

)

Nk, (3.2.46)

where � is the time derivative of the zonal field, (∂/∂t)ψZF = −i�ψZF, f0(ωk/k‖) is

the unperturbed distribution function of plasma particles at the resonant phase velocity,

v‖ = ωk/k‖, and Nk is the action density of the kinetic shear-Alfven wave (i.e. the ratio

of the wave energy density divided by the wave frequency) given by;

Nk = 2 + k2
⊥ρ2

s

2ωk

k2
⊥ρ2

s

∣

∣

∣

∣

∣

eφ̃k

Te

∣

∣

∣

∣

∣

2

. (3.2.47)

Note that ŴJ,r → 0 as k⊥ρ → 0 (i.e. in the ideal MHD limit). This is a consequence of

the fact that, on resonance, ŴJ,r ∝ |Ẽ‖|2, which vanishes for ideal Alfven waves. Thus,

zonal field dynamics are explicitly dependent on Ẽ‖ of the underlying waves. As usual, N

may be thought of as a wave population density. The sensitivity of the weighting factor to

finite-gyro-radius effects is due to the influence of the dispersion relation ω2
k = k2

‖v
2
A(1+k2

⊥ρ2
s )

on the phase relation ψ/φ for kinetic shear-Alfven waves. The modulation of the action density

Nk resulting in the imposition of a seed zonal magnetic field is calculated by the same procedure

of section 3.2.2. The wave-packet evolves according to the WKE

∂

∂t
Nk + vg

∂N

∂x
− ∂

∂x
ωk · ∂N

∂kx

= C(N), (3.2.48)

where C(N) stands for wave damping. The dispersion relation for the kinetic Alfven wave

satisfies equation (3.2.41), and the group velocity is given as vg,r = k2
‖v

2
Aω−1

k kxρ
2
s . (The kinetic

shear Alfven wave is a forward-going wave.) Therefore the perturbation in the wave frequency

caused by the imposition of the zonal magnetic field δBx is given by δωkω
−1
k = kyk

−1
‖ B−1

0 δBx ,

i.e. a simple modulation of Alfven speed, where B0 stands for the unperturbed magnetic field

and the relation δk‖ = kyδBxB
−1
0 is used. By use of this frequency modulation, the modulation

of the wave action density δNk is easily shown to be

δNk = iωk

� − qxvg,x + iγKSAW

ky

k‖

q2
xδψZF

B0

∂Nk

∂kx

, (3.2.49)

where damping rate γKSAW is introduced as C(N) = γKSAWN in equation (3.2.48). Substitution

of equation (3.2.49) into equations (3.2.45) and (3.2.46) gives the response of 〈Ẽ‖ñ/n〉 and

ŴJ,r , to the imposition of ψZF, i.e. δ〈Ẽ‖ñ/n〉 and δŴJ,r . If the forms of δ〈Ẽ‖ñ/n〉 and δŴJ,r are

substituted into equation (3.2.44), a closed equation for ψZF follows. This equation determines

the eigenvalue �, by which equation (3.2.44) is rewritten as

∂

∂t
ψZF = −i�ψZF − q2

r η‖
1 + q2

r δ2
e

ψZF. (3.2.50)

The growth rate Im � can be re-expressed as [122];

Im � = 4πc2
s δ

2
e q

2
r

vth,e(1 + q2
r δ2

e )

∑

k

(1 + k2
⊥ρ2

s )5/2

2 + k2
⊥ρ2

s

k2
⊥k2

y

|k2
‖ |

∂2

∂k2
x

( 〈ωkNk〉
√

1 + k2
⊥ρ2

s

)

f0. (3.2.51)
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This result has a similar structure to the case of zonal flow generation, equations (3.2.22) and

(3.2.23) in its dependence on q2
r , and on the wave population spectrum (i.e. the kx—derivative

of Nk). It shows that zonal magnetic field instability is driven by a negative slope of

〈ωkNk〉/
√

1 + k2
⊥ρ2

s . This condition is usually satisfied, without inversion of populations

for Alfvenic MHD.

As was the case for zonal flow drive by drift waves, the drive of the zonal magnetic

field is also subject to damping by the collisional resistivity. If the growth rate γZF = Im �

equation (3.2.50) exceeds the resistive damping rate, i.e. γZF > q2
r η‖/(1 + q2

r δ2
e ), the zonal

magnetic field grows. This driving mechanism of mesoscale magnetic perturbation by

microscopic turbulence can have an impact on global MHD instabilities in toroidal plasmas

by secondary perturbations, such as neoclassical tearing modes.

3.2.7. Comparison with MHD mean field dynamo theory. It is instructive to compare

the results for zonal field growth with those of dynamo theory, in MHD, which is another

outstanding problem in structure formation in an axial vector field due to turbulence.

In the mean field MHD dynamo theory, the mean magnetic field 〈B〉 and vorticity 〈ω〉
evolve (for incompressible turbulence) according to: [60, 62, 63]

d〈B〉
dt

= ∇ × 〈Ṽ × B̃〉 + η‖∇2〈B〉, (3.2.52)

d〈ω〉
dt

= ∇ ×
〈

B̃ · ∇B̃

4πnimi

− Ṽ · ∇Ṽ

〉

+ ν∇2〈ω〉 (3.2.53)

where ν is a molecular viscosity. The essence of the mean field electrodynamic theory is to

approximate the averages of the nonlinear terms, quadratic in fluctuation amplitude, by some

effective transport coefficient times a mean field quantity. In many ways this procedure for

a closure approximation is quite similar to the familiar case of quasilinear theory, which is

a closure of the Vlasov hierarchy. While relatively minor, technical variations abound, most

mean field dynamo theories predict

d〈B〉
dt

= ∇ × (α〈B̃〉 − β〈J〉) + η‖∇2〈B〉, (3.2.54)

d〈ω〉
dt

= νeff∇2ω + ν∇2ω. (3.2.55)

Here alpha (α) is the familiar pseudo-scalar, proportional to turbulent helicity, and β and νeff

are turbulent resistivity and viscosity, respectively. Note that β is positive but νeff is not positive

definite, since it is clear from equation (3.2.53) that turbulence effects on 〈ω〉 must vanish if

Ṽ = B̃/
√

4πnimi, i.e. a state of maximal cross helicity. This is identical to the cancellation of

the Reynolds and Maxwell stresses which occurs for zonal flow generation by Alfven waves.

Additional contributions to 〈Ṽ×B̃〉 and 〈B̃·∇B̃/4πnimi−Ṽ·∇Ṽ〉 may enter. These correspond

to mean vorticity effects on 〈B〉 and mean magnetic field effects on 〈ω〉, respectively.

An important, relatively recent development in the theory of mean field electrodynamics

was motivated by questions of self-consistency and conservation of magnetic helicity. These

considerations together suggest that α should be quenched, as compared to its kinematic value,

and that the quench should be proportional to the magnetic Reynolds number RM. While this

question is still controversial, both theory and computation suggest that

α = αkin

(1 + Rσ
M〈VA〉2/〈Ṽ 2〉)

, (3.2.56)
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where αkin is the kinematic alpha coefficient αkin ≃ 〈Ṽ · ω̃〉τc, τc, is the correlation time and

σ ≃ 1. It is useful to note that equation (3.2.56) may be rewritten as α = αkinη‖/(η‖ +τc〈VA〉2).

This expression emphasizes that mean field growth is ultimately tied to collisional resistivity,

as it is only the latter which breaks the freezing-in of field and fluid in MHD.

(i) Correspondence of driving terms. Comparing the results of equation (3.2.51) with

equation (3.2.54), one finds that the physics of zonal field generation in part (ii) of section 3.2.6

has a deep connection to the physics of mean field dynamos. In order to clarify the relation of

zonal magnetic field generation, equations (3.2.51) and (3.2.51), to the MHD dynamo problem,

equations (3.2.50) and (3.2.51) may be rewritten by the use of Bθ = dψZF/dr , so

∂

∂t
Bθ = −ηZF∇2Bθ , (3.2.57)

where

ηZF = − 4πc2
s δ

2
e

vth,e(1 + q2
r δ2

e )

∑

k

(1 + k2
⊥ρ2

s )5/2

2 + k2
⊥ρ2

s

k2
⊥k2

y

|k‖|
∂2

∂k2
x

( 〈ωkNk〉
√

1 + k2
⊥ρ2

s

)

f0. (3.2.58)

Here, the collisional resistivity η‖ is dropped and the q2
r in equation (3.2.51) is rewritten

as −∇2, noting that the generated field depends only on the radius r . The sign

of ηZF (i.e. corresponding to a negative resistivity) is positive for ‘normal’, i.e. one

with ∂2/∂k2
x(〈ωkNk〉/

√

1 + k2
⊥ρ2

s ) < 0, but becomes negative (corresponding to positive

dissipation) if ∂2/∂k2
x(〈ωkNk〉/

√

1 + k2
⊥ρ2

s ) > 0, as for a population inversion. If one considers

the βJ term in equation (3.2.54), the induction equation can be written as

dB

dt

∣

∣

∣

∣

β-dynamo

= β∇2B. (3.2.59)

Comparing equations (3.2.57) and (3.2.59), one finds that the electromotive force for zonal field

generation corresponds to the βJ -term in the mean field induction equation. The driving takes

the form of a negative coefficient ηZF of turbulent resistivity. What is interesting is that the sign

of the turbulent resistivity varies with the spectrum slope. Thus, the zonal field ‘dynamo’ is

really a process of flux or current coalescence, somewhat akin to the inverse cascade of mean-

square magnetic flux predicted for two-dimensional and three-dimensional reduced MHD.

This process conserves total magnetic flux, unlike an alpha dynamo, which amplifies magnetic

flux via the stretch–twist–fold cycle. Note that there is a clear correspondence between zonal

flow and zonal field generation. Zonal field generation is, simply put, related to the inverse

transfer of magnetic flux while zonal flow generation is related to the inverse transfer of fluid

energy.

The relationship to the drive of zonal flow vorticity is also discussed. The growth of the

zonal flow vorticity, e.g. equations (3.2.22) and (3.2.23). Comparing equations (3.2.22) with

(3.2.55), we see that the drive of zonal flow vorticity by drift waves corresponds to a turbulent

viscosity in mean field MHD (the first term in rhs of equation (3.2.55). As in the case of the

magnetic field, the viscosity-like term (Drr∇2Uq) in equation (3.2.22) has the opposite sign to

the usual turbulent viscosity, a la Prandtl. The MHD dynamo theory has also shown that the

zonal flow can be driven by the curvature of plasma current, and its possible role in the ITB

formation has been discussed [123]. A corresponding term in the zonal flow problem will be

obtained by retaining the ψZF-term in equation (3.2.42) in calculating the evolution of φZF.

This is a subject for future research.
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(ii) Other contrasts. Mesoscale character. The zonal magnetic field and zonal flow both have

a mesoscale character. That is, while they can have a coherence length on a mesoscale, i.e. one

which is equal to the system size, in the poloidal and toroidal directions along the magnetic

field, the radial wave length can be as short as that of the microscopic fluctuations. In MHD

dynamo theory, research has concentrated on the large scale dynamo (having a characteristic

scale length of the system size) or on the small scale dynamo, which has a microscopic scale

length usually set by the dissipation scale. The problem of the zonal field and zonal flow

generation sits in an intermediate regime that connects both large and small scales. However,

zonal structures are highly anisotropic.

In addition, the symmetry of the generated field also influences the turbulent driving terms.

For instance, the generated zonal magnetic field in section 3.2.6 is dependent on only one radial

dimension, and the toroidal magnetic field is unchanged. Under such constraints of symmetry,

Cowling’s theorem guarantees that an α-dynamo term cannot appear.

Collisionless dynamo. Both zonal magnetic field and zonal flow couple to collisionless

dissipation. In the case of zonal fields, collisionless dissipation (i.e. in particular, Landau

damping) regulates both magnetic helicity and current transport. This first, genuinely

‘collisionless dynamo’ theory is notable since Landau resonance is a natural alternative to

resistive diffusion for decoupling the magnetic field and plasma, in low-collisionality regimes.

Of course, one should also recognize that Landau damping is not a panacea for the problems

confronting dynamo theory. For example, here, zonal magnetic field growth occurs via the

product of the |Ẽ‖|2 spectrum and Landau damping, i.e. ηZF ∼
∑

|Ẽ‖|2δ(ω − k‖V‖). As a

consequence, zonal field growth is limited by the size of Ẽ‖ (which vanishes in ideal MHD),

since coupling of fields to particles enters via the latter. Thus in progressing from MHD to

kinetics, one in a sense exchanges the ‘freezing-in law’ difficulty for the Ẽ‖ ∼ 0 difficulty.

Tertiary instability. As is discussed in section 3.5, one possible route to zonal flow

saturation is via generalized Kelvin–Helmholtz (GKH) instability of the flow. Such an

instability is an example of a tertiary instability, i.e. parasitic instability driven by a secondary

instability. We may speculate that the tertiary instability of the zonal field is similar to a ‘micro-

tearing mode’, and is driven by relaxation of the current and temperature profile of the zonal

field. Of course, given the narrow radial extent of the zonal field, such tertiary micro-tearing

modes are almost certainly temperature gradient driven. Note that such instabilities will also

produce zonal current filamentation, which may contribute to the seeding of neoclassical tearing

modes, as well. More generally, tertiary micro-tearing instabilities offer another possible

route to dynamo saturation. Of course, just as magnetic shear severely inhibits the GKH

instability of zonal flows, it can also be expected to restrict the viability of tertiary micro-

tearing. Detailed research on tertiary micro-tearing is necessary to quantitatively address the

speculations presented here.

Role of global parameters in turbulent coefficients. One of the goals of the study of

structure formation in turbulent media is to relate the turbulent driving coefficients (e.g. α, β,

νeff in MHD turbulence theory, or γZF and χturb in the problem of zonal flow and drift wave

turbulence) to relevant dimensionless parameters characteristic of the system, such as ρi/a,

Rayleigh number, Taylor number, etc. In this direction of research, explicit analytic formulae

have been obtained for the problem of zonal flow and drift wave turbulence. This is a significant

achievement of the cumulative research effort on turbulence theory. In addition, in this area

of research, one can find cross-disciplinary similarities, such as transport suppression by the

inhomogenous E × B flow and ‘α -suppression’ in MHD dynamo theory.

The noticeable difference in the sign of corresponding terms in the zonal flow problem

and the dynamo problem may be viewed as originating from the differences in the nature of

the turbulence. In the MHD dynamo, turbulent dynamo coefficients are evaluated based
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on three-dimensional turbulence, since the theory is constructed for a weak magnetic field.

On the other hand, the turbulence which is analysed for the source of zonal flow is quasi-

two-dimensional, on account of the strong toroidal field, which is externally imposed. The

unification of the dynamo problem and the zonal flow problem is an outstanding key future

challenge for turbulence theory.

3.3. Shearing and back reaction of flows on turbulence

In magnetized plasmas, if flow shear exists together with a pressure gradient (a source of

turbulence) the flow shear may suppress the turbulence driven by pressure-gradient relaxation.

The back reaction, by both externally generated and self-generated shear flow, on pressure-

gradient-driven turbulence, is a key mechanism that governs the turbulent state and the

transport. Of course, flow shear itself may be a source of instability, such as the familiar

KH instability. However, magnetic shear tends to mitigate or quench velocity-shear-driven

instabilities, so they are not of too great a concern to confinement systems.

3.3.1. Effect of flow shear on linear stability. The first step in analysing the back interaction

of sheared flow on turbulence is linear stability theory. The linear effect of sheared flow on

the pressure-gradient-driven instability has been exhaustively surveyed in the literature [16].

Indeed, the Richardson problem of shear flow and buoyancy, which leads to the definition of the

Richardson number Ri ≡ (g/Ln)(dVy/dx)−2, is a classic example of the competition between

processes (i.e. density or potential temperature-gradient-driven buoyancy and shearing). (Here

the gravity g is in the direction of density gradient, x-direction.) Readers are recommended to

refer to [16] for details of the various linear mechanisms. Some key elementary processes are

explained here.

One characteristic mechanism for shear suppression is via a deformation of the

eigenfunction. In the presence of velocity shear, the eigenfunctions are deformed, so that

the wave length in the direction of the gradient becomes smaller. As a result of this, the linear

growth rate decreases. (In other words, the fundamental mode, which has the largest growth

rate, is forced to couple to higher modes, which are much more stable than the fundamental.)

Consideration of the symmetry explains how the stabilizing effect usually appears at second

order in velocity shear, i.e. ∼ (dVy/dx)2, so the stabilizing trend does not depend on the sign of

dVy/dx. This mechanism works for the Rayleigh–Benard instability in neutral fluids [124–126]

and for plasma instabilities driven by pressure, density and temperature inhomogeneities

[127–136]. For non-resonant or hydrodynamic process, stabilization is possible, if the heuristic

condition

|V ′
E×B | ∼ γL0 (3.3.1)

is satisfied, where γL0 is the linear growth rate in the limit of V ′
E×B = 0. It is very important

to realize that this is only an approximate criterion. This order-of-magnitude estimate is

consistent with the results of simulations of linear dynamics with sheared flow [19, 137].

In collisionless plasmas, another type of stabilization mechanism occurs via wave–particle

resonance. The ion orbit can be modified by an inhomogeneous electric field, so Landau

damping may be enhanced, and very strong ion Landau resonance takes place if the electric field

shear is large enough [138]. For instance, ion Landau damping, which is usually a stabilizing

effect, enters via the wave–particle resonant denominator i/(ω − k‖v‖), so that wave–ion

resonance occurs at xi = ω/vTh ik
′
‖ (k′

‖ = ∂k‖/∂x). In the presence of sheared E × B flow,

the shear flow Doppler shift renders the resonance equal to i/(ω − k‖v‖ − kθx∂Vθ/∂x). Then,

with velocity shear, the ion Landau resonance point is shifted to xi = ω/(vThik
′
‖ + kθ∂Vθ/∂x),
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so that the resonance is stronger. Thus, electric field shear can significantly enhance the effect

of ion Landau damping. Drift reversal of trapped particles due to an inhomogeneous electric

field also influences stability. The toroidal drift velocity of trapped ions is modified by a factor

(1 + 2ug), where ug = ρpiv
−1
thi B

−1
p (dEr/dr). If the condition ug < − 1

2
is satisfied, trapped

particles drift as if the magnetic curvature were favourable. The trapped-ion mode is thus

stabilized by drift reversal in the range of ug < −1. Note that this stabilization mechanism is

asymmetric with respect to the sign of E′
r [139].

If flow shear becomes too strong, KH-type instability may occur [126]. The evolution

from drift instability to KH instability has been confirmed for drift wave–zonal flow and other

plasma systems [131].

3.3.2. Effect on turbulence amplitude. In the model equation for a passive scalar advected

by background fluctuations, the effects of rapidly changing fluctuations are included in the

turbulent transport coefficient, which is a measure of turbulent mixing. The equation of the

test field X̃ in the presence of the sheared flow thus has the form

∂

∂t
X̃ + V̄y(x)

∂

∂y
X̃ − D∇2X̃ = S̃ext, (3.3.2)

where V̄y(x) is the sheared flow in figure 6(a), D is the diffusion coefficient due to the small

scale fluctuations, and S̃ext represents the source. The stretching of contours of constant

test perturbations occurs, and the turbulence level (i.e. X̃), the cross-phase, and the flux are

suppressed by ∂V̄y/∂x (i.e. E′
r in magnetized plasmas). The mean velocity is in the y-direction

(poloidal direction), and is sheared in the x-direction (radial direction). The sheared velocity

is expressed as

Vy = Svx (3.3.3)

in local coordinates. The flow shear is interpreted as Sv = rd(Er/Br)/dr in cylindrical

geometry. The expression for toroidal plasmas has been derived [11] and is Sv =
(r/q)(d/dr)(qEr/rB).

(i) Mean flow—constant stretching and decorrelation rate. We first consider the case where

the mean flow shear Sv varies much more slowly than the autocorrelation time of turbulent

fluctuations, and varies smoothly in space (i.e. on scales longer than that of the turbulence

correlation function). In this case, Sv may be taken as constant. The influence of the convection

term V̄y(x)∂/∂y in equation (3.3.2) is treated by using shearing coordinates [140]. The

Lagrangian time derivative in equation (3.3.2) is given as ∂/∂t+V̄y(x)∂/∂y → ∂/∂t+Svx∂/∂y.

Shearing coordinates annihilate the operator (∂/∂t + Svx∂/∂y) via the transformation

kx → k(0)
x + kySvt, (3.3.4)

where k(0)
x is defined at t = 0. Note that shearing coordinates are quite analogous to Roberts

and Taylor twisted slicing coordinates, which annihilate the operator B · ∇.

The increase in the perpendicular wavenumber is also observed in the laboratory frame.

After time t , a circular element is stretched to an, the minor axis of which is given by

L⊥ = L/
√

1 + S2
v t

2. The reduction in L⊥ is equivalent to the growth of the perpendicular

wavenumber, so that the characteristic perpendicular wavenumber for the test field X̃ is

effectively enhanced by a factor (1 + S2
v t

2) [9, 141–143],

k2
⊥eff = k2

⊥(1 + S2
v t

2). (3.3.5)
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Again, this is quite analogous to the familiar expression for k2
⊥ of ballooning modes, i.e.

k2
⊥ = k2

θ (1 + ŝ2(θ − θ0)
2). Time-asymptotically, then

k⊥eff ∝ k⊥Svt. (3.3.6)

The change of the wavenumber is linear in time, i.e. ballistic.

The diffusivity D implies a random walk due to the background fluctuations. The influence

of the shear flow on diffusivity will be discussed in section 3.6. One simple, direct method to

determine the relevant time scales is to analyse the random motion in shearing coordinates. The

correlation time τcor in the presence of random motion but in the absence of shear is τ−1
cor = k2

⊥D,

the wavenumber increases in time so that the correlation time becomes shorter in the presence

of the shear flow, since k⊥ is stretched, as shown in equation (3.3.9). Equation (3.3.6) holds

for long times, if k⊥Svt > 1. Then the effective correlation time is just

1

τcor,eff

= Dk(0)2

(1 + S2
vτ

2
cor,eff). (3.3.7)

Thus, if Svτcor,eff > 1,

1

τcor,eff

= k(0)2/3

D1/3S2/3
v , (3.3.8)

which is the enhanced decorrelation rate, resulting from the coupling of shearing and turbulent

decorrelation. This result is similar to those of Dupree (1966) and Hirshman–Molvig (1979)

[144], all of which involve decorrelation via scattering of action coupled to differentially

rotating phase-space flow. If Svτcor,eff > 1,

1

τcor,eff

= k
(0)2

⊥ D(1 + S2
vτ

(0)2

cor + · · ·), (3.3.9)

which recovers the shear-free result. Note that the hybrid decorrelation due to the shear flow

is effective if Sv reaches the level Dk2
⊥0. For a constant D, the relation

Sv � Dk2
⊥0 (3.3.10)

indicates that decorrelation by shear flow is more effective than decorrelation by turbulent

diffusion alone.

The reduction of the correlation length leads to suppression of the fluctuation amplitude

of the test field X̃, as

〈X̃2〉 ≈ 1

1 + S2
vτ

2
cor

〈X̃2〉ref = 1

1 + S2
vτ

2
cor

τ (0)
cor lim

ℓ→0
Sext(ℓ) (3.3.11)

assuming that the magnitude of the source term limℓ→0 Sext(ℓ) is unaffected.

(ii) Random stretching and decorrelation rate. In the presence of zonal flows or the GAMs,

the shearing velocity is not constant in time. Moreover, even a slowly varying ensemble

of zonal flow modes can result in drift wave ray chaos due to overlap of � = qrvg

resonances, thus validating the assumption of stochastic dynamics. As an analytic idealization

then, we take Sv as a stochastic variable, 〈Sv〉 = 0, where 〈Sv〉 is a long-time average of

Sv, 〈. . .〉 = limt→∞ t−1
∫ t

0
dt . . . (see figure 10). We write

Sv = γv

√
τacw(t), (3.3.12)

where γv denotes the instantaneous magnitude of the zonal flow shear, w(t) is the temporal

coherence function and τac is the autocorrelation time of the (random) zonal flow. Obviously

w(t) is constant for t < τac and fluctuates drastically for t > τac.
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Time

Figure 10. Random shearing flow and stretching. Shear flow (denoted by blue arrows or red

arrows) is rapidly changing in time.

The stretching of an eddy in the y-direction is now a stochastic process. The statistical

average is given by 〈L2
l 〉 ≈ L2 + L2γ 2

v τact , or

〈k2
⊥〉 = k

(0)2

⊥ + D(K)t, where D(K) = k
(0)2

⊥ γ 2
v τac. (3.3.13)

A similar argument as in the previous subsection applies to this diffusive shearing case. We

have an equation for the decorrelation rate in the presence of the stochastic shear flow as

1

τcor

= Dk
(0)2

⊥ (1 + γ 2
v τact) (3.3.14)

and τ−1
cor ≃ Dk

(0)2

⊥ γ 2
v τact for long times. Thus, if τcor > γ −2

v τ−1
ac , we have

1

τcor

≃ (Dk
(0)2

⊥ γ 2
v τac)

1/2. (3.3.15)

Note that this is a ‘doubly diffusive’ hybrid decorrelation rate, combining a random walk in

radius with one in kr. If, on the other hand, τcor < γ −2
v τ−1

ac , τ−1
cor ≃ D k

(0)2

⊥ as usual. It is

important to note here that τac, the autocorrelation time of the pattern of zonal flow shears that

a drift wave-packet actually sees, is given by min{��, �(qrvg(k))}. Thus, the strength of

zonal flow induced shear decorrelation is sensitive to the structure of the zonal flow spectrum

and zonal flow pattern.

(iii) Stochastic Doppler shift. There might be a case for which the radial wave length of the

GAM is much longer than the wave length of the test mode, while the flow changes in time very

rapidly. In such a case, in addition to the flow shear (as is discussed in (ii), in this subsection),

the stochastic Doppler shift is also effective in reducing the turbulence level [16, 145–147].

In the forced stochastic oscillator equation (3.3.1), the Doppler shift term is given by the

random Doppler shift,

∂

∂t
X̃k + iω̃kX̃k − Dk∇2X̃k = S̃ext

k . (3.3.16)

The impact of stochastic frequency shift is characterized by the parameter

Ŵl = τac,l〈ω̃2
k〉, (3.3.17)

where τac,l is the autocorrelation time of the longer wavelength fluctuations ṽl [147].

In the limit of rapidly changing background fluctuations, τac,l ≪ τcor, one obtains that

the decorrelation of the test field occurs with the rate of τ−1
cor + Ŵl . One then finds that the

fluctuation level is suppressed by the stochastic Doppler shift due to the longer wavelength

fluctuations. The suppression factor is

1

1 + τDŴl

= 1

1 + τDτac,l〈ω̃2
k〉

(for τac,l ≪ τD), (3.3.18)

assuming that the source limℓ→0 Sext(ℓ) is unchanged.
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In the large amplitude limit of random oscillation (or long correlation time τac,l),

τ 2
ac,l〈ω̃2

k〉 > 1, one has

I ∼
√

π

2

1
√

〈ω̃2
k〉

lim
ℓ→0

Sext(ℓ). (3.3.19)

A reduction by the factor 1/τcor

√

〈ω̃2
k〉 is obtained.

3.3.3. Symmetry between zonal flow drive and turbulence suppression. After overviewing

the back-interaction of flows on turbulence, we now visit the issue of symmetry between zonal

flow drive and turbulence suppression.

When the drift waves are stochastic in time, the random stretching induces diffusion of

drift wave fluctuations in kr space. As is discussed in section 3.2.2, one then has

∂

∂t
Wdrift

∣

∣

∣

∣

ZF

= − ∂

∂t
WZF

∣

∣

∣

∣

drift

(3.3.20)

for the drift wave energy, Wdrift =
∑

k ωk〈Nk〉, and the kinetic energy of the zonal flow

WZF =
∑

qx
Ṽ 2

ZF,qx
.

From these considerations, we see that the symmetry between the coefficient α in

equations (2.10a) and (2.10b) comes from the conservation of energy in the coupling between

the drift wave fluctuations and zonal flow. The suppression of drift wave fluctuations by the

shear associated with the zonal flow can be alternatively described as an energy transfer from

drift wave fluctuations to zonal flow fluctuations. This relation holds for the case where the

quasi-linear theory for N is applicable.

3.3.4. Poloidal asymmetry. While we focus almost exclusively on zonal flows which are

symmetric in both the toroidal and poloidal directions in this review paper, sometimes it is

necessary to take into account a weak poloidal variation of zonal flows, or a poloidally varying

large-scale convective cell, when we study the shearing of smaller turbulence eddies by larger

coherent structures. The examples include:

(i) Strong toroidal-rotation-induced centrifugal force can introduce the poloidal-angle

dependence of the electrostatic potential associated with the mean E × B flow

[148, 149].

(ii) Shearing of smaller-scale eddies by larger-scale convective cells (n ∼ m ∼ O(1))

including a sideband of the zonal flow, such as φn=0,m=1, etc.

(iii) Shearing of smaller-scale turbulence (originating from high-k instabilities) by larger-scale

turbulence (originating from low-k instabilities); for instance, shearing of ETG or CDBM

turbulence by ITG-TIM (trapped ion mode) turbulence. (A more detailed discussion is

made in section 3.4.6.)

(iv) Poloidally inhomogeneous toroidal flow induced by pressure anisotropy [150].

Rapid poloidal variation (rather than radial) is associated with streamers, which are beyond

the scope of this review, but briefly discussed in section 6. For these situations, one could

construct a model problem of shearing by considering an electrostatic potential φ(r, θ) which

varies in both radius and poloidal angle. The relevant quantities are:

ωE,rr = − ∂2

∂r2
φ(r, θ), ωE,θr = −1

r

∂2

∂θ∂r
φ(r, θ) (3.3.21a)

ωE,rθ = − ∂2

∂rqr∂θ
φ(r, θ), ωE,θθ = − 1

qr2

∂2

∂θ2
φ(r, θ), (3.3.21b)
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where q is the safety factor. These illustrate the ‘tensor’ nature of the shearing ωE by con-

vective cells. From these generalizations, the standard theories of shearing, addressing the

reduction of the radial correlation length, can be extended to study the deformations of eddies

in every direction [151] including the change in the correlation length in the direction parallel

to the magnetic field [150].

Following the procedure in [9], the two-point correlation evolution equation has been

derived in general toroidal geometry [151]

∂

∂t
C12 +

{

(ψ ωE,ψψ + η ωE,θψ )
∂

∂ζ
+ (ψ ωE,ψθ + η ωE,θθ )

∂

∂ψ
− Deff

∂2

∂ζ 2

}

C12 = S2.

(3.3.22)

Here, C12 = 〈δH(1)δH(2)〉 the correlation function of the fluctuating quantity δH , and Deff

is the ambient turbulence-induced relative diffusion of two nearby points: (ψ1, η1, ζ1) and

(ψ2, η2, ζ2) in flux coordinates. Other notations follow those of [151]. In contrast to the usual

case of a flux function φ(r), where only the radial shear of the E × B angular frequency (itself

mainly in the poloidal direction), ωE,ψψ = −∂2φ/∂ψ2 = ∂(Er/RBθ )/∂ψ appears in the

two-point correlation evolution, equation (3.3.22) and describes the ‘tensor’ character of the

shearing process when φ is a function of both ψ and θ ·ωE,αβ with subscripts ψ and θ for α, β

is a natural flux coordinate generalization of equation (3.3.21). By taking the moments and

following the standard procedure of calculating the exponentiation rate of two nearby points,

one can derive that the shape of turbulent eddies are distorted due to the various components

of the shear tensor in the following way [151]:

�r2 = �r2
0

(

1 +
ω2

E

�ωk(�ωk + ωE,ψθ )

)−1

and �η2 = �η2
0

(

1 +
(�η0/�ζ0)

2ω2
E,θψ

�ωk(�ωk + ωE,ψθ )

)−1

,

(3.3.23)

where �ωk is the decorrelation rate of ambient turbulence and ωE = −(�ψ0/�ζ0)(∂
2φ/∂ψ2)

is the E×B shearing rate in general toroidal geometry [11]. Note that equation (3.3.23) shows

the reduction in parallel correlation length due to poloidal asymmetry which has been found

independently in [150]. The tensor character of the shearing process has been also recognized

in the problem of the shearing of small ETG eddies by larger ITG eddies, which is discussed in

section 3.4.6.

Unlike decorrelation via the shear in E×B zonal flow, it can be shown from the symmetry

of the two-point correlation function that there is no net decorrelation mechanism due to the

flow curvature associated with the second radial derivative of the zonal flow [152].

3.4. Nonlinear damping and saturation: low collisionality regimes

In this section, nonlinear mechanisms which limit or saturate the growth of zonal flows are

described. Research in this direction has been particularly stimulated by the challenge of

understanding how zonal flow growth is controlled in low or zero collisionality regimes, for

which the energy density of zonal flows can substantially exceed the energy density of drift

waves, i.e. |Ṽ 2
ZF| ≫

∫

ωkNk dk. Several possibilities exist, including:

(a) Tertiary instability—i.e. a secondary instability of the zonal flow (itself a product of the

secondary instability), rather like the familiar KH instability of a sheared flow. Such a

tertiary KH instability will return energy to the m �= 0 fluctuations, thus limiting zonal

flow growth.
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(b) Nonlinear wave-packet scattering—i.e. a process by which a drift wave-packet undergoes

multiple nonlinear interactions with the zonal flow, thereby exchanging energy with, and

regulating the growth of, the zonal flows. Such scattering processes are quite similar to

nonlinear wave–particle interaction, familiar from weak turbulence theory. This process

also returns energy to m �= 0 fluctuations.

(c) nonlinear wave-packet trapping—i.e. the process by which modulational instability is

saturated due to deflection of drift wave trajectories by finite amplitude zonal flows. This

process is analogous to the trapping of particles by a finite amplitude waves in a Vlasov

plasma, and acts to nonlinearly quench the zonal flow growth process by terminating the

input of energy to the zonal flow.

(d) adjustment of system dynamics—i.e. an ‘umbrella label’ under which the various routes

by which the system evolves toward a stationary state via adjustment of the global

dynamics may be collectively described. Examples include the possibility of either

multi-dimensional (i.e. repetitive bursts or limit cycle) or strange (i.e. chaotic) attractors,

in contrast to the naively expected fixed point. Another possibility is adjustment (via

predator–prey competition) to exploit available, albeit weak, dissipation. Generally,

mechanisms in (d) work in synergy with mechanisms in (a)–(c).

Degrees of

freedom

Correlation

time

Sub- Drift Zonal Drift Zonal Coherent Next sub-

section Key concept wave flow wave flow structure section

3.4.1 Tertiary inst. — 1 Long Long — —

3.4.2 Dithering Small 1 Long Long Dynamics 3.5.2

3.4.4 Diffusion model Large Large Short Short No 3.5.3

3.4.5 Predator–prey

model 3.5.1

3.4.6 Wave trapping Large Large Long Long Yes 3.5.4

3.4.7 Collisionless satu. Large Large Short Long Yes 3.5.5

3.4.1. Tertiary instability. One mechanism for nonlinear saturation of zonal flows is turbulent

viscous damping of the flow, originating either from background drift wave turbulence, or

from instability of the zonal flow. As the zonal flow is itself the product of a ‘secondary’

instability in the ensemble of ‘primary’ drift waves, instability of the zonal flow is called

tertiary instability [153]. These tertiary instabilities of the flow may be thought of as GKH

instabilities, which relax the profile of generalized potential vorticity and so mix and transport

zonal flow momentum, thus damping the flow. Interest in GKH instabilities was sparked by

consideration of the so-called Dimits shift regime, where the overwhelming preponderance

of available free energy is channeled into zonal flows (i.e. EZF/EDW ≃ γL/γdamp), in turn,

naturally raising the question of what sort of consideration of stability will ultimately limit

zonal flow shears. Of course, proximity to, or excedence of, the GKH stability boundary

results in the onset of momentum transport and turbulent viscosity.

The actual GKH is driven by both E × B velocity and ITGs, since both enter the total

potential vorticity ∇2(φ +τTi/2) (where τ = Te/Ti). However, it is instructive to first consider

the simpler limit of τ → 0. In that case, flute-like (k‖ → 0) modes with low but finite m (i.e.
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(a)

(b)

m = 0 m = 0

Figure 11. The contrast of the linear view of the GKH modes (a) to a more general case where

GKH modes are generated by both linear and nonlinear modulational instabilities (b). The linear

view is hierarchical in that GKH is generated by the linear instability of zonal flows (ZF), which

are already generated by DW. In general, GKH modes can, however, be generated directly from

DW by modulational instability.

m �= 0) evolve according to
(

∂

∂t
+ VZF · ∇

)

∇2φKH + VKH · ∇∇2φZF =
(

∂2

∂x2
− ∂2

∂y2

)

〈Ṽx Ṽy〉 +
1

2

∂2

∂x∂y
(〈Ṽ 2

y 〉 − 〈Ṽ 2
x 〉).

(3.4.1)

Here the lhs describes the linear growth of the KH instabilities and the rhs represents drive

by drift wave stresses. Equation (3.4.1) thus states that m �= 0 GKH fluctuations (which

transport and mix zonal flow momentum) can be excited either by instability of the zonal

flow or by drift wave Reynolds stress. This suggests that, in contrast to the hierarchical

scenario (figure 11(a)) of primary → secondary → tertiary instability described above, the

process for generation of m �= 0 modes may be non-hierarchical (figure 11(b)), whereby

low but non-zero m modes are generated both by KH instability of the zonal flow and

by modulational instability of the drift wave spectrum. The direct drive by drift waves is

briefly discussed in section 6. The relative importance of the hierarchical and non-hierarchical

scenarios is a topic of ongoing research. An existing result indicates that the modulational

drive of m �= 0 modes results in momentum transport significantly in excess of the KH

driven transport, but further research into this question is necessary before reaching a definitive

conclusion.

Regarding KH instabilities, it is instructive to start by considering a simple case with zonal

potential φZF = φ̄ cos(qxx), perturbed by a KH perturbation, φKH =
∑

n φ̂n cos(nqxx + qyy)

(qx is the wavenumber of the zonal flow, and qy is the poloidal wavenumber of the KH

instability.) The perturbation is easily shown to grow at the rate

γ 2
KH = φ̄2q2

xq
2
y

(

q2
x − q2

y

q2
x + q2

y

)

. (3.4.2)

Thus, γKH > 0 requires q2
x > q2

y , i.e. the poloidal wavelength of the KH mode must exceed

the radial scale of the zonal flow. This of course favours long-wavelength instability. For

q2
y ≪ q2

x , note that γKH reduces to γKH ∼ |qyVZF|. Note that γKH scales with VZF, not with

dVZF/dx [104, 154].

Of course, the example discussed above is over-simplified, as it omits magnetic shear,

electron dissipation, and many other effects. In particular, magnetic shear is quite strongly

stabilizing, as it works against the interchange of vorticities at an inflection point, which
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is the basic mechanism of the KH and the elementary process which underlies the well-

known Rayleigh inflection-point criterion. The strong sensitivity of the KH to magnetic

shear is nicely illustrated later in section 4. (Figure 39 of section 4 shows the disruption

of the zonal flow pattern in the regimes of weak magnetic shear and its persistence in

regions of strong magnetic shear [54].) In order to examine the effect of shear on tertiary

KH modes, the energy transfer budget and zonal flow pattern of a shearless and sheared

system were compared in [155]. In the shear-free system, transfers of energy from zonal

flows to drift waves occurred, and disruption of the zonal flow pattern was evident in the flow

visualizations. In the sheared system, no back-transfer of energy occurred and the flow pattern

persisted.

In the plasma of interest, τ �= 0, so the generalized potential vorticity is ∇2(�), where

� ≡ φ + τTi/2. The system is described by the equations

∂

∂t
∇2� + [�, ∇2�] = τ 2

4
[T , ∇2T ], (3.4.3a)

∂

∂t
T + [�, T ] = 0. (3.4.3b)

Here [g, h] is the Poission bracket. Note that, to the lowest order in τ , this system corresponds to

a statement of conservation of potential vorticity in flows with generalized velocity V = ∇�×ẑ.

Here, the temperature gradient, as well as E×B shear, can drive instability. A similar analysis

as before gives

γ 2
KH = 1

2

(

φ̄ +
τ

2
T̄
)2

q2
xq

2
y

(

q2
x − q2

y

q2
x + q2

y

)

. (3.4.4)

Note that the phase between the zonal potential and zonal temperature is crucial to the result.

This phase is determined by several factors, including the zonal flow generation mechanism (i.e.

which sets the ratio of growth for φ̄ and T̄ ) and the Rosenbluth–Hinton damping mechanism

(i.e. which suggests that certain values of phase damp more rapidly than others). While one

study suggests a good correlation between the stability boundary for GKH and the termination

of the Dimits shift regime (see, e.g. figure 37 in section 4 [156]), the parameter space for this

problem has not been systematically explored, and so the ‘bottom line’ remains controversial.

Moreover, other linear stability studies which retain ion Landau damping suggest that even for

steep ∂T̄ /∂x, tertiary instability growth is very weak and the scale of mixing is quite small

[157]. Thus, tertiary instability and its effect on zonal flow saturation remain open problems,

where further study is needed.

With these as yet inconclusive findings in mind, it is interesting to note that another,

related, route to exciting momentum transport and the back-transfer of energy from zonal

flows to waves exists and has not been explored. This mechanism exploits the situation that

GKH modes, while not strongly unstable, are neither heavily damped, and the fact that noise

emission from primary drift waves is abundant. Thus, one has a situation where noise is emitted

into slow modes, sitting close to criticality, so that large transport can occur without linear

instability. Moreover, the effective noise bath will be enhanced by self-consistent inclusion of

GKH effects. Finally, noise emission can also produce localized defects in the flow, which in

turn drive small-scale relaxation and momentum transport.

3.4.2. Model of small plane waves. As is explained in section 3.2.2, dynamics of a plane

drift wave explain the zonal flow growth if the decorrelation rate of drift waves γdrift is very

small. Within this framework, one can construct a model composed of three drift waves and

one zonal flow. The example of toroidal drift waves of section 3.2.2 is explained.
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The quasi-linear effects of the secondary waves on the primary drift wave are given by

[25]. Replacing variables from a set of [�0(ξ), �ZF, �+(ξ) and � (ξ)] to [P, Z, S and �]

which are defined as P = 〈(e�0/T )2〉, Z = �ZF and �+(ξ)/�0(ξ) = S exp(i�) with suitable

normalizations, a closed set of equations results are given as:

dP

dτ
= P − 2ZS cos(�), (3.4.5a)

dZ

dτ
= −γdamp

γL

Z + 2PS cos(�), (3.4.5b)

dS

dτ
= −γside

γL

S + ZP cos(�), (3.4.5c)

d�

dτ
= (ω0 − �+)

γL

− ZP

S
sin(�), (3.4.5d)

where the normalized time is τ = γLt, γL is the linear growth rate of the primary mode, γdamp

is the collisional damping rate of the zonal flow, γside is the sideband damping rate and ω0 −�+

is the frequency mismatch of the sideband and primary mode.

Equations (3.4.5b)–(3.4.5d) describe the parametric excitation for a fixed pump amplitude.

The coupling to the primary wave, equation (3.4.5a), describes the nonlinear stabilizing effect

of the driven zonal flow on the growth rate of the zonal flow γZF. Reference [158] describes

the fully nonlinear evolution of this type of system.

3.4.3. Nonlinear coupled equation for a large number of drift waves. If the number of excited

drift wave modes are very small, so that the drift wave can be treated as a monochromatic pump,

a simple model like section 3.4.2 applies. In real plasmas, however, the primary fluctuations

(drift waves) have a large number of degrees of freedom, and an analysis treating the drift wave

spectrum is necessary.

Equations (3.2.16) and (3.2.18) describe the coupled dynamics of the drift wave action

and the vorticity of the zonal flow, Nk = (1 + k2
⊥ρ2

s )2|φk|2 and U ≡ dVZF/dr , respectively.

Taking into account of the collisional damping of zonal flow (section 3.1.3), the dynamical

equation for the zonal flow vorticity
(

∂

∂t
+ γdamp

)

U = ∂2

∂r2

c2

B2

∫

d2k
kθkr

(1 + k2
⊥ρ2

s )2
Nk (3.4.6)

and that of the drift wave spectral density

∂

∂t
Nk + vg · ∂Nk

∂x
− ∂ωk0

∂x
· ∂Nk

∂k
− γdriftNk = kθ

∂Nk

∂kr

U (3.4.7)

are derived as before, where vg ≡ ∂ωk/∂k is the group velocity of the drift wave, and γdrift

represents the linear instability and the nonlinear damping rate that causes saturation of the

drift wave (in the absence of zonal flow).

In the following subsections, the evolution of drift waves and zonal flow is explained in

several limiting cases.

3.4.4. Diffusion limit. We first discuss the case where the autocorrelation time of the drift

wave τac,d and that of the zonal flow τac,ZF are much shorter than the time scale determined by

γ −1
ZF , where γ −1

ZF is the characteristic time scale of the linear zonal flow instability. It is very

important to keep in mind that we also use this ordering as a tractable model of the case where

the zonal flow spectrum is slowly varying, but spatially complex. Thus, this limit is of broader

interest than one may initially think. Note that the validity of the equivalence between spatial
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complexity and short autocorrelation time follows from the fact that it is the net dispersion in

�−qrvgr which is of interest. Thus, even if �� is small, the existence of fine scale zonal flows

can guarantee that �(qvgr) is large, so that the zonal flow–drift wave autocorrelation time is

correspondingly short. The autocorrelation time of the drift wave, τac,d ≃ γ −1
drift, is determined

by the drift wave self-nonlinearity, and is taken as prescribed in this review. The time scale

orderings are written as

γdrift ≫ γZF, τac,ZF−1 ≫ γZF. (3.4.8)

In this case, the phase of each mode composing the drift wave fluctuation is considered to be

random and the spectral density or modal number distribution function Nk is calculated (i.e.

no phase information). Fourier components of the zonal flow, Uqr
, induce random Doppler

shifts in the drift waves, because the autocorrelation time of Uqr
is short. The coefficient kθU

in the rhs of equation (3.4.7) can be considered as a random frequency modulation.

The term kθU∂Nk/∂kr in equation (3.4.7) changes rapidly in time and is approximated

as random. The average within the ‘long time scale’, γZF−1 , is evaluated according to the

analysis of section 3.3.2. By employing a quasi-linear treatment for random stretching from

section 3.3.2(ii), one has [111] kθU(∂Nk/∂kr) ≃ (∂/∂kr)(Dkk(∂Nk/∂kr)), where Dkk is given

by equation (3.2.29). For further simplification, the response of drift waves on the lhs of

equation (3.4.7) can be rewritten, in terms of the linear growth term and nonlinear self-

interaction term, as (∂Nk∂t) + vg · (∂Nk/∂x) − (∂ωk0/∂x) · (∂Nk/∂k) = γLNk − γNLNk ,

where γL is the linear growth rate and γNL is the nonlinear damping rate. With this formal

expression, equation (3.4.7) reduces to the diffusion equation for the drift wave spectrum

(

∂

∂t
− γL + γNL

)

Nk − ∂

∂kr

(

DK

∂Nk

∂kr

)

= 0. (3.4.9)

The evolution of the zonal flow is given by negative diffusion and collisional damping (as is

explained in section 3.2.2), as

(

∂

∂t
+ γdamp

)

|Uqr
|2 = ∂2

∂r2

∑

k

Dq

∂

∂kr

Nk|Uqr
|2, (3.4.10)

where the coefficient Dq is calculated in section 3.2.2 to be Dq = B−2k2
θkr(1+k2

⊥ρ2
s )−2R(qr, k).

3.4.5. Predator–prey model. The system of equations (3.4.9) and (3.4.10) describes the

interaction between the drift wave and zonal flow. This is an example of a two-component,

self-regulating system. As the ‘primary’ fluctuation, the drift wave grows by its own instability

mechanism. The drift wave fluctuation energy is transformed into the energy of the zonal flow

via the secondary instability process. In this sense, a correspondence of the form:

drift wave fluctuation〈N〉 =
∑

k

Nk ↔ prey

zonal flow energy〈U 2〉 =
∑

qr

|Uqr
|2 ↔ predator

(3.4.11)

holds.

A low degree of freedom model can be deduced from equations (3.4.9) and (3.4.10). In

integrating equations (3.4.9) and (3.4.10) in wavenumber space, a Krook approximation is used

to write:
∑

k ∂/∂kr(Dkk∂Nk/∂kr) ≃ −α〈U 2〉〈N〉. With this simplification, and by use of the
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energy concervation relation in section 3.3.3, equations (3.4.6) and (3.4.7) can be modelled as
(

∂

∂t
− γL + γN

)

〈N〉 = −α〈U 2〉〈N〉, (3.4.12)

(

∂

∂t
+ γdamp

)

〈U 2〉 = α〈U 2〉〈N〉, (3.4.13)

where γL and γNL are typical numbers for the linear and nonlinear rates. As is explained, the

collisional damping rate γdamp does not depend on the scale qr, as it is a drag, not a viscosity.

The evolution of the wave–zonal flow system critically depends on the nonlinear damping

of drift waves. The simplest form of the nonlinear damping rate of the drift wave may be

chosen as γNL〈N〉 = γ2〈N〉2. By these simplifications, one has a two-dimensional predator–

prey model of the form

∂

∂t
〈N〉 = γL〈N〉 − γ2〈N〉2 − α〈U 2〉〈N〉, (3.4.14)

∂

∂t
〈U 2〉 = −γdamp〈U 2〉 + α〈U 2〉〈N〉. (3.4.15)

A tractable model with a small number of degrees of freedom can be constructed in the diffusion

limit, as well.

3.4.6. Coherent nonlinear drift wave–zonal flow interactions (1)—wave trapping. The

growth of the zonal flow is influenced by the finite amplitude zonal flow on the drift waves,

even if tertiary instability is not induced. The presence of the zonal flow induces higher order

deformation of the drift wave spectra, which causes the modification of the growth rate of

the zonal flow. This is, of course, analogous to the modification of the distribution function

structure due to nonlinear resonant particle dynamics in Vlasov plasma problems. An analogy

holds, and may be summarized by:

Drift wave–zonal flow problem One-dimensional Vlasov problem

Nk ↔ f̃ (v)

kr ↔ v

kθU(x) ↔ eẼ(x)

(3.4.16)

where U is the vorticity of the zonal flow, U = ∂VZF/∂x. A more thorough comparison is

summarized in table 5.

As in the case of particle trapping in a wave field, the trapping of drift wave-packet in

the zonal flow field can take place. This phenomena thus has an influence on the evolution of

zonal flow. Bounce motion of drift wave rays occurs, as is explained in appendix A. In this

subsection, we review the nonlinear process that is relevant when the lifetime of the drift wave

and that of zonal flow are long compared to both γZF and the bounce frequency ωbounce (the

explicit form of which is given in appendix A), i.e. when

γdrift ≪ γZF, ωbounce, τ−1
ac,ZF ≪ γZF, ωbounce. (3.4.17)

This is the opposite limit to section 3.4.4, where waves and zonal flows are assumed to be

randomized rapidly during their mutual interaction, as in the quasi-linear problem. Another

limit is that the lifetime of drift waves is much shorter than the trapping time, but the coherence

time of the zonal flow is longer than γ −1
ZF . This limit is discussed in the next subsection

(section 3.4.7).

The coupled dynamical equations for the drift wave fluctuations and the zonal flow

component are given following the argument of equations (3.4.6) and (3.4.7). The vorticity
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Table 5. Analogy of one-dimensional Vlasov and drift wave–zonal flow problems.

One-dimensional

Vlasov plasma

with Langmuir

waves

Drift wave-packets

in zonal flow field

Constituents Particle ⇔ Drift wave-packet

Langmuir wave spectrum ⇔ Zonal shear spectrum

Particle velocity v ⇔ Packet group velocity v

Real space x ⇔ Wavenumber kx

Time scales

Autocorrelation time τac

min

{(

k�

(

ω

k

))−1

, (�(kv))−1

}

min{(��)−1, (�(qxvg))
−1}

Nonlinear time

Trapping time

(

eφ̃L

m

)−1

Turnover time τ⊥ = qx ṼZF, ω−1
bounce

Decorrelation time τc

(k2D)−1/3 min

{

γ −1
k , k2/Dk,

(

q2
xDk

(

dvg

dk

)2)−1/3}

Relaxation time

�v2D−1
v

�k2

Dk

Resonance Wave-particle ω/k = v Wave-packet–shear flow

and vg(k) = �

qx

irreversibility Phase-space overlap

↔ Orbit chaos

Group-shear resonance overlap

↔ Ray chaos

Theoretical descriptions

Stochasticity/quasi-linear

τac < τ⊥, orbit chaos,

Random acceleration

Velocity diffusion

τac < τ⊥, ray chaos,

Random shearing

Diffusive refraction

Weak turbulence

Induced scattering ↔
Nonlinear Landau damping

of particles

Induced scattering of wave-packets

in zonal flow field

Coherent/trapping

τac > τ⊥, particle bounce motion

Trapping oscillations

→ BGK mode

τac > τ⊥, ray trapping

Ray trapping oscillations

→ BGK wave-packet

Trapping in turbulence

Granulations, clumps

→ Fokker–Planck drag

Wave population granulations

→ Wave kinetic drag

equation that relates the zonal flow to the wave population, (3.4.6) and the WKE, together

form a nonlinear dynamical system

(

∂

∂t
+ γdamp

)

U = ∂2

∂r2

1

B2

∫

d2k
kθkr

(1 + k2
⊥ρ2

s )2
Nk, (3.4.18a)

∂

∂t
Nk + vg · ∂Nk

∂x
= kθ

∂Nk

∂kr

(1 + k2
⊥ρ2

i )U, (3.4.18b)
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(a) (b)
Z

F

Figure 12. Trapping of wave-packets in the trough of zonal flow velocity. The spatial profile of

zonal flow velocity (a) and trajectories in phase-space (b).

where the ‘screening’ effect of a finite gyro-radius is retained, Ū = U + ρ2
s d2U/dr2. In

comparison with equation (3.4.7), the linear growth and nonlinear damping of drift waves are

dropped, because the case of coherent waves is studied here.

This set of equations (3.4.18a) and (3.4.18b) has a similar structure to the Vlasov

equation that describes wave–particle interactions (such as plasma waves, etc). The term

kθU(x) in equation (3.4.18b) is the counterpart of acceleration in the phase-space. That

is, equation (3.4.18b) has a similar structure to the one-dimensional Vlasov equation, and

equation (3.4.18b) is the analogue of the Poisson equation. With this analogy in mind, one

can study a (Bernstein–Greene–Kruskal) BGK-like solution with finite-amplitude zonal flow.

Consideration of drift wave ray dynamics (details are given in [38]) leads us to conclude

that the drift wave-packet can be labelled by the two invariants of motion ωk0 and ky0, i.e.

ωk − ukx − ky V̄ZF ≡ ωk0 and ky = ky0, where u is a uniform velocity ∂/∂t → −u∂/∂x. Note

that the wavefrequency ωk and the wavenumber kx are modified along the path of the drift

wave-packet according to the relation which is simply the dispersion relation

ωk = ky0(1 + k2
y0 + k2

x)
−1. (3.4.19)

By use of these two integrals of motion, (ωk0 and ky0), an exact solution for the distribution

function is given in the form:

N(x, kx, ky) = N(ωk0(x, kx), ky0). (3.4.20)

The trapping of the drift wave-packet occurs in the trough of the zonal flow, as is explained

in [38]. Figure 12 illustrates the rays of drift wave-packets in phase-space for the case

in which the screened velocity V̄ZF has a sinusoidal dependence in the x-direction. The

trapped region is determined by the difference �V̄ZF between the maximum and minimum

of V̄ZF. The wavenumber on the separatrix at the minimum of V̄ZF is given as k2
x0,sep =

�V̄ZF(1 + k2
y0)

2(1 − �V̄ZF(1 + k2
y0))

−1 for a simple case of stationary zonal flow structure.

Wave-packets which satisfy k2
x0 < k2

x0,sep are trapped in the inhomogeneous zonal flow. The

bounce frequency at the bottom of the trough is seen to be

ωbounce =
√

2ρ2
s kyqr

1 + ρ2
s k2

y

ωk0

dV̄ZF

dr
. (3.4.21)

As is the case for the trapping of resonant particles by waves in collisionless plasmas, the bounce

frequency of quasi-particles (wave-packets) has a dependence like ωbounce ∝
√

VZF. The

bounce frequency becomes lower as the trajectory approaches the separatrix. The assumption
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in this line of thought, equation (3.4.17), means that γdrift < ωbounce is necessary in order that

wave-packet trapping is relevant. Thus, trapping of wave-packets is particularly important

near marginal stability of the drift waves.

If the trapping of the wave-packet is effective, the growth of the zonal flow stops. On a

trapped trajectory, the distribution function tends to approach the same value. The distribution

function Nk finally recovers a symmetry with respect to kr, and the rhs of equation (3.4.18a)

vanishes. The trapping of the drift wave tends to terminate the growth of the zonal flow.

3.4.7. Coherent nonlinear drift wave–zonal flow interactions (2)—zonal flow quenching. If

the zonal flow has a long lifetime, it is possible to form a coherent spatial structure through a

strongly nonlinear deformation of the drift wave population density. However, the condition

of equation (3.4.17) does not always hold. That is, the autocorrelation time of drift waves

can be shorter than the lifetime of zonal flow structures while the zonal flows maintain their

coherence, i.e.

γdrift > γZF, ωbounce, τac,ZF−1 ≪ γZF. (3.4.22)

In this subsection, we study the case where the turbulent drift wave spectrum forms a spatially

coherent zonal flow structure.

The WKEs as in section 3.4.4, equation (3.4.18a) and equation (3.4.18b), are employed.

An asymmetric part of Nk with respect to kx, N̂k , contributes to the time evolution of U through

equation (3.4.18a). Solving equation (3.4.18b) and expressing N̂k in the form of a perturbation

expansion

N̂k = N̂
(1)
k (U) + N̂

(2)
k (U 2) + N̂

(3)
k (U 3) + · · · (3.4.23)

and substituting it into equation (3.4.18a), a nonlinear equation of the zonal flow vorticity

U is obtained. The linear response has been obtained, as is explained in section 3.2.1,

i.e. N̂
(1)
k = (∂/∂r)(kθVc)R(qr, �)(∂Nk/∂kr), where R(qr, �) = i/(� − qrvg + iγdrift) is

the response function. Equation (3.4.23) is based on a formal expansion in the parameter

UR(qr, �) ≃ U/γdrift, which is ordered as small. Thus, all resonance functions, both

R(qr, �) = i/(� − qrvg + iγdrift), and those corresponding to higher resonances, reduce to the

simple form R(qr, �) ∼ 1/γdrift. Note that this approximation clearly fails, close to marginal

stability of the primary drift waves, where γdrift → 0. For γdrift < �(� − qrvg), resonance

structure becomes important, and the analogue of phase-space density granulations form in N .

For a wide spectrum of fluctuations, one has R(qr, �) → 1/γdrift and obtains the leading

diffusion term of equation (3.2.23) of section 3.2.2. The contribution from the second-order

term is small (from the considerations of symmetry), so the first contributing order is the

third-order term:

N̂
(3)
k ≃ U 3R(qr, �)3k3

θ

∂3Nk

∂k3
r

. (3.4.24)

Note that this is equivalent to the contribution which gives nonlinear Landau damping in the

Vlasov problem. Recall that nonlinear Landau damping is also third order in the perturbation

amplitude, involves contributions at beat wave resonances where ω + ω′ = (k + k′)v and thus

may be obtained from ‘higher-order quasi-linear theory’. Substituting equation (3.4.24) into

equation (3.4.18a), one obtains a nonlinear equation for the drift wave vorticity [159]

∂

∂t
U = −Drr

∂2

∂r2
U + D3

∂2

∂r2
U 3 − γdampU (3.4.25)

with D3 = −B−2
∫

d2kR(qr, �)3k4
θkr(1 + k2

⊥ρ2
s )−2∂3Nk/∂k3

r . As the spectral function is

peaked near kr ≃ 0, the sign in the definition of D3 is chosen such that D3 is positive when

Drr is positive.
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The quenching of the drive of the zonal flow is a characteristic mechanism in the problem

of generation of the axial-vector field through turbulent transport of energy (such as dynamo

problems). In the case of magnetic field generation via a dynamo, the α-suppression problem

has been investigated [160]. Equation (3.4.25) is an explicit expression for the quench of the

driving force of the axial vector field.

Equation (3.4.25) governs the dynamics of the (coherent) structure of the zonal flow.

Further exploration of this result follows below. As is derived in section 3.2, the zonal flow

growth rate γZF (the first term in the rhs of equation (3.4.25)) behaves like: γZF = Drrq
2
r

×(1−q2
r /q2

r0). Damping is induced by collisional processes (section 3.1.3) and by the turbulent

diffusion of a secondary parallel flow (section 3.2.6), via γdamp = γ coll
damp +µ‖(1+2q2)q2

r , where

γ coll
damp is the collisional damping explained in section 3.1.3, µ‖ is the turbulent shear viscosity

for the flow along the field line, and q is the safety factor. (The coefficient 1 + 2q2 can take a

slightly different form, depending on the plasma parameters.) Thus, equation (3.4.25) can be

written in the explicit form

∂

∂t
U + Drr

(

∂2

∂r2
U + q−2

r0

∂4

∂r4
U

)

− D3

∂2

∂r2
U 3 − µ‖(1 + 2q2)

∂2

∂r2
U + γ coll

dampU = 0.

(3.4.26)

Equation (3.4.26) states that the zonal flow is generated by the background turbulence and is

stabilized by collisional damping, higher order dispersion and by the nonlinearity.

3.4.8. A unifying framework—shearing and wave kinetics. Building upon the studies of

particular nonlinear mechanisms in various limiting cases, which are explained individually in

the preceding subsections, we now propose a unifying framework for understanding the zonal

flow problem. This framework is one of shearing and wave kinetics.

We now discuss the physics of stochastic shearing of primary drift waves by a spatio-

temporally complex spectrum of zonal flows, in particular, and also survey the wave kinetics

of drift waves in a slowly evolving spectrum of zonal flows, in general. Extensive use is made

of an instructive and far-reaching analogy between the wave kinetics of a drift wave-packet in

a zonal flow field and the kinetics of a particle in a Langmuir wave field in a one-dimensional

Vlasov plasma. On account of the particular symmetry of the zonal flow field, both the drift

wave–zonal flow and the one-dimensional Vlasov problem can be reduced to two-dimensional

phase-space dynamics, for x, V and x, kr, respectively. In each case, the effective frequency of

the motion ω(J ) is a function of the action variable J , so that the dynamics are non-degenerate,

and differentially rotating flow in phase-space results. The analogy enables a unification of

many analyses of shearing effects, both in the stochastic and coherent regimes. Of course,

shearing dynamics are of great interest, as they constitute the mechanism by which the zonal

flows regulate transport and turbulence levels, and thus merit detailed attention.

The analogy between zonal flow and Vlasov plasma is motivated by the observation of the

obvious similarities between the WKE for N(k, x, t) in the presence of a zonal flow spectrum

|Ṽq |2 and the Boltzmann equation for f (V, x, t) in the presence of a Langmuir wave spectrum

|Ẽk,ω|2. These equations are

∂

∂t
N + vg · ∂N

∂x
− ∂

∂x
(ky Ṽ ) · ∂N

∂kx

= C(N) = γdriftN (3.4.27a)

and

∂

∂t
f + V · ∂f

∂x
− ∂

∂x

( e

m
φ̃
)

· ∂f

∂v
= C(f ), (3.4.27b)
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where Ẽk,ω = −∂φ̃L/∂x for Langmuir wave turbulence. (The subscript L stands for the

Langmuir waves.) The analogy is summarized in table 5, which we now discuss. Rather

clearly, the analogue of the ‘particle’ with velocity v in the Vlasov case is the drift wave-packet

with group velocity vg(k), which is sheared by the zonal flow field Ṽ , itself the analogue

of the Langmuir wave field. The analogue of the Boltzmann collision integral C(f ), which

maintains a near-Maxwellian average distribution function is the wave kinetic collision integral

C(N), taken to have the form γdriftN = γkN − �ωkN
2N−1

0 in some cases which require an

equilibrium spectrum of turbulence in the absence of zonal flows.

Aspects of the dynamics can be elucidated by consideration of resonances and time scales.

The analogue of the well-known wave–particle resonance ω/k = V is that for which the phase

velocity of the shearing flows equals the wave-packet group velocity vg(k) = �/qx . Just as in

the particle case, chaos occurs when the zonal flow–wave group resonances overlap, resulting

in stochastic drift–wave-ray dynamics. Stochasticity of ray trajectories provides the crucial

element of irreversibility in the drift wave–zonal flow interactions. Note that since zonal flow

energy is concentrated at very low frequency, while the dispersion in vg(k) is large, overlap of

vg(k) = �/qx resonances occurs at quite modest zonal flow amplitudes. Such a state of ray

chaos naturally necessitates a stochastic description. At least four time scales govern both the

wave–particle and zonal shear–wave group dynamics. These are:

(i) The spectral autocorrelation times τac. In the case of the Vlasov plasma, τac =
min{(k�(ω/k))−1, V �k}. These times correspond to the lifetimes of the instantaneous electric

field pattern ‘seen’ or traversed by a particle. For the zonal shear,

τac = min{(��)−1, (�(qxvg))
−1}. (3.4.28)

Here, (��)−1 gives the flow pattern lifetime, which is usually quite long, since � ∼ 0.

However, the dispersion in the Doppler frequency shift of the wave in a propagating packet

(i.e. �(qxvg)) is usually quite large, resulting in short autocorrelation time, and suggests that

a stochastic analysis is relevant. It is important to again stress the fact that no a priori postulate

of randomness or noise in the zonal flow spectrum is required, since the origin of stochasticity

lies in the overlap of mode-flow resonance, and not in any random phase assumption.

(ii) The nonlinear orbit times, which correspond to the vortex circulation times in phase

or eikonal space. These correspond to the particle bounce or trapping time (eφ̃L/m)−1 in the

case of the Vlasov plasma, and the shearing rate of a fluid element in a zonal flow,

τ⊥ = (qx ṼZF)
−1 (3.4.29)

or the bounce time (ω−1
bounce) of a trapped wave-packet, equation (3.4.21), whichever is shorter.

In the event that resonances do not overlap, and that the nonlinear orbit time is shorter than the

autocorrelation time, a coherent interaction analysis of the dynamics is required.

(iii) The nonlinear decorrelation time, which quantifies the scattering time for an individual

trajectory of coherence time for a resonant triad. For the Vlasov plasma, τc = (k2DV)−1/3, the

well-known result first obtained by Dupree. Here DV is the quasi-linear diffusivity in velocity

space. For the zonal amplification problem,

τc = min

{

γ −1
k , k2/Dk,

(

q2
xDk

(

dvg

dk

)2)−1/3}

. (3.4.30)

Here γk controls the triad coherence time. Note that γk appears in place of a nonlinear

self-decorrelation rate �ωk via the requirement that C(N) = 0, to determine in N the

absence of zonal flow. Dkk
−2 is the rate of diffusive scattering (i.e. random refraction)

and (q2
xDk(dvg/dk)2)1/3 is the analogue of the Dupree decorrelation (k2DV)1/3 rate for a

ray in a dispersive medium. (Note that Dk has the dimension of m−2 s−1.) This arises as a
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Table 6. Regimes of zonal flow–wave kinetics.

Chirikov overlap Kubo

parameter number Dominant

Regime S = �vg/�(�/qx) K = τac/τ⊥ physical process

Stochastic S > 1 K ≪ 1 Stochastic rays,

random shearing and refraction

Turbulent S > 1 K � 1 Stochastic rays,

trapping shearing with granulated N

Coherent S ≪ 1 K > 1 Strongly deflected rays,

wave-packet trapping

BGK solution K → ∞ Wave-packet trapping

Single wave S → 0 K → 0 Modulational instability

consequence of coupling between scattering in kx (due to Dk) and the propagation at the wave

group speed vg(k).

(iv) the time scale for evolution of the average population density, i.e. the macroscopic

relaxation time. For the Vlasov plasma, this is τrelax = �v2D−1
V , where �v is the extent

of phase velocities excited, and DV is the quasi-linear velocity space diffusion coefficient.

Similarly, for the zonal flow problem,

τrelax =
�k2

Dk

. (3.4.31)

The possible dynamical states of the system are classified by the ordering of the various

time scales, and by whether or not the trajectories are chaotic. The four basic time scales can

nearly always be ordered as

min(τac, τ⊥) < max(τac, τ⊥) � τc < τrelax. (3.4.32)

Thus, the possible system states can be classified by:

(i) The Chirikov overlap parameter

S =
�vg

�(�/qr)
. (3.4.33)

Here, �vg is the width of the wave group–zonal shear resonance, and �(�/qr) is the spacing

between resonances.

(ii) The effective Kubo number

K =
τac

τ⊥

, (3.4.34)

the ratio of the autocorrelation time τac to the zonal flow shearing time τ⊥.

These ratios immediately divide the system states into three categories, which are analysed

in table 6. For S > 1 and K ≪ 1, the dynamics are stochastic, with stochastic rays, and random

shearing and refraction of drift waves by zonal flows constituting the principal effect of zonal

flows on the turbulence. This regime may be treated by using the method of quasi-linear theory,

yielding a picture of diffusive refraction (section 3.5.4). Extensions to higher order expansions

in population density perturbations Ñ have been implemented, and are analogous to induced

scattering (i.e. nonlinear Landau damping), familiar from weak turbulence theory for the Vlasov

plasma. (section 3.5.7 discusses such an extension.) For S ≪ 1 and K > 1, the dynamics are

coherent, with strongly deflected rays tracing vorticities in the (x, kx) space. In this regime,
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Figure 13. Parameter domains for various theoretical approaches.

the wave population density evolution will exhibit oscillations due to the ‘bouncing’ of trapped

rays, and will asymptote to the formation of wave-packets corresponding to BGK solutions

of the WKE. In this regime, zonal flow shear and wave-packets adjust to form a self-trapping

state. (Section 3.5.6. Some extensions are discussed in section 6.) A third regime is that with

S > 1 and K � 1, which corresponds to the regime of turbulent trapping. The dynamics here

resembles those of the stochastic regime, except that consistent with K � 1, closely separated

wave-packets remain correlated for times t > τc. These correlated, small-scale packets are

analogous to clumps in the one-dimensional Vlasov plasma, and result in granulation of the

wave-packet population density N . Such granulations necessitate the calculation of a Fokker–

Planck drag, as well as diffusion, for describing the evolution of 〈N〉, i.e. the long time average.

(This issue is discussed in section 6.) Likewise, self-trapped wave-packets correspond to holes

or cavitons in the Vlasov plasma. Figure 13 illustrates the parameter domain and various

theoretical approaches.

Having outlined the general structure of the dynamics of shearing in wave kinetics,

we now proceed to discuss the regime of stochastic ray dynamics in some detail. Here, we

are primarily concerned with the evolution of the mean drift wave population 〈N(k, t)〉 in the

presence of the zonal flow spectrum. The salient features of the stochastic dynamics regime

are given in table 7, along with their analogies for the one-dimensional Vlasov turbulence

problem. Averaging the WKE yields the mean field equation for 〈N〉
∂

∂t
〈N〉 − ∂

∂kr

〈

∂

∂x
(kθ Ṽ )N

〉

= 〈C(N)〉, (3.4.35)

where the mean refraction-induced flux of 〈N〉 in kr is given by

Ŵkr
=
〈

∂

∂x
(kθ Ṽ )N

〉

= −i
∑

qx

qxkθ Ṽ−qÑq . (3.4.36)

Proceeding in the spirit of quasi-linear theory, the expression for Ŵkr
= 〈(∂/∂x)(kθ Ṽ )N〉 =

−i
∑

qx
qxkθ Ṽ−qÑq may be calculated by iteratively substituting the response of N to V ,

δN/δṼ . Proceeding as in section 3.2, Ñq = qxkθ Ṽq(� − qxvg + iγdrift)
−1∂〈N〉/∂kx , so that
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Table 7. Comparison of stochastic dynamics.

Particles in electrostatic

wave spectrum

Drift wave in zonal flow field

Diffusion coefficient

Dr =
∑

k

e2

m2
|Ẽk |2R(k, ω) Dx =

∑

qx
q2

xk2
θ |Ṽq |2R(k, qx)

Resonance function

R(k, ωk) =
τ−1

c,k

(ω − kv)2 + τ−2
c,k

R(k, qx) = γdrift

(� − qxvg)2 + γ 2
drift

Scattering field

Wave spectrum Zonal shear spectrum
∑

k |Ẽk |2 |V ′
ZF|2 =

∑

k q2
x |ṼZF,q |2

Scattered field

Particle v → f (v) Drift wave-packet vg(k) → N(k)

Spectral autocorrelation rates

�ω−1 ↔ time for fastest

slowest waves to cross

(qx

(

dvg

dk

)

�k)−1 ↔ time for

wave-packet to disperse while crossing

flow layer

Nonlinear decorrelation rate τ−1
c

k2Dr max







γk, Dkk
−2,

(

q2
xDk

(

dvg

dk

)2
)1/3







Time for particle to scatter

one wave length

Lowest of times for wave-packets to

diffuse one wavenumber, or to scatter

through a zonal flow scale by

wavenumber diffusion and propagation,

or persistence time of triad

the wavenumber space flux is

Ŵkr
= −Dkr

∂〈N〉
∂kx

(3.4.37)

with the k-space diffusion coefficient

Dkr
=
∑

qx

q2
xk

2
θ |Ṽq |2R(k, qx) (3.4.38)

and resonance function R(k, qx) = γdrift((�−qxvg)
2 +γ 2

drift)
−1. As noted above, the resonance

in question is that between the drift wave-packet with group speed vg(k) and the phase speed

of the zonal shear �/qx . It is interesting to observe that this resonance appears as a limiting

case of the well-known three-wave resonance denominator

Rk,q,k+q = i

ωk + ωq − ωk+q + i(�ωk + �ωq + �ωk+q)
. (3.4.39)

Expanding for |q| < |k| and replacing the broadenings by γdrift then yields Rk,q,k+q =
i(ωq − q · ∂ωk/∂k + iγdrift)

−1. Finally, specializing to the case q = qx x̂ and rewriting ωq = �

then finally gives Rk,q,k+q = i(�−qxvg +iγdrift)
−1 = R(k, qx). The diffusion equation for 〈N〉

may also be straightforwardly derived by a Fokker–Planck calculation. Here, one should recall

that, in the absence of additional physics, the analogue of Liouvilles theorem for a stochastic

Hamiltonian system implies a partial cancellation between diffusion and drag terms, leaving

a result equivalent to the quasi-linear equation derived above.
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Table 8. Short summary of theoretical method and description in this subsection.

Theoretical Nonlinear process and Self-consistent state

method subsections in section 3.4 explained in section 3.5

Parametric Tertiary inst.; 3.4.1 —

instability Dithering; 3.4.2 3.5.2

Random phase Predator–prey; 3.4.5 3.5.1

approximation Diffusion model; 3.4.4 3.5.3

Coherent structure Wave trapping; 3.4.6 3.5.4

Saturation; 3.4.7 3.4.5

In the stochastic regime, the evolution of the drift wave spectrum is simple. The kr

spectrum spreads diffusively, with 〈δk2
r 〉 = Dkt . The random walk to larger kr just reflects the

random shearing at work on waves. The self-consistent dynamics of the drift wave–zonal flow

system are then described by the mean field equation for 〈N〉 (rewriting equation (3.4.35))

∂

∂t
〈N〉 − ∂

∂kr

Dk

∂

∂kr

〈N〉 = 〈C(N)〉 (3.4.40)

with equation (3.4.38) and equations for the zonal flow intensity evolution.

3.5. The drift wave–zonal flow system: self-consistent state

In previous subsections, elementary processes for zonal flow dynamics were explained.

These included the linear damping process, the bilinear growth process, the back-reaction

of zonal flows on drift waves, the nonlinear saturation mechanism and electromagnetic effects.

Combining these elementary processes as building blocks, self-consistent states of the system

are now discussed. As in the description in section 3.4, explanations here are given which note

the differences in the number of degrees of freedom and in the correlation times of drift waves

and zonal flows. Useful modelling of self-consistent states depends on these key factors, and

the correspondence is listed in table 8.

First, models with few degrees-of-freedom are explained by focusing on two examples.

One is the quite generic predator–prey model (section 3.4.5), which is valid for the case where

many drift wave modes and zonal flow components are randomly excited, and their correlation

times are much shorter than the characteristic time of evolution of the system. This basic

model is explained in section 3.5.1. The other is the opposite case where only one drift wave

is unstable (with sideband modes linearly stable). The coupled modes are thus assumed to

have long coherence times (section 3.4.2), as in simple dynamical systems such as the Lorenz

model. This case is explained in section 3.5.2

Next, more detailed descriptions follow. The spectral shape is of considerable importance

(as discussed in sections 3.4.3 and 3.4.4), and is explained within the scope of the induced

diffusion model in section 3.5.3. Coherent spatial structure is discussed in sections 3.5.4

and 3.5.5. These discussions correspond to the nonlinear mechanisms in section 3.4.6 and

section 3.4.7, respectively.

3.5.1. Predator–prey model. Drift waves excite zonal flows, while zonal flows suppress drift

waves. The degree of excitation or suppression depends upon the amplitudes of the drift wave

and zonal flow. These interactions are modelled as a predator–prey dynamical system, for zonal

flow mean square shear 〈U 2〉 =
∑

qr
|Uqr

|2 and drift wave population density 〈N〉 =
∑

k Nk

(see equation (3.4.9) and (3.4.10)).
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〈 〈 〈 〈

Figure 14. Amplitude of drift waves 〈N〉 and that of zonal flow 〈U2〉 for the case where the

self-nonlinear stabilization effect of zonal flow (e.g. the γNL(V 2) term in equation (2.10b)) exists.

It shows the γdamp-dependence with fixed γL .

(i) Stationary states. This system of equations (3.4.14) and (3.4.15) has two types of steady-

state solution. One is the solution without zonal flow 〈N〉 = γL/γ2, 〈U 2〉 = 0, which results in

the case of strong damping of the zonal flow, γdamp > αγL/γ2. The other is the state with zonal

flow, 〈N〉 = γdamp/α, 〈U 2〉 = α−1(γL − γ2γdampα
−1), which is relevant when the damping

rate of the zonal flow is weak,

0 < γdamp <
α

γ2

γL. (3.5.1)

(The case of γdamp = 0 needs special consideration, as is explained later.)

This system is controlled by two important parameters, i.e. the linear growth rate of the drift

wave γL and the damping rate of the zonal flow γdamp. In the region of low zonal flow damping

rate (as for equation (3.5.1)), the zonal flow coexists with the drift wave. The other important

result is the role of (γL, γdamp) in determining the partition of the energy. In the region of low

collisionality, where the zonal flow is excited, the drift wave amplitude is independent of the

linear growth rate γL, but is controlled by the zonal flow damping rate γdamp. The magnitude

of the zonal flow increases if γL increases. The dependence on γL illustrates the importance

of the self-nonlinearity effect of the zonal flow, which is discussed in equation (2.11). By the

use of a generic form γNL(U 2) ∼ α2U
2, the partition of energy between the waves and zonal

flows appears in equation (2.12). The dependencies are shown, in figure 14, for the case of

fixed γL, when the self-nonlinearity effect is present. The predator–prey model thus explains

the most prominent features of the role of zonal flows in determining system behaviour. The

possible shift of the boundary for the appearance of turbulence from γL = 0 to γL = γexcite > 0

(so-called Dimits shift for ITG turbulence) is discussed later.

(ii) Dynamical behaviour. Equations (3.4.14) and (3.4.15) also describe the characteristic

dynamics of the system. The fixed points equations (2.12) are stable for a wide range of

parameters. In some particular circumstances, different types of dynamics appear, as is

categorized in [161].

Stable fixed point. At first, the stability of fixed points is explained. In cases where

all of the coefficients (i.e. γL, γdamp, α, γ2) are non-negative values, γL �= 0, γdamp �= 0,

α �= 0, γ2 �= 0, the fixed points are stable. For instance, the perturbation near the stationary
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(a) (b)

Figure 15. Phase portrait in the absence of nonlinear stabilization effect of drift waves, γ2 = 0,

[16] (a). Trajectory in the case of no zonal flow damping γdamp = 0 is shown in (b). Depending on

the initial conditions, the system reaches different final states, in which the waves are quenched.

state,{δ〈N〉, δ〈U 2}〉 ∝ exp(iωt) shows a damped oscillation with the frequency

ω =
−iγdampγ2 + i

√

γ 2
dampγ

2
2 − 4γdampγL(α2 − α)

2α
. (3.5.2)

The imaginary part of ω is negative. Equation (3.5.2) predicts a stable fixed point. Depending

on the initial conditions, transient oscillations of drift wave and zonal flow can occur. However,

they decay in time and the system converges to a stationary solution.

Repetitive bursts. When the nonlinear self-stabilization effect of the drift waves is absent,

i.e. γ2 = 0, periodic bursts of the wave and flow occur. In this case, equations (3.4.14) and

(3.4.15) have an integral of the motion; namely

〈N〉 − γdamp

γL

ln〈N〉 + 〈U 2〉 − ln〈U 2〉 = const (3.5.3)

[162, 163]. A phase portrait for the system is given in figure 15. Periodic bursts appear. The

burst of the drift wave spectrum is followed by one of the zonal flow shear. However, this

is unphysical for real drift wave turbulence, since the nonlinear self-interaction effects are

essential to the turbulence dynamics.

Single burst and quenching of waves. When collisional damping of the zonal flow is

absent, i.e. γdamp = 0, particular care is required, because the relation 〈N〉 = 0 satisfies the

rhs of equation (3.4.14). As is pointed out in [111, 161], the problem is a transient one, and

the final, steady state depends on the initial condition. The trajectory (〈N〉, 〈U 2〉) satisfies,

d〈N〉/d〈U 2〉 = [(γL − γ2〈N〉)/α〈U 2〉] − 1 which is solved to yield

〈N〉 = γL

γ2

− α

γ2 + α
〈U 2〉 − c0〈U 2〉−γ2/α. (3.5.4)

Here c0 is a constant which is determined by the value of (〈N〉, 〈U 2〉) at t = 0. The trajectory

(〈N〉, 〈U 2〉) is shown in figure 15(b) for various values of the initial condition. The drift wave

amplitude increases at first. Then energy is transferred to the mean square flow shear, and the

wave energy is finally quenched, at a constant value of the amplitude of the flow. The state is

related to the complete quench of wave energy near marginal stability, i.e. the so-called Dimits

shift [52]. It may be viewed as the continuation of the trend N/〈U 2〉 ∼ γdamp/γL to the limit

where γdamp ≃ 0.

These features are also seen in the nonlinear coupling of different modes, having been

studied in connection with L–H transition problems (e.g. [46, 164–175]). The phase portraits

show differences in the underlying dynamics.
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Figure 16. Normalized amplitude of zonal flow Zk as a function of the normalized damping rate

γz = γdamp/γL . Quoted from [25].

3.5.2. Single instability model. When only one drift wave is unstable, the primary drift wave

and sidebands maintain a long coherence time. This is the opposite limit from case (i), for

which a reduced variable model applies. This case is explained in section 3.4.2. A closed set

of equations is derived for the amplitude of only one unstable mode, P , the amplitude of zonal

flow, Z, the relative amplitude of sideband drift wave S and the frequency mismatch � as

equation (3.4.5). This type of coherent interaction of model amplitudes appears in the Lorenz

model, and other dynamical systems.

Equations (3.4.5a)–(3.4.5d) describe the parametric excitation for a fixed pump amplitude

P , and give the zonal flow growth rate γZF. The coupling to the primary wave, equation (3.4.5a)

accounts for the stabilizing effect of (nonlinearly driven) zonal flow on the primary drift wave.

This system of equations has been analysed for the problem of three-wave coupling [176].

The fixed point is given [25] by P∗ =
√

γdampγ
−1
L Z∗, Z∗ =

√

((ω0 − �+)2 + γ 2
side)/2γLγside,

S∗ =
√

γdamp/2γsideZ∗ and sin �∗ = (ω0 − �+)/

√

(ω0 − �+)2 + γ 2
side.

For a fixed value of γL (γL is used as a normalizing parameter for obtaining

equations (3.4.5a)–(3.4.5d)), the dependence of the saturation amplitude on the damping

rate of zonal flow is explained by the stationary solution. The amplitude of the primary

unstable drift wave increases as γdamp according to: P ∝ √
γdamp. In the small γdamp

limit, the zonal flow amplitude Z∗ remains constant, but the amplitudes of the primary

wave and sidebands, P∗ and S∗, vanish. These results are qualitatively the same as those

of the model in section 3.5.1. In this model, a forward Hopf bifurcation takes place when

γdamp exceeds a threshold. Figure 16 illustrates the numerical calculation of the long time

behaviour of the solution of equations (3.4.5a)–(3.4.5d). In the case of small γdamp, the

solution converges to the fixed point in the phase-space. In a limit of large γdamp, the system

exhibits chaos.
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3.5.3. Saturation: determining the drift wave spectrum. The wave spectrum contains addi-

tional freedom, and can influence the self-consistent state. Equations (3.4.9) and (3.4.10) form a

set of nonlinear diffusion equations that determine the spectra of zonal flow and drift wave [111].

The stationary state of the zonal flow is realized, as is seen from equation (3.4.10), by the

balance between collisional damping and the bilinear drive by the drift waves, i.e.

q2
r

∑

k

Dq

∂

∂kr

Nk = γdamp. (3.5.5)

On the other hand, the stationary state of the drift waves arises, as seen from equation (3.4.9),

by the balance between linear drive and damping, nonlinear damping and k-space diffusion

by the random zonal flows. Linear instability sits in the region of small |kr|. In the absence

of diffusion, the local (in k-space) balance γL = γNL gives the saturated state of drift waves.

For a simple case of γNL = γ2Nk . One has the saturation level Nk = γL/γ2. In the presence

of random shearing by zonal flows, diffusion in the k-space occurs, and fluctuation energy is

transferred to stable regions of k-space.

(i) Constant diffusivity. The case of constant diffusivity illustrates the competition between

various effects. The simplest case of γNL = γ2Nk is chosen. The coefficients (γ2, Dk ,) are

independent of kr. The linear growth rate is also independent of kr, in both the stable region

(|kr| > krc) and the unstable region (|kr| < krc). In this limit, equation (3.4.9) is modelled by

a simple diffusion equation

−γLNk + γ2N
2
k − Dk

d2Nk

dk2
r

= 0. (3.5.6)

This equation is solved by constructing a Sagdeev potential. The boundary conditions, Nk = 0

at k = ∞ (stable region, |kr| > krc) and dNk/dkr = 0 at kr = 0 (unstable region, |kr| < krc),

are natural choices.

Multiplying dNk/dkr by equation (3.5.6) and integrating over kr, one has

∫ 0

N

dNk

√
Dk

√

(

|γL|N2
k + (2γ2/3)N3

k

)

= kr (|kr| > krc), (3.5.7a)

∫ N(0)

N

dNk

√
Dk

√

(

−γLN2
k + (2γ2/3)N3

k + γLN(0)2 − (2γ2/3)N(0)3
)

= kr, (|kr| < krc).

(3.5.7b)

Two solutions to equations (3.5.7a) and (3.5.7b) must be connected at |kr| = krc. This

continuity condition determines N(0) as an eigenvalue.

As an illustration, a case of strong linear stability in the region |kr| > krc is described

here. In this case, the connection at |kr| = krc requires N(krc) = 0. That is,

∫ 1

0

dn
√

(

1 − n2 + (2γ2N(0)/3γL)(n3 − 1)
)

= krc

√

Dk

γL

, (3.5.8)

where n(kr) = Nk/N(0) is a normalized function that describes the shape of the spectrum.

This relation (3.5.8) gives a relation between N(0), γL and Dk (i.e. the zonal flow amplitude), as

Dk = γL

k2
rc

(lhs of equation (3.5.8))2. (3.5.9)
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Figure 17. Amplitude of drift waves (normalized to 2γL/γ2) in the stationary state as a function

of the collisional damping rate of zonal flow γdamp. The horizontal axis is taken γdamp/γL in the

unstable region |kr | < krc. In this figure, A is a parameter that is in proportion to Cd→Z/γ2
. (quoted

from [111].)

Equation (3.5.5) requires
[

q2
r

∑

k

1

B2

k2
θkr

(1 + k2
⊥ρ2

s )
R(qr, k)

∂

∂kr

n(k)

]

N(0) = γdamp. (3.5.10)

Equations (3.5.8) or (3.5.9) and (3.5.10) describes the self-consistent solution. Although the

coefficient in the square bracket in equation (3.5.10) depends on γdamp through the spectral

shape function N(kr), equation (3.5.10) tells us that N(0) increases nearly linearly with respect

to γdamp, in the limit of small γdamp.

Figure 17 illustrates the solution of equations (3.5.8) or (3.5.9) and (3.5.10). The gradual

change of the drift wave spectrum with collisional damping is demonstrated. The features in

equations (3.5.8)–(3.5.10) are the ones clarified by the low-dimensional model in section 3.5.1.

Direct calculation of the diffusion equation gives a smooth continuation from the collisionless

regime to the regime of strong collisionality.

(ii) Numerical solution. In more realistic examples, for which γL and Dk depend upon the

wavenumber kr, a numerical solution of equation (3.5.9) is required. The solution of the full

diffusion equation recovers the basic trends of the low-degrees-of-freedom model. The drift

wave amplitude goes to zero if γdamp approaches to zero. However, there is a quantitative dif-

ference between the two models. The result of the solution for the spectrum gives an empirical

fit as [161]

〈N〉 ∝ γdamp0.75 . (3.5.11)

This dependence is slightly weaker than that predicted by the predator–prey model, and the

analytical result in (i). This may be due to the fact that the change in spectrum shape due to

finite γdamp leads to the modification of the effective coupling coefficient α which is averaged

over the drift wave spectrum.

Temporal evolution is also investigated by the numerical solution for 〈N〉 distribution

function. In this case, the coupling coefficient α is not constant in time, on account of the

change of the spectral shape, and the result in section 3.5.1 must be re-examined. By solution of

the diffusion equation, the qualitative conclusion of the low-dimensional model is confirmed.
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(a)

(b) (c)

Figure 18. Temporal evolution of drift wave energy, zonal flow and the average wavenumber.

Cases of γL �= 0, γdamp �= 0, γ2 �= 0 (a), γ2 = 0 (b) and γdamp = 0 (c) are shown [161].

Specifically:

(a) the steady state is a stable fixed point, and the temporal solution converges after transient

oscillations [γL �= 0, γdamp �= 0, γ2 = 0];

(b) periodic bursts appear for γL �= 0, γdamp �= 0, γ2 = 0, corresponding to a limit cycle

attractor;

(c) a single transient burst of drift waves is quenched by zonal flow for γL �= 0, γdamp = 0,

γ2 �= 0, and corresponds to the Dimits shift regime.

The results are demonstrated in figure 18. Figures 18(b) and (c) correspond to the trajectories

in figures 15(a) and (b), respectively. They confirm the understanding which is obtained by use

of a simple model in section 3.5.1. Study of the transient phenomena by simulation [177, 178]

is explained in section 4.

3.5.4. Wave trapping and BGK solution. When the coherence time of the zonal flow and

drift waves is much longer than the time scale of drift wave spectral evolution, trapping of drift

waves by the zonal flow may occur [38, 179–181]. For this, the relations γdrift ≪ ωbounce
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and τac,ZF−1 ≪ ωbounce apply. In this case, the drift wave-packets have constants of the

motions (ky0, ωk0) as shown in appendix A. Note that in this regime, the drift wave ray

dynamics resemble those of a particle trapped in a single, large-amplitude plasma wave. Time

asymptotically, then, the solution for N corresponds to a BGK solution, i.e. a time-independent

solution parametrized by a finite set of constants of the motion of the ray trajectory. As with all

BGK solutions, there is no guarantee a particular solution is stable or is physically accessible.

Additional physical considerations must be introduced or addressed to determine stability.

In this system, there are infinite numbers of constants of motion, because the WKE

(for rhs = 0), like the Vlasov equation, is time reversible. Just as irreversibility enters the

collisionless Vlasov problem when phase mixing of undamped Case–Van Kampen modes leads

to Landau damping of (macroscopic—i.e. velocity integrated) Langmuir wave perturbations,

irreversibility enters here due to phase mixing when N is integrated over the spectral in kr. The

BGK solution corresponds, in principle, to the finite amplitude, time-asymptotic state of such

solutions. The distribution function can thus be written in terms of the constants of motion as

equation (3.4.20). Noting that the trajectories are classified into untrapped and trapped orbits,

equation (3.4.20) can be rewritten as

N(x, kx, ky) = NU(ωk0(x, kx), ky0) + NT(ωk0(x, kx), ky0), (3.5.12)

where the subscripts U and T denote the untrapped and trapped wave-packets.

The self-consistent solution is given by equations (3.4.19) and (3.5.12). One has
(

u
d

dx
− γdamp

)

VZF = − d

dx

∫ ∞

−∞
dkyky

{∫ ∞

wm

dwJNU +

∫ wm

wmin

dwJNT

}

, (3.5.13)

where w = −ωk0/ky0, J is the Jacobian of the transformation of variables, wm is the value

of w at the separatrix, and wmin is w at kx = 0 [38].

The distribution functions NU and NT have infinite degrees of freedom, and flattening

(i.e. plateau formation) might take place (and likely does) in NT(ωk0(x, kx), ky0). Choosing a

particular class of the functions NU(ωk0(x, kx), ky0) and NT(ωk0(x, kx), ky0), a self-consistent

solution VZF has been obtained from equation (3.5.13).

The accessibility and stability of a particular distribution function require future research.

3.5.5. Zonal flow quenching and coherent structure. If wave trapping is not complete, a

coherently structured zonal flow is formed by the drift wave turbulence. This is the case for

γdrift > γZF, ωbounce and τac,ZF−1 ≪ γZF. The case where the turbulent drift wave spectrum

forms such a spatially coherent zonal flow structure is discussed in this section.

If the asymmetric deformation of the distribution function N(kx) is calculated to higher

order in the zonal flow vorticity U, the correction of order U3 tends to reduce asymmetry.

This is reasonable, since the third-order contribution is stabilizing. For the case of U > 0,

modification of δN is positive for kx > 0, so as to increase U. The third-order term has the

opposite sign, so as to suppress the growth of the zonal flow [159, 182].

Taking into account the modification of the growth rate of the zonal flow, the dynamical

equation for the zonal flow is written in an explicit form as equation (3.4.26). By use of

normalized variables x = r/L, τ = t/tZ and Û = U/U0, where L−2 = q2
r0(1 − µ),

tZ = D−1
rr q−2

r0 (1 − µ)−2 and U2
0 = DrrD

−1
3 (1 − µ), equation (3.4.26) is rewritten in the

collisionless limit as

∂

∂τ
Û +

∂2

∂x2
Û − ∂2

∂x2
Û3 +

∂4

∂x4
Û = 0. (3.5.14)

The case that the flow is generated from a state with low noise level, where no net flow

momentum exists, (
∫

dxÛ = 0), is studied. Here the flow evolves satisfying the condition
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Figure 19. Coherent profile of normalized zonal flow vorticity.

∫

dxÛ = 0. A stationary solution of equation (3.5.14) in the domain 0 < x < d, for the

periodic boundary condition, is given by an elliptic integral as

∫ Û

(1 − 2u2 + u4 − κ2)−1/2 du = ± x√
2
, (3.5.15)

where κ is an integral constant (0 � κ < 1) given by the periodicity constraint
∫ uc

−uc
(1 − 2u2 +

u4 − κ2)−1/2 du = d/2
√

2n (n = 1, 2, 3, . . . . The integer n is the one which is closest to

d/n = 4
√

2π .) Numerical solution of equation (3.5.14) has shown that the solution (3.5.15)

is stable and is an attractor. Figure 19 illustrates the stable stationary state. Compared to a

simple sinusoidal function (eigenfunction of the linear operator), the result in figure 19 has

much weaker curvature at the peak, and is closer to a piecewise constant function.

The normalized function u(x) is of the order of unity, so that the characteristic values of

vorticity and scale length l are given as U0 = D
1/2
rr D

−1/2

3 (1 − µ)1/2, and l = q−1
r0 (1 − µ)−1/2.

The ratio D3/Drr is characterized by D3 ∼ k2
θ l

2�ω−2
k Drr . One has an estimate

V0 = vz(1 − µ)1/2. (3.5.16)

where vz = �ωkk
−1
θ . This result gives an expression for the zonal flow in terms of the

decorrelation rates of drift waves. Combining this with the dynamical equation which dictates

the drift wave fluctuations, e.g. equation (3.5.6), the amplitude of the self-consistent state may

be derived. Further research is necessary to understand the significance of these results.

3.5.6. Shift of the boundary for drift wave excitation. When coupling with zonal flow is taken

into account, the boundary in the parameter space for the excitation of turbulent transport

is modified. The shift of the excitation boundary is one aspect of characteristic nonlinear

interactions. The shift is noticed in the context of subcritical excitation of turbulence (see, e.g.

[183–185] and a review [186]). The shift also appears for supercritical excitation [187–192].

The case of ITG coupled with zonal flow also belongs to this class of stability boundary shifts.

The mutual interaction of fluctuations with different scale lengths has been studied [187].

The component with longer wave length is called ‘intermediate scale’ and that with shorter

wave length is called ‘micro’. In the presence of mutual interaction, the phase diagram is

illustrated in figure 20. The boundary for the excitation of the micro mode is no longer

γ micro
L = 0, but shifted to a positive value of γ micro

L = 0. In the absence of the intermediate

scale mode, the micro mode is excited for γ micro
L > 0. However, when the intermediate scale
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Figure 20. Phase diagram for the case of mutual interactions between intermediate scale and micro

modes.
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Figure 21. Marginal stability boundary for the growth of the zonal flow is shown by the solid line

in the limit of γdamp = 0 (a). The dotted line indicates the marginal stability condition for the drift

waves (a). The excited energy of waves and flows as a function of the growth rate of drift waves,

in the limit of γdamp = 0 (b).

mode is excited Dintermediate > 0, the micro mode is quenched in the vicinity of the stability

boundary γ micro
L ∼ 0, and is excited at finite level only if the growth rate exceeds a substantially

larger value, γ micro
crit . This constitutes an upshift of the boundary for excitation of the turbulence.

An analysis of the coupling between ITG and current diffusive ballooning mode is reported in

[191] and the case of the ITG and ETG is given in [192]. These examples also exhibit stability

boundary upshifts. (See also the simulation study [193, 194].)

In the case of drift waves coupled to zonal flow, the ‘micro’ fluctuation is the drift wave,

and the zonal flow plays the role of the ‘intermediate scale’ fluctuation. For transparency of

argument, we take here the limit of vanishing collisional damping of zonal flow, i.e. γdamp = 0.

The shift of the boundary for the excitation of the drift waves from γ
(DW)
L = 0 occurs if the

zonal flow has finite amplitude for very small amplitude of the drift wave [195], i.e. 〈U2〉 �= 0

at 〈N〉 = 0. In the other limit of large growth rate, the increase of the drift wave amplitude 〈N〉
by the increase of γ

(DW)
L requires self-stabilization of the zonal flow. Examples of such self-

nonlinear effects are the γNL(V 2) term in equation (2.10b) or the U3 term in equation (3.5.14).

Summarizing these, the stability boundary for the zonal flow in the (U2, 〈N〉) plane should

have the form as is illustrated in figure 21(a). That is, the boundary for the marginal stability

condition dUZF/dt = 0 (solid line in figure 21(a)) intersects the boundary 〈N〉 = 0 at a finite
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Figure 22. This diagram, indicates the regions of residual drift wave and zonal flow turbulence as

well as the region where they coexist in the (γL, γdamp) plane.

value of the zonal flow amplitude (denoted by Ucrit). This allows a finite amplitude of zonal

flow at a very low level of drift wave fluctuation. In this circumstance, the boundary for the drift

wave excitation shifts from γ
(DW)
L = 0 to γ

(DW)
L = γcrit > 0. The dotted line in figure 21(a)

illustrates the boundary of the marginality condition for the growth of drift waves from the

case of γ
(DW)
L = γcrit. Below the critical value of the growth rate, a steady-state solution is

allowed for 〈N〉 = 0. Figure 21(b) illustrates the partition of the energy between drift waves

and zonal flow as a function of the growth rate of the drift waves. The waves are not sustained

in steady state below the critical value γ
(DW)
L < γcrit. After the transient growth of waves, the

zonal flow can be sustained at a finite value, and this level is dependent on the initial condition.

If the critical growth rate is exceeded, i.e. γ
(DW)
L > γcrit, both waves and flows are excited. The

estimate of the drift wave amplitude for the case when the excitation of zonal flow is ignored,

is denoted by a thin dotted line.

Noting the presence of critical value of zonal flow vorticity Ucrit, a phase diagram in the

(γL, γdamp) plane is shown schematically in figure 22 [195].

The mechanism that gives the finite values of the critical vorticity of the zonal flow has

been discussed in [195]. The key is the determination of the self-nonlinear damping term for

the zonal flow growth, e.g. γNL(U2
ZF, 〈N〉), as in equation (2.10b). The marginal condition for

the zonal flow growth is thus expressed as

γNL

(

U2
ZF, 〈N〉

)

= α〈N〉. (3.5.17)

3.6. Suppression of turbulent transport

Mean shear flow and zonal flow can reduce or quench transport by altering either the turbulent

fluctuations amplitude or the wave–particle correlation time, which determines the ‘cross-

phase’ between, say Ṽr and ñ, in the particle flux Ŵr = 〈ñṼr〉. Up till now, we have been

primarily concerned with effects on the fluctuation intensity. However, both zonal and mean

shears can alter the correlation times and thus fluxes, even at fixed fluctuation amplitude. In

section 3.6, we examine shear flow effects on transport. We begin by considering the effect

of sheared mean and zonal flows on transport of a passive scalar by an otherwise fixed or

prescribed ensemble of turbulence.

3.6.1. Passive scalar transport: sheared mean flow. The average cross-field flux is given

in terms of cross correlations between various fluctuation fields. For instance, the radial

particle flux is given by: Ŵr = (1/B)〈ñẼθ 〉. This flux, an averaged quantity, is determined

by the amplitudes of density and electric field, and by the phase between them. In the case of
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electrostatic fluctuations, Ŵr can be written as:

Ŵr = 1

B
|ñ||Ẽθ | sin α (3.6.1)

where α is the phase difference between the density and potential fluctuations. α is determined

by the wave–particle correlation time and by the response function. Obviously, shifting α can

reduce (or increase) the flux.

Here, we investigate the effect of mean shear on transport by analysing the response of

a passive, phase-space field f (i.e. a distribution function) to a given ensemble of turbulence.

A model equation for the passive advection of f in the presence of prescribed fluctuating ṽ

(i.e. advecting velocity field) is:

∂f

∂t
+ v‖b̂ · ∇f + 〈V〉 · ∇f + ṽ · ∇f − Dc∇2f = 0. (3.6.2)

Here 〈V〉 = Vy(x)ŷ is the mean sheared E × B flow, v‖ is the parallel phase-space velocity

and Dc is the collisional diffusion coefficient. We focus on strong turbulence, and consider

the asymptotic limit where Dc → 0 [196, 197].

A formal solution for the cross field flux, Ŵf ≡ 〈f̃ ∗ṽx〉, is then given by

Ŵf = Re
∑

k,ω

i|ṽx,k,ω|2

ω − k‖v‖ − kyxSv + iτ−1
ck

d

dx
f0. (3.6.3)

Note that equation (3.6.3) contains many time scales for irreversible dynamics, which

must be considered. These are:

(a) �ωk—the mode self-correlation decay rate, or inverse lifetime, due to nonlinear

scrambling;

(b) Doppler spread (autocorrelation) rates: |k�(ω/k)|—the spectral self-spreading

(autocorrelation) rate, i.e. the inverse; lifetime of the spectral pattern (reflects the effect

of dispersion—linear process);

|k‖v‖�x|—the parallel Doppler spread (autocorrelation) rate, i.e. the rate at which parallel

Doppler shift k‖v‖ changes with radius;

|kySv�x|—the shearing Doppler spread (autocorrelation) rate, i.e. the rate at which the

sheared E × B flow-induced Doppler shift kyVE×B changes with radius;

(c) Decorrelation rates

k2
xDx—particle decorrelation rate for radial scattering;
(

k2
yDxS

2
v

)1/3
—particle decorrelation rate for hybrid of radial scattering in sheared flow,

i.e. due to random walk in shearing coordinates;
(

k′2
‖ v2

‖Dx

)1/3
—particle decorrelation rate for radial scattering in a sheared magnetic field.

Here �x is the radial spectral width, Dx is the radial test diffusion coefficient, k′
‖ = k‖/Ls

and Ls is the shear length. Hereafter, parallel dynamics are ignored. Shearing becomes

important when

∣

∣kySv�x
∣

∣ � k2
xDx ∼ Dx

�x2
,

∣

∣kySv�x
∣

∣ � �ωk. (3.6.4)

In this case, the relevant decorrelation rate is set by

1

τck

=
(

k2
yDyS

2
v

)1/3
. (3.6.5)

For kySv�x ≫ k‖v‖, but
∣

∣kySv�x
∣

∣ or |�k dωk/dk| greater than �ωk and τ−1
ck , Ŵj , can

be simplified to Ŵf
∼= −π

∑

k,ω

∣

∣ṽx,k

∣

∣

2
δ
(

ωk − kySvx
)

df0/dx. (An analytic expression
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Im
(

ω − kyxSv + ik2
yDy

)−1 ≃ −πδ(ω − kyxSv) is used.) The cross-field flux then reduces to:

Ŵf
∼= −π

∫ ∫

dm dωR

∣

∣

∣

∣

ky

Ls

∣

∣

∣

∣

|ṽ
x,k|2

|kySv|
d

dx
f0. (3.6.6)

Note that the flux depends on the spectral intensity at the resonance point xr = ω/kySv . The

assumption that this point falls within the spectral envelope is valid if xr < �x or equivalently,

ω < |kxSv�x|. Since we are concerned with the regimes of strong shear, this is almost always

the case. In such strong shear regimes, then, Ŵf scales inversely with Sv , i.e.

Ŵf ∝ S−1
v . (3.6.7)

A detailed analysis in [197] established that the passive scalar amplitude perturbation scales

as

√

〈(f̃ /f )2〉 ∝ S
−5/6
v , so that

sin α ∝ S−1/6
v . (3.6.8)

Note that the effect of even strong shear on the flux is modest (∼S−1
v ) and its impact on

the cross-phase is quite weak (∼S
−1/6
v ). Thus, the theory predicts that suppression of the

cross-phase is weaker than reduction in turbulence intensity.

It is interesting to examine the scaling of Dx in the strong turbulence regime, for

weak and strong shear. Noting that Ŵf = −Dx(d/dx)f0, we have already established

that Dx ∼ S−1
v for strong shear and weak turbulence. In the case of strong shear and

strong turbulence, τ−1
ck > |kySv�x|, so is Ŵf given by (from equation (3.6.3)): Ŵf =

−Re
∑

k,ω τck|ṽx,k,ω|2(d/dx)f0, i.e. Dx = τck〈ṽ2〉. Taking equation (3.6.5) with Dx ≃ Dy

then gives

Dx ∼ 〈ṽ2〉3/4

(kySv)1/2
, (3.6.9)

which is consistent with the expected scaling Dx ∼ ωb(�xT )2 where ωb is the particle bounce

time in a poloidal wavelength, and �xT is the resonance width in radii.

Next, for the strong turbulence, weak shear case 1/τck = k2
xDx , so Dx ∼ 〈ṽ2〉1/2(k2

x)
−1/2,

which is the familiar scaling for transport in strong two-dimensional turbulence, first derived

by Taylor and McNamara. Finally, we also note that the regime of strong shear (i.e.

|kySv�x| > τ−1
ck , �ωk, ω) but with non-resonant response has also been investigated [196].

The predictions are Ŵf ∼ S−2
v and sin α ∝ S−2

v . The importance of this regime is dubious,

though, since strong shear naturally favours a large shearing Doppler spread which in turn

suggests the applicability of standard quasilinear theory and the occurrence of a resonant

interaction.

3.6.2. Passive scalar transport: zonal flows. In the previous subsection, we considered the

effect of a mean shear flow on passive scalar flux and cross-phase. While understanding the

case of a mean shear is necessary, it is certainly not sufficient for an understanding of the effects

of a spectrum of zonal flows upon transport. Two additional features must be considered in

the case of zonal flows. These are:

(a) the flow pattern has a finite lifetime or self-correlation time, τc,ZF;

(b) shearing occurs as a spectrum of scales, each corresponding to a radial zonal flow

wavenumber qr. The shearing pattern may be spatially complex.

The implication of differences (a) and (b) are that the effectiveness of shearing will be reduced

(relative to that for equal strength mean flow) for short τc,ZF, and that one should expect to find

Sv,rms (the rms value) replacing Sv in the quasilinear predictions given above, when τc,ZF → ∞.

The details of these calculations have quite recently appeared in the literature [198].
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3.6.3. Reduction of turbulent transport. The results in sections 3.6.1 and 3.6.2 imply that the

scaling of transport in a shear flow is not universal, and turbulent transport must be computed

by specifying a relaxation mechanism. In addition, the amplitude of the fluctuating velocity

field and characteristic correlation length must be determined simultaneously by considering

the effects of Er and dEr/dr , and their spectra. Some representative analyses of the calculation

of turbulent transport are reported here.

Several analyses have been performed for ITG modes, e.g. [199–201]. An expression for

the turbulent transport coefficient has been proposed [201]:

χturb ≃ (γL − ωE1 − γ∗1)
1/2γ

1/2

d

k2
y

, (3.6.10)

where γL is the linear growth rate in the absence of flow shear, ωE1 is the E × B flow shear

frequency, ωE1 = (r/q)(d/dr)(qEr/rB), γ∗1 is the shear of the diamagnetic flow, and γd is

the damping rate of a representative zonal flow mode. The latter is approximated in [195]

as γd ≃ 0.3(Ti/Te)ωM (ωM is the toroidal magnetic drift frequency), and ky is the poloidal

wavenumber of the most unstable mode. The dependence of χturb on ωE1 is adjusted to the

results of nonlinear simulation, i.e. the expression represents a fit to data.

In the case of self-sustaining CDIM turbulence, the thermal diffusivity has been predicted

to be [150, 202]

χturb ∼ 1

(1 + 0.5G−1
0 ω2

E1)

G
3/2

0

s2

(

c

ωp

)2
vAp

a
, (3.6.11)

where ωE1 = kθτAθE
′
r/B, G0 is the normalized pressure gradient and 〈k2

⊥〉 ∝ (1 +

0.5G−1
0 ω2

E1)G
−1
0 . As the gradient of the radial electric field becomes larger, the correlation

length becomes shorter. In toroidal geometry (i.e. for the case of CDBM turbulence), the

normalized parameter ωE1 = τAθ (dEr/dr)/srB controls the turbulence level and turbulent

transport [142]. The effects of E × B flow shear and magnetic shear complement each other.

The same shear dependence is also found for the case of ITG modes.

The ETG mode has a shorter characteristic wave length. This fact suggests that the

E × B flow shear has a weaker effect. However, extended streamers could be affected

by E × B shear, and the transport by ETG modes could then also be affected. Current

research indicates that some transfer mechanism of ETG energy to longer scale (either, say,

by streamer formation or by inverse cascade to c/ωpe) is necessary for ETG turbulence to be

of practical interest to tokamak confinement. The electron gyro-Bohm thermal diffusivity, i.e.

χe,GB = ρ2
e VTh,e/LTe = √

me/miχi,GB, is too small to be relevant. Further study is required

to understand the relation of transport by shorter wavelength turbulence to electric field shear

[188, 192, 203, 204].

In addition to the inhomogeneity of flow across the magnetic surfaces, the inhomogeneity

on the magnetic surface is also effective in the suppression of turbulence. The toroidal flow

in tokamaks varies in the poloidal direction if a hot ion component exists. This poloidal

dependence suppresses turbulence [150].

The dependence of χturb on ωE1 has also been explained experimentally. The expression

χturb ∝ 1

1 + (ωE1/γ )h
(3.6.12)

has been derived analytically with an index h (γ is the decorrelation rate or instability growth

rate in the absence of E × B shear). The index is given as h = 2 in the models [141–143] and

as h = 2/3 in the strong shear limit in [9]. A nonlinear simulation has suggested a dependence

similar to that in equation (3.6.8) for the case of ITG mode turbulence. Further elaboration
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of the theory is required in order to derive a formula which is relevant in a wide parameter

region. A comparison of the index h with experimental observations has been reported [205]

for when the electric field bifurcation is controlled by an external bias current. The result is in

the range of h ≃ 2 [205], but the comparison is not yet conclusive [206–208].

3.6.4. Self-regulated state. The final solution of the turbulent transport problem requires

a self-consistent solution for the turbulent heat flux and the zonal flow. The level of the

turbulence-generated E × B shearing rate in formula in section 3.6.3, e.g. equation (3.6.12),

must be determined self-consistently from the dynamics of the drift wave–zonal flow. Here

research in this direction is discussed.

Let us illustrate the problem by the model of two scalar variables from the discussion of

sections 2 and 3.4. An example is given as equation (2.10).

(i) Collisional damping limit. The simplest case is that for which the quasilinear drive of zonal

flow by turbulence is balanced by collisional damping. In this case, equation (2.12a) gives

Wdrift = γdamp/α. The physics of this result is simple—the fluctuation level adjusts so that the

zonal flow is marginally stable. That is, the saturated level of turbulence is independent of the

magnitude of the drive of linear instabilities, but is controlled by the damping rate of the zonal

flow. Alternatively put, the zonal flow regulates the fluctuation level and the flow damping

regulates the flow, so the flow damping thus regulates fluctuations and transport. In this case,

an analytic result is easily derived, and one obtains a stationary state in a dimensional form

eφ̃

Te

≃
√

γdamp

ω∗

ρs

Ln

, (3.6.13)

where φ̃ is the amplitude of fluctuations in the range of drift wave frequency and γdamp

is the damping rate of the zonal flow. The rhs is reduced by a factor
√

γdamp/ω∗, as

compared to the mixing length levels, due to zonal flow effects. Numerical simulations have

confirmed the essential weak turbulence limit, i.e. 〈(eφ̃/Te)
2〉 ∝ γdamp/ω∗, not |eφ̃/Te|rms ∝

γdamp/ω∗. The damping rate of the zonal flow (γdamp) is proportional to the ion–ion collision

frequency in the high temperature limit (see section 3.1.3). As a result, the level of fluctuations

that induces transport is controlled by ion collisions, although the fluctuation spectrum itself

is composed of ‘collisionless’ waves. In the weak turbulence limit, the transport coefficient

follows as

χi ≃ γdamp

ω∗

ρs

Ln

T

eB
∼ νii

ω∗

ρs

Ln

T

eB
. (3.6.14)

This scales as a gyro-reduced Bohm thermal diffusivity, ‘screened’ by the factor of γdamp/ω∗.

Of course, retaining nonadiabatic electron effects complicates the question of collisionality

scaling.

(ii) Nonlinear saturation mechanism. In high temperature plasmas, where νii/ω∗ → 0 holds,

the saturation of the zonal flow is influenced by nonlinear processes. These processes are

discussed in section 3.4. Possible nonlinear saturation processes include the trapping of drift

waves in zonal flows, excitation of tertiary instabilities, quenching of zonal flow drive by

drift wave spectrum modification, and others. The formal solution of equation (2.12) can be

rewritten as WZF = αα−1
2 Wdrift, and Wdrift = (1 + α2α−1

2 �ω−1)−1γL/�ω. Because of the

production of zonal flow, the usual fluctuation saturation level is ‘screened’ by the factor of

(1 + α2α−1
2 �ω−1)−1 as compared to the level γL/�ω. Thus, the nonlinear stabilization of

turbulence may be dominated by the zonal flows shearing channel, instead of the usual mixing
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process, i.e. α2α−1
2 �ω−1 > 1. In this case, the turbulent transport coefficient is reduced by

the factor of α−2α2�ω.

χi = α2�ω

α2

χi,0, (3.6.15)

where χi,0 is the predicted thermal conductivity in the absence of the zonal flow. Obtaining an

explicit formula for the nonlinear suppression mechanism (the term α2) is a topic of current

research, and a final answer has not yet been determined. However, if one employs one example

from the model of nonlinear reduction of zonal flow drive, one has

χi = 1

1 + τ 2
c v2

z q
2
r

χi,0, (3.6.16)

where vz ≃ Vd is the saturation velocity of the zonal flow, qr is the wavenumber of zonal flow

and τc is the correlation time of turbulence. In the vicinity of the stability boundary, where the

correlation time of turbulence is expected to be very long, the reduction of turbulent transport

is quite strong. If the drive of turbulent transport becomes stronger (i.e. going further from

marginality) and τcvzqr ≃ 1 holds, then the parameter dependence of χi becomes similar to

that of χi,0.

(iii) Role of GAM. When the damping of zonal flow is strong, γdamp > γLα/ω2, the zonal

flow may not be excited, but the GAM is still driven. As is discussed in section 3.3.2, the

fluctuation levels are suppressed by a factor of (1 + τcτc,GAM〈k2
θ Ṽ

2
GAM〉)−1, where ṼGAM is the

E × B velocity associated with the GAM, and τc,GAM is the autocorrelation time of the GAM.

In the large-amplitude limit, the suppression factor is given by equation (3.3.19).

This suppression factor is derived for the condition that the source of turbulence is

unchanged. As discussed in section 3.1.3, the GAM is subject to collisional damping. The

saturation mechanism and saturation level of the GAM have not yet been determined. Links

between the driven GAM and poloidally asymmetric cross-field transport have been suggested

[209]. The accumulation of fluctuation energy in a finite poloidal region, which is coupled

to zonal flow dynamics, has also been discussed [210]. The calculation of turbulent transport

which is regulated by GAM is left for future research.

4. Numerical simulations of zonal flow dynamics

4.1. Introduction

DNS studies have played a crucial role in the development of research on zonal flows. The

perceived synergy between the theory and DNS has been a key promoter of interest in the

physics of the zonal flows. Although the technical details of direct numerical simulation

techniques are beyond the scope of this review, the physical results of nonlinear simulations

are reviewed here, in order to illustrate the elementary dynamics of, and processes in, the drift

wave–zonal flow system.

There are several steps in reviewing the understanding which has been facilitated by DNS.

These should be addressed in sequence. The first is modelling, i.e. reduction to basic equations

appropriate for relevant geometry. Although the rate of development of computational power

has been tremendous, the direct computational solution of the primitive nonlinear plasma

equations (such as the Klimontovich or Vlasov equations in real geometry and for actual size

devices) is still far beyond the computational capability of even the foreseeable future. Thus,

reduced modelling has been employed to simplify the basic dynamical equations. The main

representative models and hierarchical relations among them are explained in appendix B.
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Figure 23. Contour of electrostatic potential from the simulation of [8].

(Keywords for various reduced equations are explained in this appendix.) The second is the

selection of important elementary processes in zonal flow and drift wave systems. Here we

focus on the following issues: (i) generation of zonal flow by turbulence, (ii) shearing of

turbulence by zonal flow, (iii) coexistence of zonal flow and drift waves, (iv) nonlinear states,

(v) collisional damping, (vi) dependence on global plasma parameters and (vii) nonlinear

phenomena. For these elementary processes, the results of DNS are explained below. Third,

several important features of zonal flows have been discovered by DNS studies. Therefore, the

historical development is also described, though the discussion is bounded by considerations

of brevity.

The observation of zonal flow by DNS has been reported in the last two decades for

various types of plasma turbulence. Figure 23 is one early example [8], in which the formation

of a quasi-symmetric isopotential contour, loosely resembling that of a magnetic surface, is

demonstrated. These contour structures indicate the presence of a banded poloidal E×B flow,

called a zonal flow.

It should be stressed again that the objective of the explanation here is an illustration of

elementary physical processes of zonal flows. The examples are chosen primarily from the

DNS of core turbulence, i.e. ‘gyro-Bohm’ drift-ITG turbulence. It is well-known that the

progress in the DNS studies for plasma turbulence and zonal flows is not limited to this class

of examples. Readers are suggested to refer to related reviews on DNS of the subject (for

instance, see [211]). In the following subsections, the progress in DNS of drift-ITG turbulence

with zonal flow is reviewed together with the specification of simulation methods.

4.2. Ion temperature gradient driven turbulence

4.2.1. Models and geometry. Research on zonal flows in the plasma physics simulation

community has exploded in the 1990s and still continues so, to date. This happened as it

became more obvious that, independent of the simulation method, simulation domain and

boundary conditions, zonal flows play a dominant role in regulating ITG-driven turbulence,

which is a prime candidate for the anomalous ion heat transport ubiquitously observed in most

plasmas in tokamaks [18]. This progress also paralleled the advances in both gyrokinetic and

gyrofluid simulation methods for various geometries. We summarize the highlights of this

story in a roughly chronological order.
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Exploiting the governing equations of plasma microturbulence, gyrokinetic simulations

are based on the nonlinear gyrokinetic description of plasmas, in which the full charged particle

kinetic dynamics in a strong magnetic field is simplified, using the disparity between the spatio-

temporal scales of the phenomena of interest, and the scale of the magnetic field inhomogeneity

and the gyro-period as leverage. As a consequence, the gyro-center distribution function

is defined in a five-dimensional phase-space, after decoupling and elimination of the gyro-

motion. The perpendicular velocity enters parametrically. The wavelengths of instabilities

can be comparable to the size of an ion gyro-radius. Some DNS approaches use the particle-

in-cell simulation method, which is Lagrangian in character (i.e. particles are pushed) while

others use the continuum Vlasov approach which is Eulerian in character (i.e. the gyrokinetic

equation is solved as a partial differential equation). While, to date, most simulations in toroidal

geometry have used the conventional nonlinear gyrokinetic equation [212], which ignores the

parallel acceleration nonlinearity which is formally weaker, some simulations [213] have used a

fully nonlinear energy-conserving form of the nonlinear gyrokinetic equation [214]. Gyrofluid

models are then derived from the gyrokinetic equations by taking moments [215]. Some kinetic

effects, such as linear Landau damping and a limited form of nonlinear Landau damping, have

been included in gyrofluid models while others have not. Most notably, gyrofluid models do

not accurately treat nonlinear wave–particle interaction.

Regarding simulation geometry, global simulations typically use a domain which spans

a macroscopic fraction of the tokamak volume. Annular domains are sometimes used as

an option. Radial variation of gradient quantities, such as temperature gradient and magnetic

shear, is allowed in global simulations. Of course, questions concerning mean profile evolution

persist. Flux-tube simulations are restricted to a local domain of a few turbulence correlation

lengths and assume the existence of a scale separation between the turbulence and equilibrium

profiles, and so do not accurately represent mesoscale dynamics. Typically, radially periodic

boundary conditions are used and the gradient quantities are treated as constant within a

simulation domain.

4.2.2. Adiabatic electrons and conventional collisionless gyrokinetic ions. We start from the

simplest case of the collisionless limit in order to explain some of the key elements of zonal

flow DNS. In this subsection, illustrations are given on the issues of (i) generation of zonal

flow by turbulence, (ii) shearing of turbulence by zonal flows, (iii) coexistence of zonal flow

and drift waves and some aspects of (iv) dependence of dynamics on global parameters.

Historical overview. While zonal flows with large radial scales (the system size—so as

to render them indistinguishable from mean flows) were observed in ITG simulations in a

simple geometry in the early 1980s [216], it was in early gyrofluid [99] and gyrokinetic [217]

simulations of toroidal ITG turbulence, where fluctuating sheared E × B flows driven by

turbulence with a radial characteristic length comparable to that of ambient turbulence (several

ion gyro-radii), began to appear and attract attention. These simulations were either quasi-local

in the flux-tube domain [17, 19, 99, 217], or in a sheared slab geometry [156]. On the other

hand, early global gyrokinetic simulations of ITG turbulence either did not address [218, 219]

or did not find the effects of fluctuating E × B flows [220] on turbulence to be significant. The

reason for this is as follows. Early global gyrokinetic simulations [219, 220] had relatively

small system size (in ion gyro-radius units), and consequently had rather sharp radial variations

of pressure gradient. Zonal flows with scale lengths of the system size have been the dominant

feature in these simulations [220]. In other words, the simulation domain was so small that

it was effectively impossible to distinguish between zonal and mean flows. Even as more
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(a) (c)(b)
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Figure 24. The radial size of turbulent eddies shown in coloured contour of ambient

density fluctuation gets reduced due to the random shearing by self-generated E × B zonal

flows from gyrokinetic particle simulation, (a) and (b) (from [18]). (c) is quoted from

http://fusion.gat.com/comp/parallel/gyro gallery.html.

codes were independently developed, this qualitative difference between global simulations

[213, 221] and flux-tube simulations [99, 217] continued, and fomented lingering doubts as to

the proper treatment and possible existence of such fluctuating flows. However, as computing

power became sufficient to handle larger system size, the finer scale flows began to appear

in global gyrokinetic simulations [213], although its effect on steady-state transport was not

observed to be as significant as that seen in the flux tube simulations.

The importance of these small-scale zonal flows in regulating turbulence in the tokamak

has begun to be widely appreciated, as gyrokinetic simulations [18] in both full torus and

annulus geometry (with various boundary conditions), for which radial variations of the

pressure gradient are mild, have produced results which demonstrate the importance of the

fluctuating flows with qualitatively similar characteristics as those in flux-tube simulations

[19, 52, 99]. The inclusion of zonal flows in gyrokinetic simulations [18] significantly reduces

the steady state ion thermal transport, as reported earlier [52, 99]. Figure 24 illustrates some of

the characteristic results for the effects of zonal flows on ITG turbulence. Isodensity contours

are shown. Fluctuations in the presence of zonal flow, figure 24(a), have shorter correlation

lengths and lower saturation levels, in comparison to the case where zonal flows are suppressed,

figure 24(b). A similar illustration for non-circular plasma is reproduced as figure 24(c).

The dynamics of coupling between drift waves and zonal flow has been explicitly analysed

by DNS. This simulation has directly tested the physics of the modulational instability process,

as well. Figure 25 illustrates the generation of zonal flow by turbulence and the back reaction

of zonal flow shear onto that turbulence. In this study, the ITG turbulence freely grows to

a saturation, with zonal flows suppressed. This generates a stationary spectrum or ‘gas’ of

ITG modes. (Thick solid line, being followed by thin solid line (c).) In the second run, the

turbulence first develops to saturation without zonal flow, but then flow evolution is restored

to the system (after t ≃ 40 Ln/cs in this simulation). The zonal flow then starts to grow

exponentially (thin solid line (a) plotted on a logarithmic scale), and reaches a new stationary

state. As the amplitude of the zonal flow increases, the turbulence level decreases. (Thick

solid line (b).) Note that the new stationary level is much smaller than the reference case.

The modulational instability of a zonal flow spectrum to a test shear is thus established by the

observed exponential growth. The reduction in the turbulence level confirms the expectation

that the zonal flow shearing will reduce turbulence levels.
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Figure 25. Temporal evolution of the amplitude of the zonal flow, on log scale (a), and turbulence

level (b) and (c) on linear scale [15].

Figure 26. kr spectrum of the ambient density fluctuation from gyrokinetic particle simulation is

broadened due to random shearing of eddies by self-generated E × B flows (- - - -) [222].

The shearing of turbulence by zonal flow is also clear. The key mechanism of the

turbulence suppression is as explained in section 3. One new significant finding from this

simulation is a broadening of the kr spectrum of turbulence due to self-consistently generated

zonal flows, as shown in figure 26. It is in agreement with the expectation that an eddy’s radial

size will be reduced as shown by the contours of density fluctuations in figure 24. These also

agree (qualitatively) with theoretical expectations of the reduction of radial correlation length

due to the shearing by E × B flow [9, 10]. The quantitative analysis of the turbulence shearing

rate is explained below.

The zonal flows observed in simulations [18, 99, 222] contained significant energy in

k − ω bands, with radial scales and frequencies comparable to those of the turbulence. It

was therefore of vital importance to extend the nonlinear theory of turbulence decorrelation

by the mean E × B flow shear [9, 10] to address the effect of rapid-time-varying E × B flow

shear in regulating turbulence. This was needed for a better quantitative understanding of

the nonlinear simulation results. An analysis of the nonlinear gyrofluid simulation results

indicated that the instantaneous E×B shearing rate associated with self-generated zonal flows

exceeds the maximum linear growth rate by an order of magnitude, while the turbulence

fluctuation amplitude definitely remained above the thermal noise level, and the ion thermal
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transport remained significantly anomalous [222]. This was somewhat puzzling since in the

cases with mean E × B shear flows, which are now either measured or calculated from data in

existing toroidal devices, many leading experimental teams observed that their plasmas made

transitions to enhanced confinement regimes [206, 223, 224] when the E × B shearing rate

in general toroidal geometry [11] exceeded the linear growth rate of microinstabilities in the

absence of the E × B shear. This puzzle can be resolved by considering the following points.

One thread of thought is to look at fine space–time scales of zonal flow shearing

rate. Fluctuating sheared E × B flows play an important role in saturating the turbulence

[17, 19, 99, 156, 217]. These flows are typically of radial size krρi ∼ 0.1, but contain of a

broad kr spectrum of shears. Since the E × B shearing rate is proportional to k2
r φ, the high

kr component of φ, although small in magnitude, can contribute significantly to the E × B

shearing rate. Indeed, for |φk|2 ∼ k−α , the shear spectrum actually increases with k (until FLR

effects, etc, kick in), i.e. |Vk|2 ∼ k4−α , unless α > 4, which is unlikely. The instantaneous

E × B shearing rate, which varies in radius and time, can be much higher than the maximum

linear growth rate for a significant portion of the simulation domain. An example is shown in

[145]. Of course, shearing effects depend on the lifetime of the shearing pattern, as well as on

the shear strength, as discussed in section 3.6.

Specifically, using gyrofluid-simulation zonal flow spectra and time-history data to

calculate the correlation time of zonal flows, the effective shearing rate in [222], which reflects

the fact that fast-varying components of the zonal flow shear are relatively ineffective in

shearing turbulence eddies, has been evaluated for each kr. It has a broad peak at low to

intermediate kr, and becomes smaller at high kr, as shown in figure 3 of [222]. Higher k

components of the shear flows, while strong, have short correlation time. Overall, this rate is

comparable to the linear growth rate. This seems qualitatively consistent with considerable

reduction, but not the complete suppression, of turbulence (as observed in simulations).

The expression for the effective shearing rate is presented in section 4.5. where we discuss the

role of GAMs [68]. The instantaneous E × B shearing rate from global gyrokinetic particle

simulations is also dominated by high kr components, and varies roughly on the turbulence

time scales as reported in [145]. It is much larger than the maximum linear growth rate for a

significant portion of the simulation domain.

The other thread of thought is to reconsider the heuristic rule-of-thumb estimate for

turbulence quenching, γE×B ≃ γL [19]. Though handy and dandy, this formula has several

limitations. First, the nonlinear theory [9–11] tells that γE×B should be compared to the

turbulent decorrelation rate, γNL, not to γL. It should be noted that it is much easier to calculate

γL than γNL, so that this is one reason why many experimental results were ‘analysed’ in this

simplified context. While γL can be used as a rough measure of strength of ambient turbulence

when an estimation of γNL is not available, the limitation of this approximation is obvious.

The dependence on global parameters in the collisionless limit is discussed here. One

finding of DNS is the complete suppression of the ITG mode near the linear stability boundary.

In the regime of a weak linear growth rate, the initial value problem of DNS showed that the

ITG turbulence can first grow but is then quenched by the induced zonal flow. This zonal flow

can be strong enough to reduce the ion thermal transport to a value which is nearly zero, within

the resolution [225] of the simulation. Such transient evolution, and later quench of turbulence

have been confirmed by DNS. This is the so-called Dimits shift, indicating a nonlinear upshift

of the threshold for an ITG-driven thermal fluxes. In essence, the Dimits shift regime is one

where expansion free energy is transferred to the zonal flows, with relatively little remaining in

the drift waves. As a result, the heat flux versus gradient curve is ‘upshifted’—hence the name.

The Dimits shift regime is, to a large extent, a consequence of the approximation of zero or very

low collisionality. A well-known example is from a simplified set of equilibrium parameters
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Figure 27. Dependence of ion thermal conductivity by ITG turbulence on the ion temperature

gradient (collisionless limit). from [225].

from the case of DIII-D H-mode plasma [225]. For this particular set of parameters, the

critical value of the ion temperature gradient has been effectively increased from R/LTi = 4 to

R/LTi = 6 due to the undamped component of zonal flows. Note that both linear and up-shifted

thresholds are, in general, functions of s/q, Te/Ti and R/Ln. Figure 27 illustrates the turbulent

transport coefficient in a stationary state as a function of the ion temperature gradient ratio. In

collisionless simulations, turbulence is completely quenched slightly above the linear stability

threshold. The upshift of the threshold for the onset of turbulence is observed. When the

driving source of turbulence (temperature gradient in this case) becomes larger, the turbulence

level starts to increase, as summarized in figure 27.

It has been emphasized that low-frequency turbulence in confined plasmas should be

considered as a self-regulating, two-component system consisting of the usual drift wave

spectrum and zonal flows [15]. One of the early indications for the coexistence of the zonal

flow and turbulence is shown in figure 28. In this simulation, the coexistence of drift waves

(with finite kθ , and frequencies comparable to the diamagnetic frequency) with the poloidally

symmetric (ky = 0) short-scale-length zonal flow perturbations (here, called radial modes) is

clearly demonstrated.

The partition of the excited energy between the turbulence and the flows is explained in

section 3. The partition has also been examined in the DNS. While the gyrokinetic approach

is desirable for quantitative studies of this issue, as demonstrated in [225], a simpler model

can illustrate the main trend. One of the examples from a fluid simulation of toroidal ITG

turbulence is presented in figure 29 [226]. Near the linear stability boundary, nearly all of

the energy is carried by the flow. When the temperature gradient (and consequently the linear

growth rate γL) increases, both the turbulence energy and flow energy increase. As is explained

in section 3.5, the rate of increment of the turbulence energy and that of the flow energy are

dependent on the nonlinear saturation mechanism for the zonal flow. Theoretical analysis is

in qualitative agreement in this issue of energy partition, but has yet to provide a satisfactory

quantitative answer. In particular, the branching ratio between zonal flow and drift wave

turbulence is set by the ratio of wave growth to flow damping (collisional and otherwise). For

modest collisionality, near threshold, Eflow/Ewave ∼ γL/γdamp.

An approach to the total quench of turbulence in the Dimits shift regime has also been

studied in DNS. Transient bursts of turbulence energy have been observed in direct simulations
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Figure 30. Transient burst of ITG turbulence and associated transport in the collisionless

limit [178].

with various levels of modelling. The evolution was studied in the context of various models,

e.g. in the convection problem [177] and a detailed Vlasov model of one-dimensional ITG

turbulence (near the stability boundary) [178]. Figure 30 illustrates an example of the results

of the Vlasov model study.
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Figure 31. Transient evolution of the poloidal flow and approach to the RH zonal flow.

K(t) = φ(t)/φ(0) is the normalized potential and time is normalized to τii (from [43]).

Before closing this subsection, a distinction caused by the models is noted. Global

gyrokinetic particle simulations and flux tube gyrofluid simulations display many common

features of the physics of zonal flows, despite differences in simulation methods, simulation

domains and boundary conditions. However, the following quantitative difference between

them exists. Short wavelength components of zonal flows are more prominent in flux-

tube gyrofluid simulations, as compared to gyrokinetic simulations. However, according to

estimation from nonlinear gyrofluid simulation, most of the shearing is done by the low to

intermediate kr part of the zonal flow spectrum. Since the long wavelength components of

zonal flows are more prominent in global gyrokinetic simulations, as compared to the flux-

tube gyrofluid simulations, one can speculate that the higher value of steady state ion thermal

diffusivity typically observed in gyrofluid simulation (in comparison to that seen in gyrokinetic

simulation) is partially due to an underestimation of the low kr component of the zonal flows.

These components of zonal flows which are undamped by the collisionless neoclassical process

[42] were inaccurately treated as completely damped in the original gyrofluid closure [99].

This undamped component of the zonal flows [the Rosenbluth–Hinton (RH) zonal flow] is of

practical importance because it can upshift the threshold value of the ion temperature gradient

for ITG instability.

4.2.3. Simulations with additional effects: neoclassical damping of zonal flows, nonadiabatic

electrons and velocity space nonlinearity. Other fundamental issues of the zonal flow are

its neoclassical (both collisional and collisionless) damping, nonadiabatic electron effects and

phase-space dynamics. We now discuss these effects.

The aforementioned example of the RH zonal flow [42] illustrates the importance of

correct treatment of zonal flow damping in predicting the levels of turbulence and transport.

This motivated further research on the neoclassical damping of zonal flows and its effect on

turbulence. When E × B flow is initialized in a toroidal plasma and allowed to relax in the

absence of turbulence and collisions, its poloidal component is damped due to the variation of

B in the poloidal direction. The damping occurs due to the ‘transit-time magnetic pumping’

[72], and in the long term it evolves to a finite RH residual flow level.

The collisionless neoclassical process (transit-time magnetic pumping) induces decay of

the flow. The evolution of the flow could be viewed as a superposition of the RH zonal flow

of zero frequency and the GAM oscillation, which decays via transit-time magnetic pumping.

In figure 31, the evolution of the electrostatic potential (averaged over the magnetic surface)
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Figure 32. Ion heat conductivity in nonlinear gyrokinetic simulations with R/LT = 5.3 versus the

ion–ion collision frequency [51].

is illustrated, where the initial condition is chosen as a high amplitude zonal flow. A simple

adiabatic electron model and the one which includes electron effects and electromagnetic

effects are compared in DNS [97]. The simple model of adiabatic electrons captures an essential

part of the physics, as zonal flows in this system are mostly governed by ion dynamics, more

specifically the neoclassical polarization shielding [42] and geodesic curvature coupling. In

the long term, the flow converges to a level predicted by neoclassical theory [42].

In the banana collisionality regime, this short (transit) time scale, collisionless damping

accompanied by GAM oscillation is followed by a slower collisional damping. A decay of

zonal flows due to ion–ion collisions occurs via a number of different asymptotic phases [43],

but most of the damping occurs on a time scale τii ≃ ε/νii, as summarized in section 3.1.5.

The important role of collisional damping of zonal flows in regulating transport has

been nicely demonstrated by gyrokinetic particle simulations [51]. Even a very low ion–

ion collisionality, which is typical of core plasmas in present day tokamaks, was enough to

enhance the turbulence level by reducing the amplitude of the zonal flows. The changes

in the linear growth rates of ITG modes were negligible. Near and beyond the ITG linear

threshold, collisional damping of zonal flows was responsible for a non-zero level of ion

thermal transport, and thereby effectively softened the nonlinear upshift of the ITG threshold.

Equivalently stated, the presence of collisional damping eliminated the Dimits shift regime.

Figure 32 shows the turbulent transport coefficient as a function of the ion collisionality for

the parameters of R/LT = 5.3. This parameter is in the Dimits shift regime (i.e. practically

no turbulent transport, although the ITG is linearly unstable) for vii = 0. As the ion collision

frequency increases, the level of zonal flow is reduced, and the turbulent transport increases

concomitantly, as predicted by theoretical models. The theory of collisional damping of the

zonal flow explains this parameter dependence well. Note again that the linear growth rate

γL is essentially not influenced by the ion collision frequency, for this set of parameters.

The change of the turbulence transport is not caused by a change in γL, but by the damping rate

of the zonal flow. It is worth emphasizing here that the turbulent transport coefficient often

has very different dependence on global parameters, in comparison to those of γL. This is a

simple consequence of self-regulation—flows damp the drift waves and collisions damp the

flows, so collisions (more generally, zonal flow damping) ultimately regulate the turbulence.

A schematic drawing of the self-regulation is illustrated in figure 33.

It should be noted that system states are not always fixed points. Near the threshold,

the two-component system consisting of zonal flows and ambient turbulence has exhibited a
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Figure 33. Schematic illustration of the self-regulation. In the circle on the right, ‘energy return’

indicates the process of energy return to drift waves (being investigated).

bursty cyclic behaviour, with a period proportional to the zonal flow decay time ∼ τii ≃ ε/νii.

It is interesting to note that this is a well-known feature of a predator–prey type dynamical

system which has been widely used in transport barrier formation models [227, 228]. More

details on the effect of collisional zonal flow damping on ITG turbulence and transport from

gyrofluid simulation with flux boundary conditions were recently reported [229]. In this study,

the authors reported that the increase in the zonal flow E × B shearing rate is responsible for

the increase in the energy confinement as one decreases the collisionality. It is worthwhile

noting that this simulation confirms that the transport reduction occurred via the reduction in

fluctuation amplitude, via the shearing mechanism we discussed in detail in section 3.6.

We note that a theory [196] suggesting that most transport reduction due to E×B shear flow

comes from the change in phase relation between the fluctuating radial velocity (transporter)

and the quantity which is transported (transportee) has been proposed. Significant theoretical

disagreements have emerged concerning this claim [197, 230]. Indeed, simulations in [229]

show that the change in the cross-phase was negligible while transport varied significantly.

An example is quoted in figure 34. The same conclusion can also be drawn [231] from the

proportionality between transport and fluctuation intensity during the bursting phase observed

in [51]. Thus, indications at present favour amplitude reduction as the primary mechanism for

transport quenching.

Nonadiabatic electron response (which depends on collisionality) can also change the

linear drive of ITG instability. Thus, it is of practical interest to address how the electron–ion

collisions can modify transport near marginality i.e. in the Dimits shift regime via their effect

on electrons. From continuum gyrokinetic simulations in flux-tube geometry [232], results

indicated that the nonlinear upshift of the ITG threshold decreases as the electron–ion coll-

sionality decreases, and the nonadiabatic electron contribution to the linear drive increases.

At higher collsionality, nonadiabatic electron effects get weaker, and a significant nonlinear

upshift occurs, as predicted by ITG simulation with adiabatic electron response. The con-

comitant increase in turbulence and zonal flow amplitudes due to growth enhancement from

trapped electrons can be sufficient to drive the zonal flows into a strongly nonlinear regime,

where collisionless (nonlinear) flow damping significantly exceeds the now familiar colli-

sional damping, thus breaking the scaling of fluctuation intensity with collisionality. Indeed,

some hints of a robust nonlinear saturation process for zonal flow were observed in a recent

global PIC simulation of CTEM turbulence [233]. The influence of nonadiabatic response
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Figure 34. Cross-phase evaluated at the radial position where the ZFs are persistently localized

(r/a = 0.8) for all the simulations with ρ∗ = 0.02 versus time. γpfd , the poloidal damping rate

normalized to cs/qR, is varied as indicated [229].

of electrons is also illustrated in figure 35. Two cases, without and with, are compared. The

two-dimensional power spectrum of the flux surface-averaged electrostatic potential for elec-

trostatic adiabatic electron turbulence is shown. The zonal flow spectrum is narrowly peaked

about ω ≃ 0, together with the peak at the GAM frequency. The spectrum for electromagnetic

kinetic electron turbulence shows a more turbulent zonal flow spectrum. In the presence of

nonadiabatic response of electrons, the power spectrum of the zonal flow component becomes

wider [233]. Thus, seemingly paradoxically, collisionless electron effects can alter the colli-

sionality scaling of drift wave turbulence. Of course, for larger vee, the nonadiabatic electron

response decreases, thus restoring collisionality dependence via the zonal flow damping.

Some global simulations have suggested there is an interesting link between zonal flows

and ‘non-locality phenomena’ in drift or ITG turbulence. ‘Non-local phenomena’ is a catch-

all which generically includes mesoscale dynamics associated with avalanches, turbulence

spreading, etc. Of particular note here is turbulence spreading [234, 235], and the mesoscale

patterns which form in drift–zonal flow systems. Figure 36 shows a spatially inhomogeneous,

and in fact highly corrugated and structured, pattern of turbulence level intensity and zonal flow

radial electric field. Simply put, the turbulence level is large in the Er trough and relatively

small in regions of strong Er shear. Such a pattern was quite likely formed by a process

where by: (i) a finite region of instability produced growing fluctuations, (ii) these fluctuations

naturally drove zonal flow (with preferred radial wave length) growth, implying a concomitant

decrease in their intensity levels, and the formation of fluctuation intensity gradients, (iii) the

steepened intensity gradient in turn stimulated turbulence spreading via the spatial scattering

associated with nonlinear mode coupling, and (iv) the subsequent growth of the zonal flows,

following the spreading turbulence. The corrugated fluctuation intensity profile may be thought

of as a ‘turbulence suppression wave’, which is at first propagating, and later standing. Of

course, some additional physics is necessary to explain the apparent quenching of turbulence

at Er maxima. For this, zonal flow curvature effects on turbulence (which is explained in

section 3.4.6) are likely candidates. Flow curvature can squeeze or dilate fluctuation wave

structures, and thus has an effect which is sign-dependent.
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(a)
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Figure 35. Frequency spectrum of the zonal flows in collisionless trapped electron mode (CTEM)

turbulence. Note a peak of pure zonal flow near ω = 0 and that at GAM frequency ωGAM = vThi/R.

The influence of nonadiabatic response of electrons is illustrated. The case without (left) and with

(right) are shown. In the presence of nonadiabatic response of electrons, the power spectrum of

zonal flow component becomes wider [233].

Tertiary instabilities have been discussed in DNS results by a number of authors. For

instance, the growth rate of the tertiary instability for an observed zonal flow structure has been

reported in [53] and is reproduced in figure 37. The simulation has suggested the possibility

that the growth of the zonal flow is quenched by the onset of the tertiary instability. (A similar

argument was advanced by [237] in the case of ETG.)

Most simulations mentioned above have used the conventional nonlinear gyrokinetic

equation [212], which ignores the velocity space nonlinearity. The latter is formally smaller

than the E × B nonlinearity. It is commonly believed that this omission of velocity space

nonlinearity does not cause a serious problem, if one focuses on practically oriented issues,
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Figure 36. Snapshots of the zonal E × B flow, ITG amplitude and effective temperature profile in

the nonlinear stage [236].

Figure 37. Growth rate of tertiary instability [53].

such as the comparisons of the linear growth rates, turbulence and transport levels in the post

nonlinear saturation phase, etc. However, the conventional nonlinear gyrokinetic equation fails

to obey the fundamental conservation laws, such as energy (of particles and fluctuation fields),

and phase-space volume, at a non-trivial order. For longer times, well after the initial nonlinear
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Figure 38. Asymptotic convergence of the turbulent transport in the collisionless limit from [243].

saturation of turbulence, even very small errors in the governing equation can accumulate in

time, regardless of the computational method, and muddy the physics predictions. A recent

simulation [236] in cylindrical geometry used a fully nonlinear energy conserving and phase-

space conserving form of the nonlinear gyrokinetic equation [214]. The importance of using

governing equations with proper conservation laws is demonstrated in this series of simulations,

with and without velocity space nonlinearity. The authors reported that neglecting velocity

space nonlinearity in an ITG simulation resulted in undesirable consequences. The energy was

no longer conserved between particles and fluctuating fields, and a precious indicator of the

quality of numerical integration was lost. The zonal flow pattern and the radial heat transport

pattern were affected as well.

It is worthwhile noting that velocity space nonlinearity of electrons has been considered

in the context of the electron drift kinetic equation for the drift wave problem in a sheared

slab geometry [238]. See also the extended description in [2] on velocity space nonlinearities

and the related phenomena [238–243]. In this regard, it should be appreciated that, it is not

computationally straightforward to reproduce the collisionless limit by the present simulation

schemes. In the case of large ion temperature gradient, strong turbulent transport is predicted

even in the collisionless limit, as is illustrated in figure 27. Under this condition, Vlasov

plasma simulation is performed with a sufficient resolution, and an asymptotic limit is shown

to reproduce the collisionless limit, as is demonstrated in figure 38.

4.3. Electron temperature gradient-driven turbulence

ETG-driven turbulence is considered to be one of the candidates for causing anomalous elec-

tron thermal transport. Since it produces little ion thermal transport and particle transport,

its possible existence cannot be easily ruled out by a variety of experimental observations

on different transport channels. Fluctuations with wavelengths and frequencies as predicted

by ETG theory have not been fully observed to date (except that the observed short-wave

length fluctuations on TFTR by Wong et al [244, 245] has a possibility of being the ETG or

current-diffusive ballooning mode [142]). There are plans to measure such short-wavelength

fluctuations in NSTX [246], DIII-D [247] and C-Mod [248]. ETG is almost isomorphic to

ITG in the electrostatic limit, with the role of electrons and ions reversed. If this isomorphism

were perfect, ETG turbulence at electron gyro-radius (∼ρe) scale would produce electron

thermal transport χETG
e ∼ √

me/miχ
ITG
i which is too small to be relevant to tokamak plasma

experiment. Here, χ ITG
i is ion thermal transport expected from the electrostatic ITG at the
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Figure 39. Two-dimensional contour of the electrostatic potential perturbation of ETG turbulence

near the q-minimum surface x = 0 [54].

ion gyro-radius scale. A more detailed explanation for the isomorphism between ITG and

ETG is given in appendix A. This isomorphism is broken if one considers zonal flows in

the nonlinear regime or Debye shielding effects [54]. As stated in the preceding section, for

ITG turbulence, a proper electron response with δne/n0 = e(φ − 〈φ〉)/Te, was essential to

obtaining an enhanced zonal flow amplitude [156]. On the other hand, for ETG turbulence, the

ion dynamics asymptotes to a pure adiabatic response δni/n0 = −eφ/Ti, as it is unmagnetized

for k⊥ρi ≫ 1. Equivalently, both ETG mode and ETG-driven zonal flows have adiabatic ions.

For this pure adiabatic ion response, the role of the zonal flow in regulating turbulence was

expected to be weaker than that for ITG turbulence. This is a consequence of the fact that

the adiabatic ion response effectively increases the zonal flow inertia. For this case, flux-tube

gyrokinetic continuum simulations suggest that radially elongated streamers can be generated

and might enhance electron thermal transport significantly [249]. At present, there exists

significant qualitative differences in ETG simulation results regarding the level of transport

produced by ETG turbulence [250–252].

It has been reported [249] that transport is reduced significantly for negative or small

magnetic shear and large Shafranov shift. See also [253–255]. Global gyrokinetic

particle [54] and global gyrofluid [251] simulations in a sheared slab geometry near qmin,

found that transport is substantially reduced in finite magnetic shear regions regardless

of its sign, as compared to the region near the qmin surface. This result is in semi-

quantitative agreement with the fact that a state with zonal flows can become unstable

to KH instability, but only in the absence of the strong stabilizing influence of magnetic

shear [9].

An illustration of the zonal flow is reproduced here in figure 39. This case treats the ETG

turbulence in the vicinity of the radius where the magnetic shear vanishes (i.e. the ‘q-minimum’

surface). It is noticeable that the zonal flows are reduced in the vicinity of the minimum-q

surface. Away from the minimum-q surface, the zonal flow is strongly excited. It has also

been noted [54] that for some tokamak plasma parameters, the electron Debye length λDe can

be larger than the electron gyro-radius ρe, and thus can make a quantitative difference in ETG

turbulence-driven zonal flows.

It is noteworthy that a gyrofluid simulation of ETG turbulence, which completely neglects

ETG zonal flows [250], obtained a transport level only a factor of 2 or 3 higher than the

insignificant value expected from a naive mixing-length estimation based on ETG turbulence

at the electron gyro-radius scale χETG
e,ML (i.e. ‘electron gyro-Bohm scaling’). We note that in

[249], the radial size of streamers is comparable to the size of simulation domain, invalidating
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the assumptions of spatial scale separation for flux-tube simulations, and that in [250],

unrealistically small system size was assumed. More recent global gyrokinetic particle

simulations, with system size comparable to an actual experiment, show that the transport

level is quite modest (similar to the result of [250]) even in the presence of radially elongated

streamers [251].

Despite recent theoretical progress on electron zonal flow damping [102], which is the

electron counterpart of the ion zonal flow damping [42, 43], it appears that understanding of

zonal flow physics in ETG turbulence has not matured to the level of understanding of that for

zonal flows in ITG turbulence.

4.4. Fluid simulations with zonal flows

Zonal flows have been widely studied in the geophysical and planetary fluid mechanics

community, as recently summarized in [256]. Zonal flow generation due to inverse cascade

has been theoretically predicted [4] for the Hasegawa–Mima (HM) system [257] which

is isomorphic to the quasi-geostrophic or Rossby wave equation first derived by Charney

[258, 259]. Zonal flow generation observed in simulations of the HM-Rossby system as a

consequence of inverse cascade is combined with the crossover at the Rhines scale [260] from

a dispersive-wave-dominated, weak turbulence regime at large scales to a strong turbulence

regime at small scales [261]. The Rhines scale is that scale at which the fluid particle circulation

frequency (i.e. turbulent decorrelation rate) equals the three-Rossby-wave frequency mismatch.

Thus, the Rhines scale, lRhines, is set by a competition between nonlinearity and dispersion (due

to polarization drift). The Rossby dispersion relation, ω = −βRkyk
−2
⊥ (where βR is a coefficient

to show the gradient of Coriolis force and ky is the wavenumber in the longitudinal direction

(see section 5.2 for a more detailed explanation), implies that for scales longer than the Rhines

scale, non-zero triad couplings require one component to have ky = 0, meaning it is a zonal

flow. Thus, for l > lRhines, the dynamically preferred mechanism of nonlinear interaction is

seen to involve zonal flow generation. The crucial role of the polarization nonlinearity in zonal

flow generation was also confirmed.

Following the pioneering work on zonal flow self-generation in the Hasegawa–Wakatani

(HW) system [8], turbulence-driven zonal flows have also been observed in the nonlinear

simulations of various fluid turbulence models [262–267]. Their radial scales were typically

of the order of a fraction of the simulation domain. In the multi-helicity case, both flows

and energy transfer between flows and ambient turbulence oscillate in radius and turbulence

suppression by zonal flow was weaker. Large coherent vortices around low-order rational

surfaces were found to participate in the generation of zonal flows [268].

A new issue in zonal flow physics was pointed out by Wakatani in conjunction with the

control of resistive wall mode (RWM) [269]. RWM stability is strongly dependent on plasma

rotation. Wakatani showed that the perturbation-driven torque (divergence of the Reynolds–

Maxwell stress) tends to decelerate the flow velocity at the rational surface. This would be an

origin of the nonlinear instability. That is, when the plasma rotation frequency decreases, RWM

becomes more unstable because the lower real frequency enhances the Ohmic dissipation in

the resistive wall.

4.5. Edge turbulence

4.5.1. Outstanding issues. While zonal flow physics is well developed in the context of

drift-ITG turbulence, appropriate to the core, a consistent quantitative picture of even the

simulation results remains elusive for the case of edge. Several groups are currently working
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Figure 40. Frequency spectrum of the zonal flows from gyrofluid simulation of edge drift-Alfven

turbulence [276]. Note a significant intensity spectrum from zero frequency all the way up to the

GAO frequency ωGAO, without a distinct single peak.

on this important problem, and have published mutually exclusive results and interpretations.

A review of this subtopic would be premature. (One can nevertheless mention that at edge,

the relative importance of the GAM and sidebands become higher. Figure 35 illustrates the

coexistence of the dominant zero-frequency zonal flow and the weak GAM oscillation of the

flow intensity spectrum in a core. A different set of edge turbulence simulation results, shown

in figure 40, indicates (a) that the zonal electrostatic potential spectrum is more continuous

and connects directly to the GAM portion of the spectrum, (b) the flow spectrum in which the

GAM component is almost invisible, even on a log scale and (c) the sideband (m = 1) pres-

sure perturbation, which is shown to be dominant over the zero-frequency component.) Hence,

we simply refer the reader to the more detailed description in [2] and to the current literature

[270–276].

4.6. Short summary of the correspondence between theoretical issues and numerical

results

4.6.1. Survey of correspondence. As is stressed throughout this paper, the explanation of

simulation studies in this section does not aim for an exhaustive review of the simulation

of zonal flow, but rather strives to illuminate the understanding of zonal flow which has

emerged together with the theory, and to identify to what extent the theoretical understanding

has been verified by DNS. For this reason, the emphasis is on the ITG-ZF cases, and the

example figures are limited. It would be useful, after listing some DNS results, to summarize

the correspondence between theoretical modelling and DNS. Table 9 illustrates key issues,

sections of this review and corresponding figures from DNS. It is clear that the theory and

simulation have cooperated to advance the understanding of drift wave–zonal flow systems.

Further research can be expected to improve understanding considerably.

4.6.2. On transport coefficients. The results of global transport studies may attract broader

interest, in particular from experimentalists. A short note is added here.

The ITG mode has been studied most intensively. Simulation observations include:

(a) Upshift of the critical temperature gradient for the onset of turbulent transport [277–279]

ηc,DNS > ηc,lin where ηc,DNS is the critical temperature gradient above which turbulent

transport occurs and ηc,lin is the linear stability boundary. In between two critical values,

ηc,DNS > ηi > ηc,lin, turbulent transport remains very close to zero but the zonal flow
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Table 9. Correspondence between the presentations of theory and corresponding examples of

computational results.

Section for Example of

theoretical computational

Key issue explanation result (figure #)

Linear process

Eigenfrequency Sections 3.1.1, 3.1.2 35

Collisional damping Section 3.1.3 31

RH undamped flow Section 3.1.4 31

Generation by turbulence Section 3.2 23, 24, 25, 28

Growth rate Sections 3.2.1, 3.2.2 25

Suppression of turbulence Section 3.3 24, 25, 27

Stretching vortex Section 3.3.2 26

Effect on cross-phase Section 3.6.2 34

Nonlinear interaction

Tertiary instability Section 3.4.1 37

RPA and diffusion approach Sections 3.4.3, 3.4.4 25

Wave trapping Sections 3.4.6, 3.4.7 36

Broadening of ZF spectra Section 3.4.8 40

Dynamical evolution Sections 3.5.1, 3.5.3

Steady state and energy partition

Weak instability case

complete suppression Sections 3.5.1, 3.5.6 27

role of collisional damping Section 3.5.1 32

quench via transient burst Section 3.5.1 30

Strong instability Sections 3.5.3–3.5.5 27, 29

Coherent structure Sections 3.4.6, 3.4.7

Other effects

Nonadiabatic electrons 35

Electromagnetic effects Section 3.2.6 35

ETG mode Appendix A 39

Collisionless dissipation 38

energy dominates, for weak zonal flow damping. The determination of the critical gradient

at the onset of turbulence is a subject of current research, and is explained in section 3.5.6.

(b) Recovery of mixing levels of χi at higher gradient: χi ∝ (ηi − ηc,DNS)
1–2 as ηi exceeds

ηc,DNS [226, 277–279], and χi ∝ (ηi − ηc,DNS)
0 as ηi ≫ ηc,DNS [277–279].

A major gap in the findings from numerical simulations of the physics of drift–ITG–zonal

flow turbulence is a systematic exploration of at least the two-dimensional parameter space

of zonal flow damping (γdamp) and deviation from marginal stability (i.e. δηi ≡ ηi − ηc,lin).

A possible ‘third axis’ would measure the strength of nonadiabatic electron effects. Even for

the pure ITG case, a systematic exploration of the (γdamp, δηi) parameter space has not been

undertaken. Such a study could help answer many questions, such as: (i) finding the cross-

over point between collisional and collisionless saturation; (ii) understanding and elucidating

the relevance of various nonlinear saturation mechanisms for zonal flow, such as trapping,

nonlinear scattering, tertiary instability and the role of the phase between the zonal potential

and zonal temperature [279]; (iii) understanding the effect of nonlinear drift wave noise on

zonal flow saturation. The thorough completion of such a study should be a high priority for

future DNS investigations.
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Figure 41. Rotating sphere. Coordinates on a rotating sphere are: the x-axis in the direction

of latitude (from pole to equator), y-axis in the direction of longitude and z-axis in the vertical

direction. Propagation of Rossby wave in the westward direction.

5. Zonal flows in planetary atmospheres

This section presents a survey of zonal flow phenomena elsewhere in nature. Special emphasis

is placed upon the origin and dynamics of belts and zones in the Jovian atmosphere. The

physics of the Venusian super-rotation, is discussed as well. The relationship between zonal

flow generation and the magnetic dynamo problem has already been discussed in section 3.2.6.

These considerations enter here, as well.

5.1. Waves in a rotating atmosphere

5.1.1. Rossby waves and drift waves. The large-scale dynamics of planetary atmospheres are

those of thin layers of rapidly rotating fluids. The close similarity between drift wave dynamics

and the dynamics of rapidly rotating fluids at low Rossby number (where the Rossby number,

Ro, is the ratio of the vorticity or eddy turnover rate of the motion to the rotation frequency ωF),

called geostrophic fluids, has long been appreciated [4]. The interested reader is referred to

[2] for an extended description of the analogy, and also to [280, 281] for further discussion. In

such a regime, the fluid stream function ψ evolves according to the quasi-geostrophic equation

(in the coordinates in figure 41):

D

Dt

(

∇2
⊥ψ − ωF,z

gHm

ψ

)

− 2
∂ωF,z

∂x

∂ψ

∂y
= 0. (5.1.1)

Here, the analogue of the diamagnetic frequency is the gradient of the Coriolis frequency

2∂ωF,z/∂x and the analogue of the gyro-radius is the Rossby radius of deformation ρR =√
gHm/ωF,z. Hm refers to the thickness of an atmospheric scale height. Rescaling according

to |2ρR∂ωF,z/∂x|−1t → t , x/ρR → x, y/ρR → y, and (2|∂ωF,z/∂x|)−1ρ−3
R ψ → ψ ,

equation (5.1.1) then takes the form

∂

∂t
(∇2

⊥ψ − ψ) + [ψ, ∇2
⊥ψ] − ∂ψ

∂y
= 0, (5.1.2)

where [f, g] = (∇f ×∇g) · ẑ, which is identical to the HM equation [4, 257, 259]. Since HM

systems are known to support zonal flows, it is not surprising that zonal flows are ubiquitous

in planetary atmospheres.
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5.1.2. Zonal flows and the Rhines scale. Because of the similarity of the normalized

equation (5.1.17) to the HM equation in plasma dynamics, the understanding of the zonal

flow generation, Rossby wave soliton and the suppression of the Rossby wave by zonal flow

is readily extended using the methods in section 3.

There arises a critical wavenumber kc, above which the nonlinear enstrophy cascade gives a

power law spectrum as |ψk|2 ∝ k−4. with kc = (ρR/4L|ψ |)1/3, where kc is normalized, L is the

horizontal gradient scale length of ωF,z (in the direction of latitude) and |ψ | is the normalized

stream function [4]. Below this critical wavenumber, a global structure such as zonal flow

appears. This scale, known as the Rhines scale [259], may be estimated by comparing the

three-wave frequency mismatch for Rossby wave interaction with the eddy turnover rate for

two-dimensional turbulence, i.e. by comparing �ωMM = ωk − ωk′ − ωk′′ with kṼk . Note that

for scales smaller than k−1
c , wave dynamics are effectively irrelevant, as the eddy decorrelation

rate exceeds the wave frequency. For scales longer than the Rhines scale, the turbulence is

weak, so that the three-wave resonance condition must be satisfied. Since k2
⊥ρ2

R is finite,

dispersion makes this difficult. Thus, three-wave resonance is most easily achieved if one

mode has ky = 0, so that it is a zonal flow. Note that this picture suggests, that: (a) zonal

flows are the ultimate repository of large scale energy of the two-dimensional inverse cascade

in a geostrophic system, (b) geostrophic turbulence is a three component system, composed of

eddies, Rossby waves and zonal flows. The significance of the Rhines length for determining

the scale of zonal flow excitation is nicely illustrated in [261]. Application to the giant planets,

Jupiter and Saturn, has been discussed by Hasegawa [282] and many other authors.

The nonlinearity becomes important if the normalized amplitude of vorticity ∇2ψ becomes

unity. This is the case if the flow velocity reaches the level (in the case of the earth, where

V ∼ |ρ2
R∂ωF,z/∂x| ∼ 50 m s−1 for the horizontal scale length ky ∼ ρ−1

R ∼ 10−6 m−1. The

azimuthal mode number (i.e. corresponding to the poloidal mode number) is then in the range

of a few to ten.

5.2. Zonal belts of Jupiter

One cannot have heard about or contemplate the topic of zonal flows without the vivid image

of the belts of Jupiter coming to mind, at least for an instant. While several of the giant planets

exhibit zonal flows in their atmospheres, we focus the discussion on the case of Jupiter, in the

interests of brevity.

The planet Jupiter consists primarily of a fluid molecular hydrogen, with a solid core of

metallic hydrogen. It is enormous, with an equatorial radius of 7.14×104 km and rotates quite

rapidly, so that 1 Jovian day lasts only 9.9 h. The core of the planet is also very hot, so that the

gas envelope is convectively unstable. Thus, the atmosphere is quite dynamic and turbulent.

The rich variety of visible structures we normally tend to associate with the Jovian atmosphere,

such as zonal belts, the Great Red Spot vortex, KH billows, etc, all live in the weather layer, a

thin two-dimensional (spherical) surface layer which is stably stratified, and thus acts as a ‘rigid

lid’ on the convectively unstable interior. Thus, the phenomena of the weather layer are the

visible projections of the dynamics of the cloud tops, in turn, driven by the convective dynamics

of the planetary interior, which are hidden from view. In this respect, the situation resembles

that of solar physics before the advent of helioseismology, when researchers were forced to

deduce aspects of the convection zone dynamics by watching their photospheric manifestations,

or that in radar surveillance of ocean dynamics, where one attempts to uncover the structure

of ocean internal waves and currents by studying their modulations of the surface wave field.

The turbulence of Jupiter is driven by thermal buoyancy, and is strongly affected by

rotation, so that the Rossby number Ro is exceedingly low (i.e. Ro ≡ ω̃/ωF ≪ 1, where
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Figure 42. Schematic drawing of convection phenomena in the Jovian atmosphere. A schematic

depiction of zonal belt formation in the secondary bifurcation scenario is also shown. Northern

and southern projections of the Taylor column onto the weather layer with tilting modulation and

bifurcation. (Based on [256].)

ωF is the planetary rotation rote and ω̃ is the vorticity of the fluid motion). Thus, the Taylor–

Proudman theorem applies. This theorem states that in the presence of strong rotation, fluid

flow tends to form columnar cells (i.e. ‘Proudman Pillars’) aligned with the axis of rotation,

so as to minimize the energy expended on the bending of vortex lines. In the case of Jupiter,

the cells in the interior are Taylor columns aligned with the axis of rotation of the planet.

As shown in figure 42, the lower boundary condition on the columnar motion is the no-slip

condition, applied at the surface of the metallic hydrogen core. This, of course, implies that

an Ekman layer must connect the rigid surface to the rotating columns. The upper boundary

condition is vz = 0 at the weather layer, consistent with the ‘rigid lid’ imposed by the stable

stratification there. The basic characteristics and turbulence physics of the Jovian atmosphere

are summarized in table 10.

The dominant role of rotation in the dynamics of the Jovian atmosphere, together with

the rigid lid and no-slip boundary conditions, imply that the evolution may be described using

a two-dimensional thermal Rossby wave model, which evolves the fluid potential vorticity

and the potential temperature along trajectories determined by geostrophic velocities. In this

model, which is structurally similar to the curvature-driven ITG turbulence model, the free

energy source is the temperature gradient, released by buoyancy drive. A critical value of the

Rayleigh number Racrit ∼ O(104) [256] must be achieved for instability. Finite frequency,

which enters via the diamagnetic frequency in the case of plasmas, appears here via β-effect,

i.e. the gradient in the Coriolis frequency. For significant deviations from the critical Rayleigh

number Racrit, large transport will result. The Jovian atmosphere is quite strongly turbulent

and the effective Reynolds number of the weather layer is high. This is in sharp contrast to the

case of a tokamak plasma, where the effective Reynolds number is low, i.e. Re ∼ 10–100, at

most, and the turbulence is more akin to wave turbulence than strong hydrodynamic turbulence.

Given this situation where the essential core dynamics are obscured by cloud cover, it is

not surprising that (at least) two schools of thought on the origin of zonal belts have arisen.

These are

(i) a secondary bifurcation approach (coherent), developed by Busse and his collaborators

[256] and extended by several other authors [284–292]. This scenario accounts for the

appearance of zones via the coherent modulational instability of an array of convection

cells.
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Table 10. Comparison and contrast of the Jovian atmosphere and toroidal system dynamics.

Jupiter Toroidal system

Basic characteristics

Free energy ∇T ∇T , ∇n, etc

Rotation �rot ≫ ωk �c,i ≫ ωk

Rossby number Ro ≡ ω̃/�rot ≪ 1 Ro = k2
⊥ρ2

i eφ̃/T ≪ 1

Effective Reynolds

number

Strong turbulence Reff ∼ 10–100

wave turbulence

Velocity Geostrophic E × BB−2

Turbulence physics

Instability Thermal Rossby Drift-ITG

Frequency β-effect Diamagnetic

Cell structure Taylor–Proudmann

columns

Ballooning modes,

extended along B0

Threshold Ra > Ra,c [R/LTi > R/LTi]crit

Eddy Rising thermal plumes Ballooning envelope fragments

Transport Turbulent transport D, χ ∼ Dgyro-Bohm

Basic structure Belts, zones n = 0, kr finite, electrostatic fluctuations

Location Surface, ‘Weather layer’ Core and edge of confined plasmas

Mechanism for

generation

(i) Secondary bifurcation of

convection column tip cells

Modulational instability of

wave spectrum

(ii) Inverse cascade in weather layer

with β-effect

Large-scale

dissipation

Ekman friction Rosenbluth–Hinton friction

Anisotropy β-effect Flow-minimal inertia

Flow and

fluctuation model

Same Flow 2D (n = 0) and

fluctuation 3D, with k‖vth,e > ωk

Bifurcated state Belt formation L-mode, ITB, ETB

(ii) the inverse cascade scenario (turbulent), developed by Hasegawa [282] and by Marcus and

collaborators [283], which builds, in part, on the ideas of Rhines. This approach seeks to

explain the appearance of zonal belts via an inverse energy cascade in β-plane turbulence,

which is forced stochastically by the planetary atmosphere. Thus, two-dimensional

turbulence is forced by rising plumes, which randomly impinge on the weather layer,

thus energizing its motions.

Here, we briefly discuss the essential features of both approaches. The assumptions and

logic of the two scenarios are summarized in figure 43. The key elements of Jovian zonal

flow physics are listed in table 10, which includes a comparison to corresponding aspects of

tokamak zonal flow physics.

Figure 42 encapsulates the quasi-coherent, secondary bifurcation scenario. The idea here

is that a modulational (or ‘tilting’) instability occurs in the array of Taylor columnar vortices.

The tilting instability is an extension of that originally analysed by Howard and Krishnamurti,

and subsequently studied by many others. As a consequence, the cellular ‘footprints’ of these

columns on the weather layer also undergo tilting instability, thus tending to amplify zonal

shears and cause the development of belts. In this scenario, the number of zones is determined

by the number of unstable columnar cells which ‘fit’ into the fluid interior region of the

atmosphere. At high latitudes, near the polar regions, granules rather than belts are expected,
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Figure 43. The assumptions and logic of the two scenarios.
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Figure 44. Cartoon of the secondary bifurcation scenario, after figure 6 of [284].

since the columnar cells sense both the no-slip lower boundary condition at the surface of the

metallic hydrogen layer, as well as the rigid lid boundary condition at the weather layer. Thus,

belts are limited to lower latitudes, where both ‘ends’ of the Proudman pillar pierce the weather

layer. This is consistent with observations of the Jovian atmosphere.

It is interesting to note that, as Ra is increased, the bifurcation sequence closely resembles

that familiar from the formation of the transport barrier. As shown in figure 44, starting from

Racrit, thermal transport (as quantified by the Nusselt number Nu) increases with Ra. At a

second critical Rayleigh number called Rabif , generation of secondary flows begins. This

generation is accompanied by an alteration of the convection pattern structure, in that cells are

tilted, sheared and distorted by the zonal flows. As Ra increases beyond Rabif , the Nusselt

number decreases with increasing Ra, while the zonal flow energy increases, symptomatic

of heat transport suppression and the increased channelling of free energy into zonal flows,

rather than convection cells. At higher values of Ra, tertiary bifurcations, vacillations, cyclic

phenomena, etc are predicted to appear, as well [256, 284–286]. This is shown in figure 44.

Not surprisingly for this scenario, the mean zonal flow pattern exhibits north–south symmetry,

modulo some correction for the effects of the great Red Spot, which appears in the southern

hemisphere. In the Busse scenario, the scale of zonal bands is set by the eigenvalue for

secondary bifurcation, implying a band scale which is set by some fraction of the box size.
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The second scenario is that of an inverse cascade on a β-plane, as proposed by Marcus,

building upon the ideas of Rhines. In this scenario, rising plumes from the convection zone

constitute a source of forcing for the two-dimensional inverse cascade on a β-plane. The

forcing term is proportional to ωF∂Vz/∂z, where ∂Vz/∂z is necessarily large in the weather

layer, on account of the stable stratification there. On forcing scales, the nonlinearity is strong,

so an inverse cascade develops toward large scales, with Kolmogorov spectrum E(k) ∼ k−5/3.

Anisotropy develops as a consequence of β, via an extension of the mechanism of Rhines.

The Rhines mechanism is based on the observation that on a β-plane the eddies have a finite

frequency, corresponding to the Rossby wave frequency ω = βkxk
−2
⊥ . At low k, such waves

are strongly dispersive, so that triad interaction is severally inhibited, except for domains with

kx = 0. The preference of nonlinear interaction for such states of high symmetry explains the

tendency to form zonal bands. Note that the Rhines length effectively defines the scale size

on which enstrophy enters. The onset of such band formation occurs at large scales when the

eddy turnover rate drops to the level of the wave frequency, i.e. kṼ = βkxk
−2
⊥ , so that the

Rhines scale, which demarks the onset of zonal structure, is (Ṽ /β)1/2. The inverse cascade is,

in turn, damped by scale-independent Rayleigh friction, associated with Ekman damping, etc.

Not surprisingly, the frictional damping plays a crucial role in the model, as the Rosenbluth–

Hinton scale-independent friction term does in the plasma zonal flow problem. Marcus et al

emphasize that three conditions are necessary for zonal flow formation, in addition to rapid

rotation, convective instability and large ∂Vz/∂z in the weather layer, which we have already

established. These are that the size of the vorticity advection nonlinearity must

(a) exceed the frictional damping on the forcing scale. Otherwise, energy cannot couple to

the Rhines scale and thus anisotropy cannot develop.

(b) exceed the strength of the β-effect, i.e. ky∂ωF /∂x on forcing scales. Otherwise, energy

will be coupled to Rossby waves, rather than zonal flows. Of course, a spectrum of Rossby

waves can be unstable too, and thus amplify zonal perturbations, as discussed in this paper.

The implications of this secondary mechanism have not been addressed by Marcus et al.

(c) exceed the viscous damping. Otherwise, energy will be dissipated so that structure

formation will not be possible.

In the Marcus scenario, the number of bands is determined via energy balance by the

system parameters, such as the forcing strength (related to the heat flux), the frictional damping,

etc. In addition, tertiary KH instability may enter the determination of the band structure by

limiting the strength of zonal vorticity. While Marcus and collaborators have assembled good

computational arguments that large scale structure formation will occur if criteria (a)–(c)

(above) are satisfied, further research is necessary to clarify the issues related to the details of

pattern selection, such as band scale, number of bands, etc.

Predictably, work subsequent (i.e. [288–290]) to the initial efforts of Busse et al and

Marcus et al paints a picture of zonal flow phenomena which combines aspects of both

outlooks. Of particular note is a recent paper by Jones et al [288], which builds upon and

extends earlier studies by Brummell and Hart [289] and Christensen [290]. In particular, Jones

et al emphasize the importance of scale-independent frictional drag, which is isomorphic in

structure to Rosenbluth–Hinton collisional damping but originates in the friction between the

Proudman pillars and the weather layer and inner core. Such friction appears to play a key

role in setting the number of zonal bands in the system, for a given set of parameters. The

width of an individual band, however, is close to that of the Rhines scale, and exhibits a similar

parameter scaling. This is somewhat interesting in that the other results of Jones et al appear

consistent with the secondary bifurcation scenario of Busse, yet the band scale size is set by

the competition between nonlinearity and dispersion, as predicted by Rhines and Marcus. In
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Busse’s scenario, the zone scale is set by the box size. Finally, Jones et al report the appearance

of cycles or ‘bursty phenomena’, which are very similar to the corresponding cyclic system

states discussed in section 3. As before, here the cycles consist of alternating intervals of

instability growth followed by quenching by the shearing action of the zonal flows. The scale-

independent damping sets the duration of the interval between the maximum of the zonal flow

shear and the return of buoyancy-driven turbulence, as does the Rosenbluth–Hinton friction in

the case of ITG turbulence.

A related line of work in the geophysical fluid dynamics community is concerned with

three-dimensional studies of convection driven dynamos in systems bounded by rapidly rotating

spheres (for example [291, 292]). In this case, several interesting phenomena appear. First,

zonal magnetic fields, as discussed in section 3, can be generated and are observed. Second,

both mean field 〈J〉 × 〈B〉 forces and turbulent magnetic stresses can react back on the fluid

flow, causing a quench or termination of the shear amplification process. This reduction in

shearing effects, in turn, leads to an increase in heat transport and, in some cases, an increase in

dynamo activity. The latter occurs when the ‘gain’ due to enhanced convective turbulence levels

outweighs the ‘loss’ of the �-effect (i.e. shear amplification of magnetic fields). Moreover,

cyclic dynamo and zonal field evolution are observed. Ongoing work here is focused on the

exploration of extremes of the possible regimes of Prandtl and magnetic Prandtl number.

5.3. Superrotation of the Venusian atmosphere

Another interesting mystery in the dynamics of planetary atmosphere is the superrotation of

Venus [293, 294]. By ‘superrotation’, we mean a fast zonal flow with an azimuthal speed in

excess of the rotation velocity of the planet itself! Indeed, Venusian winds can reach 100 m s−1

at altitudes of 60–70 km, which is about 60 times faster than the speed of the planet. This

remarkable observation naturally suggests that the planetary wind results from some processes

of self-organization of thermally driven convective flow in the Venusian atmosphere, which is

similar to the mechanism of zonal flow generation.

The key questions pertinent to the generation of zonal flows in the atmosphere of Venus

are: (a) what is the mechanism of symmetry breaking which seeds zonal flow generation? and

(b) what are the implications of three-dimensional geometry? In this regard, note that the

Venusian atmosphere is not thin.

Regarding (a), the conventional wisdom is that superrotation results from a tilting

instability, the initial symmetry breaking for which results from the motion of the solar

heating. This is called the ‘moving flame mechanism’. Another possibility for symmetry

breaking is convection driven flows between day and night sides of the planet (i.e. thermal

winds) [295]. Other mechanisms involve thermal tidal pumping [287] and Hadley circulation

pumping mechanism [296], which involves a horizontal eddy viscosity. Regarding (b), recent

results [297] indicate that the moving flame mechanism is viable in two-dimensional (though

the cell-temperature perturbation is a critical element of the dynamics, contrary to initial

expectations), but fails in three dimensions, since the basic flow is stable in spherical geometry

[285]. Thus, attention is shifting to the tidal pumping and Hadley mechanisms. Clearly,

much further research is necessary in order to understand the superrotation of the Venusian

atmosphere.

6. Extensions of theoretical models

To supplement the theory of zonal flows explained in section 3, some advanced extensions are

described in this section. The first topic is the streamer, which has a lot of similarity to the
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zonal flow but can have a quite different influence on the drift wave turbulence and transport.

The second issue is the statistical nature of the zonal flow. While the mean field instability

growth associated with the negative viscosity effect, explained in section 3, is essential to

the dynamics of zonal flow, noise can be important, as well. Thus, the probability density

function (PDF) for the dynamical quantities in the system of drift wave–zonal flow can have

non-Gaussian properties, and the noise can have great influence on some global parameters of

interest (e.g. heat flux, transition boundary, etc). The third is the non-Markovian nature of the

system dynamics. These issues belong in the realm of advanced research on the zonal flow,

and are discussed briefly in this section. Finally, a method of theoretical analysis of the zonal

flow (based on reductive perturbation theory), which is complementary to the one explained

in section 3, is briefly addressed. An extended description on related development (including

streamers [298–306]) is given in [2].

6.1. Noise effects and probabilistic formulations

Background turbulence that induces zonal flow has a short correlation time, so that the driving

force for zonal flow has a component that rapidly changes in time. The driving force by

turbulence, on the average, acts to cause the growth of the zonal flow as is explained in section 3.

In addition to the ‘negative viscosity effect’, which drives zonal flow growth, there is noise

excitation of zonal flow scales due to incoherent emission from drift waves [15, 42, 50, 307].

A systematic description of the statistical average and the noise has been given in the

literature [50, 307]. A calculation using the eddy-damped-quasi-normal-Markovian (EDQNM)

approach has been discussed in detail in [307]. By use of the action of drift waves Nk and

the enstrophy of zonal flows Zq , a set of balance equations for the system dynamics has been

derived. Detailed calculation is left to the references, but the noise term is explained here. For

long wavelength evolution, one finds

∂

∂t
Zq = 2γqZq + Żnoise

q , (6.1.1)

where γq is the growth rate of the zonal flow. Note that a stationary solution is possible only

when γq < 0, which requires confrontation of the problem of nonlinear saturation of zonal

flows. Here Żnoise
q is the long time average magnitude of the mean square of the noise term, i.e.

Żnoise
q = q4

∑

q

k2
yk

2
x

(1 + k2
⊥)4

Reθq,k,−kN
2
k , (6.1.2)

where θk,−k,q is the triad interaction time of three waves [13, 307]. In this expression, γq must

include the effect of nonlinear stabilization, so that γq may be negative at finite amplitude,

which is necessary for any (meaningful) stationary state. By use of such a balance equation,

the role of noise pumping has been analysed [50]. The possibility of bifurcation has been

pointed out. Obtaining and understanding such a γq is a subject for ongoing research, and the

full solution of this problem is left to future studies.

6.2. Statistical properties

It is well-known that a statistical approach is needed to treat the probability density function

[16, 308, 309]. In order to clarify the implications of statistical theory on the understanding

of the relevant phenomena, it is useful to consider models which discuss low dimensional

systems. One may write a Langevin equation to study the statistical property of the quantity

X which is the subject of interest:

∂

∂τ
X + [�0(X) + �1(X)w1(τ )]X = w0(τ )g. (6.2.1)
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In this equation� is the (nonlinear) damping rate, which can be nonlinear and which can contain

multiplicative noise w1(τ ), g is the magnitude of the noise source and w0(τ ) represents the

noise. (It is not necessary to specify the rhs of equation (6.2.1) as Gaussian white noise. What

is necessary is that the autocorrelation time of the noise must be much shorter than the relevant

time scale �−1.)

Non-Gaussianity of the PDF is caused either by the nonlinearity in the damping rate �, or

by the dependence of the noise source g on the quantity X, or by multiplicative noise entering

via the damping rate. An example of a problem involving multiplicative noise is zonal flow

growth in the presence of avalanches. This scenario is a simple example, of multiplicative

noise. Note that multiplicative noise necessarily changes the structure of the Fokker–Planck

equation, so that the PDF is, in general, non-Gaussian.

There have been some basic studies of the effect of noise on bifurcation transitions and

transport barrier formation, but in general, the theory of zonal flow and transport barrier

dynamics with noise remains terra nova. Note that the interplay of avalanches with zonal

flows and barriers gives another perspective on the problem of the interplay of zonal flows and

streamers, discussed previously.

6.2.1. Instantons. It has been known that the large amplitude drift wave takes a form of

‘modon’ [310, 311]. Modon solutions can be used as a basis for a theory of instantons in

drift wave turbulence. Instantons are temporally localized solutions which correspond to

trajectories of least action. Instanton solutions are those of steepest descent, and so dominate

the time-asymptotic PDF. They thus serve as tractable models of intermittency phenomena.

Schematically speaking, nonlinear drift waves have an ‘anti-shielding effect’, which

corresponds to vortex coalescence. (An explicit illustration by direct numerical simulation

is seen in [261].) A longer lifetime is expected for a larger-amplitude modon, so that a

stretched, non-Gaussian PDF is obtained [55, 312, 313]. The PDF of the local Reynolds stress

R was then obtained from the fluctuation PDF. The Reynolds stress PDF P(R) was found to

be of the form:

P(R) ∼ exp

(

−C

κ
R

3/2

)

, (6.2.2)

where κ is the mean-square noise forcing, and C stands for a normalization coefficient that

includes the effect of the spatial shape of the modon. In this case, an exponential tail is obtained.

In addition, as the external forcing becomes larger, the tail extends to a larger value of R. The

divergence of R is the torque that drives plasma flow. This result suggests that the noise source

for the zonal flow, which has been discussed in previous sections, is given by a non-Gaussian

distribution. Further research in this direction is needed.

6.2.2. Nonlinearity in noise. In the renormalization model for drift waves, the noise

related to g is a function of the amplitude of the turbulence [16, 188, 189, 302, 309, 314–

316]. This gives small but finite power-law tails in the study of multiple-scale turbulence

and bifurcation. The presence of non-Gaussian tails suggests that large-scale but rare events

could play a dominant role in determining the average. A detailed calculation of the turbulent

noise has been developed in [317] and has been applied to the case of zonal flow excitation

[49, 307].

The role of turbulent noise is particularly important when one studies subcritical

bifurcation. A dynamical model for a relevant, reduced degree of freedom has been

developed for the L–H transition [318]. A Langevin equation for the radial electric field

in the plasma edge X = eρpEr/T is derived. The damping term in (6.2.1) is given
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as �X = (1 + 2q2)−1(qR/ρsecsni)Jr, where Jr is the normalized current. As has been

discussed in a model of the L–H transition, the deterministic equation for steady state thus

becomes �X = 0 with multiple solutions for X. The noise amplitude g is dependent

on X, so we have a case of nonlinear noise. The stationary solution for the PDF of X,

Peq(X), may be expressed as Peq(X) ∝ g−1 exp(−S(X)) by use of the nonlinear potential

S(X) =
∫ X

4�(X′)g(X′)−2X′ dX′. The minimum of S(X) (apart from a correction of order

ln g) predicts the most probable state of X. The phase boundary is

S(XH) = S(XL) + 1
2

ln(�L/�H), (6.2.3)

where �L,H = 2|X∂�X/∂X| at X = XL,H. This is an extension of the Maxwell construction

rule in the thermodynamics. The statistical average of the gradient-flux relation Qr [p′] is

derived. The transition rate from one metastable state to a more stable state is calculated

by use of the nonlinear potential [318], in a manner similar to the Kramers barrier transition

calculation [319]. Statistical averages determine the boundary of the phase [320].

Related topics include self-organized criticality (SOC) models [321–330] and observations

of avalanche phenomena in DNS [155, 331–334], for which [2] provides supplementary

explanations.

6.3. Non-Markovian theory

The nonlinear analysis explained in section 3 was presented in simplified limits. One is the

limit where the turbulent decorrelation of drift waves is absent, that is, a drift wave-packet has

two integrals of motion. As a consequence, drift wave-packets are considered to move on a

surface in phase-space set by the initial conditions. These BGK-type solutions are addressed.

The other is the limit in which the turbulent decorrelation of drift waves is so fast that the

Markovian approximation is used to model nonlinear interactions. In general, the nonlinear

decorrelation time of drift waves is not zero, even though it may be short. Non-Markovian

theory is necessary to treat the intermediate cases [335]. Recent advances in this direction are

discussed in this section.

6.3.1. Hamiltonian structure of the dynamics. The conservation property of drift waves

in the presence of zonal flow is expressed by the invariance of the action along rays, e.g.

equation (3.4.7).

The action conservation equation is a Hamiltonian equation for the wave-packet density.

In order to consider this statistical dynamics property, the response of wave-packets in the

presence of the zonal flow described is reduced perturbatively. One writes N(x; k, t) =

〈N(x; k, t)〉+Ñ(x; k, t), where 〈N(x; k, t)〉 is an average over temporal variations with respect

to zonal flows, and Ñ(x; k, t) denotes the deviation. The dynamical equation for 〈N(x; k, t)〉 is

an example of a Zwanzig–Mori equation. For an intermediate scale zonal flow, k ≫ Kr ≫ L−1
n ,

a non-Markovian phase-space kinetic equation of the form is obtained:

∂

∂t
〈N(x; k, t)〉 − Lw,0〈N(x; k, t)〉

=

∫ t

0

dt ′
{

∂

∂x
· D

XX(t − t ′) ·
∂

∂x
+

∂

∂x
· D

XK(t − t ′) ·
∂

∂k

}

〈N(x; k, t ′)〉

+

∫ t

0

dt ′
{

∂

∂k
· D

KX(t − t ′) ·
∂

∂x
+

∂

∂k
· D

KK(t − t ′) ·
∂

∂k

}

〈N(x; k, t ′)〉,

(6.3.1)



Topical Review R137

where DXX, DXK , DKX and DKK are 2 × 2 tensors, given by

DXX
i,j (t − t ′) =

〈

VZF,i(x, t)VZF,j (x(t | t ′), t ′)
〉

, (6.3.2a)

DXK
i,j (t − t ′) =

〈

VZF,i(x, t)WZF,j (x(t | t ′), k(t | t ′), t ′)
〉

, (6.3.2b)

where DKX and DKK are given by replacing VZF and WZF accordingly, WZF = −∂/∂x(k ·VZF),

and i, j stand for the x and y directions. (The tensor form is necessary if one considers

poloidal inhomogeneity, as is discussed in section 3.3.4.) If the Markovian approximation

is now employed, one finds D
αβ

i,j =
∫ t

dt ′Dαβ

i,j (t − t ′), where α, β vary over X, K . The two

quantities DXX
x,x and DKK

y,y reduce to what has been previously obtained in the limit of the short

lifetime of the drift waves.

Equation (6.3.1) describes the evolution of drift waves in the presence of a statistical

ensemble of zonal flows. First, it is a non-Markovian equation, and includes the finite memory

time. Second, this equation includes cross-interaction between the wavenumber space and the

real space. Note that the cross-interaction terms are also derived in the diffusion approximation.

As a noticeable consequence of the non-Markovian effect, [335] illustrated super-diffusion and

sub-diffusion phenomena in the transient response. (The cross-interaction term is small for

the pure zonal flow case.)

The Kubo number K may be defined as the ratio of the decorrelation time of drift waves to

the bounce frequency of wave-packets in the trough of the zonal flow, K = ωbounce/γdrift. The

analyses in sections 3.5.4, 3.5.5 and 3.5.7 are developed for K < 1, while that in section 3.5.6

is given for the limit K → ∞. (For the details of the bounce frequency, see section 3.5.6.)

Equation (6.3.1) allows a study that covers a wide range of the Kubo number. Evaluations of

the Lagrangian correlations in the rhs of equation (6.3.2) have been studied by using of the

method of decorrelation trajectories [336–338]. Analysis of these effects has begun [181].

One important fact is that the poloidal wavenumber of drift waves ky is no longer constant

when the E × B flow exhibits the poloidal asymmetry. This is in contrast to the case of

stationary and purely m = 0 zonal flow. The transparency of the analysis which was brought

by the introduction of the WKE could be maintained by introducing Casimir invariants for the

Hamiltonian dynamics with multiple fields [339]. New insights will be given by future research.

6.4. Envelope formalism

The zonal flow problem belongs to the class of problems concerned with understanding

interactions in multi-component systems, with each component having its own range of

characteristic space–time scales. So far, we have discussed two approaches to the multi-

scale interaction problem. The first uses parametric (modulational) theory, and is based on a

modal interaction expansion. The second is wave kinetics and adiabatic theory, and is based

on a description employing rays and eikonal theory. A third multi-scale expansion approach

exists, and is commonly referred to as the envelope formalism. This section is devoted to

describing the envelope formalism approach to the zonal flow problem.

The envelope formalism uses reductive perturbation theory to develop a description in

terms of the dispersion relation of a rapidly varying carrier wave (associated with the primary

perturbation) and the amplitude of a slowly varying intensity envelope, associated with the

mean field. The envelope evolves slowly in space and time, as compared to the carrier. The

envelope formalism complements the parametric and wave kinetic approach in that:

(a) it is not restricted by the structure inherent to a modal expansion, and thus can represent

a wider and richer class of nonlinear phenomena (i.e. solitons, collapse, etc) than simple

parametric theory can.
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(b) it is not restricted to an eikonal description, and so can capture the physics of the

competition between diffraction and nonlinearity, unlike wave kinetics.

Anticipated by Landau, the rigorous envelope formalism was pioneered by Newell and

Whitehead [35] in 1969, with the aim of describing secondary pattern formation slightly above

marginality in Rayleigh–Benard convection. The most notable application of the envelope

formalism in plasma physics is to the classic problem of Langmuir turbulence and Langmuir

collapse, as studied by Zakharov in 1972 [110]. It is worth mentioning here that the Zakharov

equations are the coupled envelope equations for the amplitudes of the electric field E and

density perturbation ñ in Langmuir turbulence, i.e.

− 2iωpe

∂

∂t
E = ñE − γ v2

The∇2E, (6.4.1a)

∂2

∂t2
ñ − c2

s ∇2ñ = ∇2|E|2. (6.4.1b)

Depending on dimensionality, initial conditions and the number of degrees of freedom, many

different nonlinear phenomena, including soliton formation, collapse, secondary radiation,

etc, can be described using this simple model. The simplicity and flexibility of the Zakharov

equations have greatly stimulated interest in both Langmuir turbulence and in the application

of the envelope formalism to other multi-scale nonlinear problems. The first application of

the envelope formalism to convective cell dynamics (and thus zonal flows) was by Taniuti and

collaborators in 1979 [340], and an extension of Sagdeev et al [5] was given using the full

systematology of reductive perturbation methods in [341].

Here, we discuss only an especially simple application of the envelope formalism

[342, 343] to the problem of zonal flow generation in drift wave turbulence. We consider

a plasmas in two-dimensional geometry with Ti = 0, but with a mean E × B flow. To

implement the envelope formalism, we write eφ̃/Te = N exp i(k · x − ωt) + c.c. and assume

the drift wave envelope N(X, T ) varies slowly in space and time. The fast variation obeys the

usual dispersion relation ω = kθVd(1 + k2
⊥ρ2

s )−1. Here, for the slowly varying parameters, the

ordering T = εt , X = (εx, εy) expresses the scale separation. (In this section, ε is a small

parameter, not the inverse aspect ratio.) Note that nonlinearities associated with like-scale

interactions are ignored. Now, expanding in ε throughout yields the equations for the envelope

N and the mean fields 〈n〉 and 〈φ〉, which are

i
∂N

∂τ
+

1

2

(

∂2ωk

∂k2
x

∂2

∂X2
+

∂2ωk

∂k2
y

∂2

∂Y 2
+ 2

(

∂2ωk

∂kx∂ky

)

∂2

∂X∂Y

)

N

+ ρ2
s ωci

(

k × ∇ e〈φ〉
Te

)

· ẑN − ρ2
s ωci

1 + k2
⊥ρ2

s

(k × ∇〈n〉) · ẑN = 0, (6.4.2a)

(

ε
∂

∂τ
− vg · ∇

)(

∂2

∂X2
+

∂2

∂Y 2

)

e〈φ〉
Te

+ 2ρ2
s ωci

(

kxky

(

∂2

∂Y 2
− ∂2

∂X2

)

+
(

k2
x − k2

y

) ∂2

∂X∂Y

)

|N |2 = 0, (6.4.2b)

(

ε
∂

∂τ
− vg · ∇

)

〈n〉 + Vd

∂

∂Y

e〈φ〉
Te

= 0. (6.4.2c)

Note that equation (6.4.2b) shows that the structure of the secondary flow is determined, in part,

by the anisotropy of the underlying turbulence—i.e. via terms ∼ (k2
x − k2

y), etc. The system of

equations (6.4.2a)–(6.4.2c) constitutes the set of envelope equations for the drift wave–zonal

flow system, including the more general case of drift wave–convective cell systems [344–349].
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For the particular case of zonal flow, ∂/∂Y → 0, and collisional damping of the zonal

flow γdamp is important, the envelope equation is a cubic nonlinear Schrödinger equation

i
∂N

∂τ
+

1

2

∂2ωk

∂k2
x

∂2

∂X2
N +

(

2ρ4
s ω2

cik
2
ykx

∂ωk/∂kx

)

|N |2N = 0. (6.5)

Straightforward analysis then predicts modulational instability for drift wave numbers such

that 1 + ρ2
s k2

y − ρ2
s k2

x > 0. The most unstable zonal flow wavenumber is qx,max =
ω2

ci(1 + ρ2
s k2

⊥)5V −2
d (1 + ρ2

s k2
y − ρ2

s k2
x)

−1N0, where N0 is the maximum drift wave amplitude.

The domains of zonal flow and streamer instability are shown in [2]. A similar analysis for

the collisional case has been performed as well. The results are given in [29].

From the expression for qx,max, weakly collisional zonal flow will have radial scale

�r ∼ (ρ2
s /Ln)(ñ/n0)

−1FZF(ρsk⊥). Here FZF(ρsk⊥) is determined by the ρsk⊥-dependence

of qx,max. Note that the scale is amplitude dependent. For ñ/n0 ∼ ρs/Ln, �r ∼ ρsFZF(ρsk⊥),

so a wide range of zonal flow scales may be excited. Finally, note that zonal flows will

be strongly localized near caustics, where ∂ω2
k/∂k2

i → 0. Strongly anisotropic collapse, to

localized, singular shear layers, is possible at caustics.

There is considerable work on the envelope formalism beyond the simple analysis

described above. Weiland and collaborators have explored the effect of finite Ti and ion

temperature perturbations [350]. More recent extension includes the study of electromagnetic

perturbations [351]. Spineanu and Vald have studied the structure of zonal flow and have

analysed possible poloidal dependence [210, 352]. Gurcan et al have examined zonal flow and

streamer formation in ETG turbulence, which is isomorphic to quasi-geostrophic turbulence,

since both waves and flows have Boltzmann ions [353–355]. They determined the criterion

for collapse to singular shear layers and addressed the problem of pattern competition between

streamers and zonal flows using techniques from the Langmuir problem.

7. Laboratory experiments on zonal flows physics

In this section, we discuss laboratory experiments relevant to zonal flows. Experimental

studies of zonal flows in plasmas are few and far between. Thus, this section is written

with two aims in mind, namely, both to review existing work and also to outline possible

future directions for studies of zonal flows, in the hope that more experimental work will be

stimulated.

This section is organized as follows. Section 7.1 presents experimental results on

determining zonal flow characteristics. Section 7.2 discusses zonal flow dynamics and their

interaction with ambient turbulence. We present our suggestions for future experimental

research, including possibilities for basic experiments designed for zonal flow measurements,

in section 7.3.

7.1. Characteristics of zonal flows

The characteristics of zonal flows are described in sections 2, 3 and 4, and are summarized in

table 2. Here, we reiterate some of those which are most relevant to experimental measurements

and tests [145].

7.1.1. Spatial structure. In confined plasmas, the equilibrium profile is usually treated as

a smooth function of radius, the characteristic scale length of which is less than or equal

to the minor radius (excluding the case of transport barriers) or of the barrier thickness (for
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Table 11. Experimental characteristics of zonal flows.

Zonal flow

(narrow sense) GAMs

Fluctuation structure m = n = 0 for φ̃ m = n = 0 for φ̃

n̂ ≪ φ̂ m = 1, n = 0 for ñ

|ñ/n0| =
√

2qrρs|eφ̃/Te|
Real frequency �ZF ≃ 0 ωGAM ≃ vThi/R

Autocorrelation time εν−1
ii , or other (TBD) ν−1

ii or other (TBD)

Radial wavelength aρi > q−2
r > ρ2

i ←
Radial coherence length Several tens of ρi ∼ √

aρi ←
Amplitude (vorticity) Order of ρ−1

i Vd TBD

barriers). In the presence of turbulence, the flux surface-averaged flow velocity can vary

radially for two reasons. One is the E × B zonal flow structure, which is discussed in this

review. The other possible origin is the corrugation of flux surface-averaged pressure. This

latter type of localized diamagnetic flow, which is nothing but a symptom of flux surface-

averaged pressure corrugation, must be carefully distinguished from true zonal flows in

experiments. Such pressure corrugations may be induced by avalanches, streamers and other

transport events.

Turbulence-driven zonal flows are radially localized, with a broad spectrum of radial scales

ranging from the microscale (i.e. turbulence eddy sizes of �r ∼ several ion gyro-radii) through

mesoscales (i.e. a fraction of minor radius). Gyrokinetic simulations of ITG turbulence show

that the component of the zonal flow has qrρi ∼ 0.1 [145], for typical tokamak core plasma

parameters, though the sensitivity of this value to variable system parameters is unclear. The

associated electrostatic potential φZF is poloidally symmetric (qθ = 0).

We note that the magnitude of zonal flow velocity, as predicted from tokamak core

turbulence simulations, is typically small (i.e. VZF = 10−2vth,i), but the associated E × B

shearing rate is significant enough to regulate turbulence and transport [145, 356]. Obviously,

this indicates that the zonal flow shear spectrum peaks at a higher qrρi, than the zonal flow

velocity and potential spectra. This is apparent from the results of gyrofluid simulations, as

shown in figure 3 of [356]. This suggests that the difficulties in measuring zonal flows in the

experiments come mainly from the fact that it is neccesary to simultaneously ensure sensing

long correlation lengths in the toroidal direction (n = 0) and poloidal direction (m = 0) along

with fast radial variation (on the scale of several ion gyro-radii). Finally, achieving the goals

of detecting the variability of the portion of the zonal flow spectrum responsible for transport

regulation and identifying a causal link between flows and turbulence are further complicated

by the fact that the ‘relevant’ shearing scales are determined by their autocorrelation times, as

well as their shear strength. Features of the zonal flows contrasting the zero frequency zonal

flows from GAM components are listed above in table 11.

7.1.2. Temporal behaviour. The frequency spectra of zonal flows and GAMs depend on

plasma conditions, and for this reason edge turbulence deserves a later, separate discussion. In

the core, the zonal flow frequency spectrum at a fixed qr has a broad peak at ω = 0, and a width

indicating a finite lifetime, τac,ZF = (�ωZF)
−1. Zonal flows thus have frequency components

which significantly outlive the ambient turbulence (�ωZF < �ωdrift, or equivalently τac,ZF >

τac,drift). Their lifetime τac,ZF is determined either by collisions, turbulent transfer processes

(as are explained in section 3), by external noise (explained in section 6), or by the instability

of the zonal flow pattern.
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In general, the question of the nature of zonal flow damping boils down to a comparison

between the strength of collisional and nonlinear processes.

7.1.3. Toroidal geometry and GAMs. In toroidal geometry, the poloidal direction is no longer

an ignorable coordinate, and there exists an inevitable poloidal angle dependency of many key

quantities (for instance, B depends on the poloidal angle). While the flux surface-average of

E×B flows are mainly in the poloidal direction [9, 10], the toroidal return flow has a sin θ depen-

dence. In general toroidal geometry, the zonal flow magnitude VZF = −Er/B = B−1∂φZF/∂r ,

i.e. (RBθB
−1)∂φZF/∂ψ (ψ being the magnetic flux function) has a slight in–out asymmetry

due to a flux-expansion factor ‘RBθ ’ [11]. Due to the presence of geodesic curvature in var-

ious toroidal devices, the zonal flow contains a linearly damped oscillation called a geodesic

acoustic mode (GAM) [68], as discussed in detail in sections 3.1.2 and 4.5.2. Since GAM

pressure fluctuation has dominant mode numbers n = 0, m = 1 (due to toroidal coupling), it

has k‖ = 1/qR, so that ωGAM = Gvth,i/R. Here G is a coefficient of the order of 1, and ion

Landau damping for GAMs scales like ∼ exp{−ω2/2k2
‖v

2
th,i} ∼ exp{−G2q2/2}. Thus, one

would expect a ‘GAM peak’ to be clearly visible in the frequency spectrum when GAM energy

is appreciable. In conclusion, some key features of the GAM are not only a well-defined linear

oscillation frequency, ωGAM = Gvth,i/R, but also the existence of sideband pressure fluctua-

tions with n = 0 and m = 1. Properly distinguishing between oscillatory GAMs and classical

zonal flows (which are quasi-stationary) is a major challenge to experimentalists interested in

zonal flow physics. This issue is particularly relevant since the finite characteristic frequency

of GAMs renders them easier to detect experimentally than the zero-frequency zonal flows.

Finally, we briefly comment on stellarators (helical systems). Turbulence-driven zonal

flow properties in stellarators have not been discussed widely to date, but have recently begun

to be addressed in print [357, 358]. The questions of the effective damping and inertia of zonal

flows in systems for which axisymmetry is absent, are particularly acute. In particular, new

or enhanced damping mechanisms may be present, and the continued status of zonal flows as

‘modes of minimal inertia’ is not certain. For these, experiments on future stellarators with

quasi-axisymmetry such as the National Compact Stellarator Experiment (NCSX) [359] and

CHS-qa [360] would be illuminating.

7.1.4. Experimental studies of zonal flow structure via potential measurements

Flux surface-averaged radial electric field. The most direct evidence of zonal flows comes

from measurements of the E × B flow VZF, the associated radial electric field Er, or the

associated electrostatic potential φZF. As the importance of the flow shear decorrelation

mechanism [9–11] in enhancing confinement has become widely recognized [206, 223, 361],

there have been significant advances in the diagnostic capabilities for measuring Er using

the motional Stark effect (MSE) [362] or the heavy ion beam probe (HIBP) [363, 364],

and in measuring the poloidal velocity Vθ of carbon impurity ions using charge exchange

recombination spectroscopy (CHERS), and then calculating Er from the radial force balance

relation [365–367]. However, an order of magnitude improvement in the temporal resolution

of these diagnostics is required to distinguish the temporal evolution of zonal flows from

that of the mean E × B flow. The ‘mean equilibrium’ profile must also be measured with a

radial resolution sufficient to distinguish profile corrugation induced by spatially intermittent

turbulent transport from zonal flows. As discussed at the beginning of this section, while zonal

flows are typically long lived as compared to turbulence eddies, their auto-correlation rate can

reach 5 KHz for typical tokamak core parameters [145].
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Figure 45. Identification of zonal flow on CHS. Geometry of measurements and fluctuation spectra:

(a) observation points of dual heavy ion beam probes in CHS (blue), (b) power spectra of a electric

field (red), and coherence between electric fields from the HIBPs. In the frequency range from

0.3 to 1 kHz, the activity to show long range correlation is found to be zonal flow. A peak at the

GAM frequency is shown by an insert. Fluctuations in the range of tens of kilohertz are drift wave

turbulence [372].

Identification of zonal flow by use of HIBP. The HIBP is capable of measuring the electrostatic

potential φes, associated with the radial electric field. Its relatively fine temporal resolution

has allowed detailed analyses of the edge transport barrier of the H-mode [368, 369] and the

ITB dynamics in stellarators [364, 370, 371]. By use of a single HIBP, the radial resolution

of which has not been better than 1 cm, the mean Er was measured. This is believed to be

mainly determined by neoclassical (collisional) particle transport, rather than by turbulence.

The identification of the core zonal flow has been achieved very recently by use of a dual-HIBP

system, i.e. two HIBPs are set in different toroidal angles, thus allowing the measurement of

the toroidally symmetric n = 0 component, which is the critical element of the zonal flow

measurement [372, 373]. This has made a path to the direct measurement of zonal flows in

the plasma core. Figure 45 illustrates the power spectrum of the radial electric field in the

core of CHS plasma, indicating the zonal flow component near ω ∼ 0 and the peak of the

GAM oscillations. Measuring Er at fixed radius r1 by one HIBP, and Er at various radii r2

by the other HIBP, the coherence of the radial electric field at r1 and r2 is directly measured.

The low frequency part (ω/2π < 1 kHz) has high coherence, demonstrating a long coherence

length. Cross-coherence takes a large positive value at r1 = r2, i.e. n = 0. As the relative

distance r1 − r2 varies, the cross-coherence value between two measured electric field varies,

alternately, between large positive values and large negative values. By this measurement, the

radial wavelength of the zonal flow was identified. In the case of figure 45, the radial wavelength

of the zonal flow is about 1–2 cm. This rapid radial variation is another essential feature of the

zonal flow. The amplitude of this zonal flow is also observed to be few 100 V m−1, and the

E × B shearing rate remains smaller than the diamagnetic velocity divided by the plasma size.

The sample volume still remains of the order of the radial wavelength. This limit of spatial

resolution may be an obstacle for measuring the precise peak height of the zonal flow. The

decorrelation rate of the zonal flow, �ωZF, is found to be smaller than (or at most) 2π ×103 s−1

in this observation, and is close to the inverse time of the global energy confinement time. (The

energy confinement time is a few milliseconds in low density ECH plasmas.) The radial scan

of the measurement point has revealed that the zonal flows exist over a wide region of radii.
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Figure 46. Spectra measured with the modified forked probe. Peaks of zonal flow and ambient

turbulence (AT) are shown: (a) Auto power spectrum of Ṽθ1(�r = −0.2 cm), (b) Auto power

spectrum of Ṽθ2(�r = −0.2 cm), (c) Cross power spectrum, (d) Coherency spectrum and (e)

Wavenumber spectrum. (c)–(e) were calculated from the long distance correlation between Ṽθ1

and Ṽθ2 [374].

To date, this result seems the most direct and convincing experimental confirmation for the

presence of the zonal flow in core plasmas.

Measurement at edge. Near the edge of tokamak plasmas, Langmuir probes are applied to

the study of long range electric field fluctuations. In the study of [374], radial electric fields

are measured at different poloidal angles simultaneously, and the low frequency component

is identified. Although the poloidal angle between two forked probes is limited (the distance

between them in toroidal direction is about 1/10 of the minor radius), the observation gives a

strong support for the presence of the poloidally symmetric, low frequency radial electric field

perturbations as is shown in figure 46. The amplitude and radial wavenumber are evaluated as

ṼZF/VThi ≃ 0.5–0.9% and qrρi ≃ 0.06–0.1. The half-width at half-maximum of the spectrum

is not clearly identified.

Edge transport barrier. Another measurement of the electric field by use of the HIBP

has been performed on the JFT-2M tokamak [368, 369] in conjunction with the L-to-H

transition. The radially localized response of the electric field structure near the last closed

flux surface is precisely measured. The jump of the radial electric field and associated

change of the fluctuations have been measured at the onset of the L–H transition. The high

temporal resolution of the potential measurement has allowed the determination of the rate

of variation of the radial electric field at the onset of the L–H transition. Results indicate

(∂Er/∂t)E−1
r ∼ O(10 µ s−1). This is in the range of theoretical predictions for the rate of

radial electric field bifurcation. So far, an accurate decomposition of the measured radial
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electric field into the zonal flow and the ‘mean flow’ has not been possible, and remains a

significant challenge for future experimental research on zonal flows.

Observation of potential fluctuations in GAM frequency range. The long range oscillation in

the core plasma, which is attributed to the GAM, has been observed on CHS by use of dual

HIBP systems as is illustrated in figure 45. The frequency of ω/2π ≃ 17 kHz is close to the

GAM frequency at the observed ion temperature [372]. The half-width at half-maximum of

the spectral peak is a few kilohertz. The measurement of other wave parameters, e.g. the parity

of the density perturbation, the radial wavelength and others, is ongoing.

The experimental evidence for the presence of GAMs in tokamaks has also increased. The

measurement of potential fluctuations by use of the HIBP has been performed on the JIPP-TIIU

tokamak [363]. Low frequency fluctuations in the range of 20 kHz have been identified in the

vicinity of the plasma edge and core, as well [363, 375–376]. This was the most advanced

measurement of potential fluctuation in the mid-1990s. This fluctuation was conjectured to be

a GAM oscillation. Further analysis of the measured data is ongoing.

Motivated by the recent community-wide interest in measuring zonal flows, HIBP

measurement data obtained from TEXT tokamak plasmas in the early 1990s have been

re-analysed recently in detail [377]. The measured potential fluctuation has the following

properties. For a range of minor radius from r/a = 0.6 to r/a = 0.95, the m = 0 component

of the potential fluctuation with radial correlation length below 2 cm (smaller than the sample

volume size) was found to be oscillating with a well-defined frequency which matches that

predicted for the GAM [68]. Outside of this radial range, no significant m = 0 fluctuation in

potential was detected.

It should be noted, however, that conclusive measurements of the long toroidal correlation

length (n = 0 component) have not yet been completed (except by the dual HIBP measurement

on CHS). In particular, the pertinence of the measured potential fluctuations to zonal flows (as

opposed to GAMs) is still unclear. Even the dual HIBP experiments need future experiments

for more conclusive results. It would also be illuminating to explore, via numerical simulation,

whether or not GAMs in that particular frequency and parameter regime could play a significant

role in regulating turbulence.

7.2. Zonal flow dynamics and interaction with ambient turbulence

As is illustrated in figure 45, the zonal flow amplitude and drift wave fluctuations are

simultaneously measured on CHS by use of the dual HIBP system. This provides a possibility

to identify the causal relation between the zonal flow and ambient turbulent fluctuations. The

detailed measurements and analyses are ongoing, and a definitive conclusion has not yet been

obtained. Therefore, in this section, we discuss indirect measurements on zonal flows. Such

experiments attempt to detect and to elucidate the physics of zonal flows by indirect means. In

some cases, such indirect approaches strike at the heart of the fundamental physical processes

thought to generate zonal flows (i.e. triad interactions between two high frequency drift waves

and the zonal flow). Thus, these approaches are motivated by concerns of both physics and

expediency.

7.2.1. Zonal flow generation mechanisms. As discussed in section 3.2, zonal flows in

electrostatic turbulence in a simple geometry are generated by the Reynolds’ stress associated

with the nonlinear coupling of higher-k components of the ambient fluctuations [32]. In

the more general context of electromagnetic turbulence in toroidal geometry, the evolution

of the zonal flow can be written in the following schematic way (∂/∂t)VZF = Reynolds’
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stress + Maxwell’s stress + Stringer–Winsor + damping. Most theoretical discussions on zonal

flows have focused on the role of Reynolds’ stress, since it is believed to be relevant regardless

of geometry, values of the plasma beta, and the nature of fluctuations. However, some [378]

argued that, in the transition region between the core and edge of tokamak plasmas, the Stringer–

Winsor (SW) term, can play a major role in generation of the GAM component of zonal

flows. The SW mechanism is basically a torque on the plasma pressure column caused by the

interaction of pressure inhomogeneity with the in–out asymmetry in magnetic field strength

[378]. In the results of Braginskii fluid simulation described in [209], it was found that the SW

term was greater than the Reynolds’ stress term for a typical parameter set for the transition

core/edge region. However, more recent related fluid simulations by other teams found that

the SW effect has a different sign from that of the Reynolds’ stress and can make zonal flow

generation weaker [274, 379].

As discussed in section 3, for electromagnetic turbulence, the Maxwell’s stress term

associated with the J × B nonlinearity can be appreciable. In the ideal MHD limit of purely

Alfvenic turbulence, the Maxwell’s stress cancels the Reynolds’ stress exactly, and the state is

called the purely Alfvenic state. This establishes that zonal flow can be driven only through

non-ideal MHD effects.

7.2.2. Experimental studies on zonal flow dynamics. It is encouraging to note that the

Reynolds’ stress has been measured using Langmuir probes on the TJ-2 stellarator [380] and

the H-1 tokamak [381]. One should note that the dominant nonlinear mode coupling channel

for zonal flow generation is the three-mode coupling involving two high-k fluctuations and the

zonal flow, i.e. a non-local (distant) interaction in k. An increase of this nonlinear mode cou-

pling is an indicator, albeit indirect, of increased zonal flow generation [382]. The strength of

interaction can be quantified by bi-coherence measurements and there have been bi-coherence

analyses of the probe measurements on DIII-D edge [383–385], which support the notion that

the nonlinear couplings, which are necessary for zonal flow generation, increases abruptly just

prior to the H-mode transition. A relevant experiment has been performed on H-1 heliac [386],

confirming the dominance of non-local interaction in the generation of the poloidally extended

structures. A related work, to excite convective cells externally [387], was reported. The role

of geodesic curvature coupling (i.e. the relative importance of Reynolds’ stress drive and the

SW drive/damping) have been further investigated on the Kiel stellarator [388].

7.2.3. Experimental studies on zonal flow interaction with turbulence. Given the difficulty

in measuring φ̃, Er, etc, most fluctuation diagnostics measure density fluctuations. Therefore,

there exist many fusion plasma devices in which zonal-flow-related experiments can be tried

via density fluctuation measurements. We summarize some experiments along these lines us-

ing different methods. An experiment and analysis based on line-integrated measurements of

density fluctuations on DIII-D tokamak edge using the phase contrast imaging (PCI) [389] was

able to demonstrate that the fluctuation spectrum as a function of kr and ω, S(kr, ω) resembles

that obtained from ITG turbulence simulations. However, this line-integrated measurement

could not demonstrate that the observed fluctuations were symmetric in both poloidal and

toroidal directions (i.e. m = 0, n = 0). The estimated upper bounds on the mode number was

of the order of 30.

One way of examining zonal flow properties is to estimate the zonal flow velocity (which

advects the ambient turbulence) by analyzing the ‘measured’ ambient turbulence density

fluctuation spectra. We note that for this approach, the instantaneous Doppler-shift of the

density fluctuation with wave vector k should exceed the decorrelation rates of both the zonal
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Figure 47. Frequency of observed oscillations (attributed to GAM) and dependence on temperature.

Measurement of D III-D is compared to the calculated GAM frequency (left) [392, 393].

flows and turbulence, thus allowing the invocation of Taylor’s hypothesis [390]. Significant

progress in this approach has been made by using a two-dimensional array of beam emission

spectroscopy (BES) diagnostics on the plasma edge. BES measurements and analyses have

identified that density fluctuations are advected by the zonal-flow-like field [391]. The

estimated flow amplitude was of the order 10−2vth,i roughly in the range observed in numerical

simulations [145]. The alleged zonal flow also has a well-defined frequency close to that of

the GAM [392] (see figure 47). A signal was readily observed at high q and not observed at

low q [393], as expected from the q-dependence of GAM Landau damping, as discussed in

section 7.1.3. Unfortunately, another important aspect of the GAM oscillation is that the zonal

flow (n = 0, m = 0) is accompanied by the n = 0, m = 1 component of density fluctuations.

This prediction could not be confirmed. This shortcoming was partly due to the fact that the

BES arrays were located near the low field midplane side of the tokamak, where GAM density

fluctuations are expected to be very weak. From a simple theory, the GAM amplitude, at a

given flux surface, is expected to be highest at the top and at the bottom of the tokamak. The

poloidal mode number of density fluctuations corresponding to the GAM frequency from this

experiment was predicted to be on the order of 10 [392].

Another way of estimating the zonal flow velocity, which of course advects the ambient

turbulence, is to measure the Doppler shift of the ambient turbulence density fluctuation

frequency spectra, using Doppler reflectometry [394]. An ocsillation at 20–30 kHz was

observed in the core of T-10 tokamak and was attributed to the GAM [395]. From a

measurement of the edge plasma of ASDEX-U, a coherent peak in the spectrum near the

GAM frequency has been observed in addition to a stronger and broader peak at much lower

frequency which appears to be ‘zero frequency’ zonal flow [396]. The dependence of the peak

frequency on the edge electron temperature is in broad agreement with GAM frequency for

various operation modes of plasmas including ohmic, L-mode and quiescent H(QH)-mode

plasmas as reported in [396].

Very recently, the GAM fluctuations at edge are measured by HIBP on JFT-2M, and

the modulation of the amplitude of high frequency fluctuations by the oscillation at GAM

frequency was reported [397].

7.2.4. Measurements of zonal flow effects on confinement. Another indirect way of

demonstrating the existence of zonal flow is by identifying the change in transport and

confinement due to zonal flows. These include the expected changes in turbulence-driven

transport onset conditions (for instance, a change akin to the Dimits shift) and transport scaling
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with key macroscopic variables (for instance, ion–ion collisions, which damp zonal flows, or

parameters which enter the neoclassical dielectric function). Such studies should emerge from

systematic dimensionless parameter scans of plasmas.

7.3. Suggestions on future experiments and information needed from simulations and

theory

After a summary (not exhaustive) of the recent experimental progress in pursuing the

measurements of zonal flows, we discuss some future experimental plans and possibilities

for further progress and list key physics information which future experiments will need from

numerical simulations and theories for the identification of zonal flows.

We mentioned that an order of magnitude improvement in the temporal resolution of the

present day diagnostics, together with the identification of the n = 0 component, is required

to distinguish zonal flows from the ‘mean E × B flows’. Regarding HIBP measurements, two

HIBP systems are operating on CHS, providing simultaneous measurements of the electric

field perturbation pattern and structure. Initial data from the dual HIBP system has already

yielded the essential direct observation of the zonal flow. Future progress on CHS experiments

are promising, and will play a central role for the experimental study of zonal flow in core

plasmas. Studies of higher resolution are planned on the National Spherical Torus Experiment

(NSTX) using a new spectroscopic technique with a higher temporal resolution [398] and on

the Alcator C-Mod tokamak and NSTX using a two-dimensional gas puff image (GPI) of edge

turbulence [399, 400].

Regarding bi-coherence analysis of turbulence spectra, a conclusive result in this

endeavour requires the precise measurement of the zonal flow component, together with the

other two ‘legs’ of the three-wave coupling triad that resonate with the measured zonal flow.

The coherent part of this nonlinear interaction with the zonal flow of interest must be measured,

so as to quantify the acceleration of the zonal flow by the background turbulence. This process

can be extended to electromagnetic fluctuations in high β plasmas and stellarators [401]. Then

the incoherent part of the nonlinear interactions must be measured to quantify the stochastic

noise term. Through these processes, one has solid understanding of the physical process

which governs the generation of the zonal flow.

For further elucidation of the implications of the experimental results based on the

measurements of density fluctuations, the following information from direct numerical

simulations will be extremely useful. First, for an identification of density fluctuations

which accompany the zonal flows, simulations should quantify the expected level of density

fluctuations not only for the n = 0, m = 0 mode, but also for the sidebands n = 0, m = 1,

etc. We note that most ‘zonal flow characteristics’ listed in print to date [145] are based on

pure ITG turbulence, with adiabatic electron response where ñ/n = 0 for n = 0, m = 0

mode. With recent advances in gyrokinetic simulations including more realistic electron

dynamics as described in section 4, such information should now be available and should

be extremely useful for experiments measuring density fluctuations, such as phase contrast

imaging (PCI) [402]. Of course, for detailed comparisons between experiment and simulations,

more comprehensive spectral information than that usually presented (such as S(kr) or S(ω) at

a fixed kr, etc) would be desirable, especially S(kr, ω) and S(kr, ω, kθ ) for m = 0, ±1, ±2, . . . ,

etc. Another way to systematically demonstrate the effects of zonal flows is to scan the plasma

parameters and compare the detailed spatio-temporal behaviour of the ambient turbulence

measured by comprehensive two-dimensional microwave imaging [403, 404] to results from

direct numerical simulations. This, however, requires that the simulation code should be

validated via comparison to simpler experiments.
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Second, for the purpose of identifying zonal flows by the measurement of high-k

density fluctuations which are advected by the flows, the temporal scale separation of the

various physical frequencies required for Taylor’s hypothesis [390] should be established in

order to strengthen the validity of the experiments and analyses. The relevant frequencies

involved are: k · VE, the instantaneous Doppler-shift of the frequency of ambient turbulence,

due to zonal flows, �ωdrift, the decorrelation rate of the ambient turbulence, and �ωZF, the

decorrelation rate of the zonal flow itself. While the estimate that �ωZF < �ωdrift < k · VE

[145] is often quoted, this was only one case for a ‘typical’ set of tokamak core parameters.

Preferably, such information should be available from direct numerical simulation, for each

experiment.

The reason why the measurement of the zonal flow has been so rare in the experiment

of plasma confinement, which has lasted already about five decades, was explained at the

beginning of section 7. That is, the need of high resolution of the electric field measurement

in radius and time, simultaneous with the capacity to measure long poloidal and toroidal

correlation length, is really demanding. These difficulties must be overcome in the future,

because the understanding of the drift wave–zonal flow turbulence is a crucial element of the

understanding of anomalous transport.

8. Summary and discussion

In this final section, we present the conclusions of this review of zonal flow physics and briefly

discuss directions of, and areas for, future research. There is no question that zonal flows

exist, are ubiquitous constituents of drift wave turbulence in confined plasma, and also occur

in many places in nature. Research has also demonstrated that zonal flows are an essential

element of the mechanisms of self-regulation of drift wave turbulence and of the formation of

edge and ITBs. The development of the understanding of zonal flow phenomena has made a

concrete contribution to controlled fusion research, in general, and to the design of ITER and

other future experiments, in particular.

The theory of zonal flows is now a well-developed subject. We have shown that it is

convenient and illuminating to classify the diversity of zonal flow dynamics according to the

degree of stochasticity of drift wave ray propagation in the zonal flow field, and by the ratio

of the zonal flow autocorrelation time to the ‘bounce time’ of a drift wave-packet trapped

in a zonal flow field. A variety of approximation methods have been utilized to calculate

the rate of zonal shear amplification, for both the coherent and the stochastic regimes, and

for a variety of different geometries. All of this wide variety of calculational approaches

have the common element of their foundation in the disparity of time scales between the

primary drift waves and secondary zonal flows. The back reaction of zonal flows onto

the primary drift wave spectrum via shearing, both coherent and stochastic, is now well

understood. Such insight has facilitated the construction of simple but self-consistent models

which describe the various states of the drift wave–zonal flow system. The development of more

advanced theories, such as probabilistic approaches and models, is proceeding in the research

community.

Numerical simulations of zonal flows have identified their generation in a broad regime of

models of low frequency microturbulence. In addition, some aspects of zonal flow structure,

generation by modulational instability and saturation scaling trends have been critically tested

by numerical simulation, with a high degree of success. However, the further development

and application of detailed computational diagnostics to quantitative tests of zonal flow

theory is still quite desirable. Experimental research on zonal flow phenomena is still in

its youth. While several experiments have identified various elements characteristic of zonal
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flow phenomena, critical tests of basic zonal flow physics and of the basic theory remain

incomplete.

We now discuss some of the frontiers of, and possible future developments in, the physics

of drift wave–zonal flow turbulence. In the realm of theory, the critical problem is that

of identifying and evaluating zonal flow saturation mechanism in the collisionless regime.

Further and deeper work on tertiary shear flow instability, nonlinear wave kinetics, trapped

wave-packets and turbulent trapping will be valuable and surely will be forthcoming. Such

works need to confront the reality of realistic geometry, including that of the stellarator, as well.

The advancement in meeting the challenge of complex geometry and dynamics will strengthen

an already powerful theoretical basis, which commonly helps to solve the expected mysteries

presented by future space and astronomical observations. In addition, the role of convective

cells (i.e. alternatively nonlinear streamers) in the drift wave–zonal flow system must be better

understood. General convective cells, which vary in the poloidal direction, can be induced by

drift wave turbulence, and may have a strong impact on the dynamical evolution of transport

in the system. The structure of such convective cells may be strongly influenced by magnetic

shear. The partition of excitation energy between drift waves, zonal flows and convective cells

has not been fully addressed, and requires intensive study in the future. This issue lies at the

heart of the ‘pattern selection’ problem, as to which type of secondary structure is the ultimate

‘attractor state’ for a given set of system parameters. More generally, the nonlinear theory of

wave kinetics, particularly the regime near primary wave marginality (i.e. γk → 0), remains

unexplored and thus merits further development. This is a general theme in plasma theory, and

progress on this topic will sow the seeds for future benefits in a number of problems. Another

area of likely activity is the study of the interaction of zonal flow with mean E × B sheared

flows and other questions pertinent to confinement, such as turbulence propagation. Also,

further study of electromagnetic effects on zonal flows is necessary, including, in particular,

A⊥ effects (A⊥ is the vector potential in the direction perpendicular to the magnetic field),

which are critical to high beta plasmas, such as those found in spherical tori. The more general

questions of the interaction between zonal flow dynamics and those of magnetic dynamos, etc,

remain to be clarified, as well. In particular, magnetic stresses tend to grow with increasing ß,

and so compete against Reynold’s stresses, thereby reducing the rate of shear amplification.

As a consequence, the suppression of turbulence by velocity shear is weakened, so that heat

transport and dynamo activity increase. This interesting set of trade-offs and competitions

is made possible by the fact that zonal flows are in general more effective at quenching

transport then zonal fields. Finally, since zonal flow shearing is effectively a process whereby

smaller scales are strained by larger scales, it is fundamentally an intermittency phenomenon.

Future theoretical research must address such intermittency, in order that predictive capacity

be optimized. In particular, the astute reader will surely have noted that all discussion of zonal

flow shearing, herein and elsewhere, is, as usual in plasma physics, organized in the either

coherent shearing models, where krV
′

E×Bt , or stochastic shearing models, where δkr ∼
√

Dkt .

In reality, nondiffusive Levy-flights on kr, with kr ∼ tα, 1
2

< α < 1, are surely possible

and will appear as intermittent, strong shearing events. To describe such phenomena, a

fractional kinetic theory [405] will be necessary. Insights from SOC-type models [180] may be

useful, as well.

Future simulation research must progress further from observation and identification

of zonal flow phenomena to quantitative numerical experiments and tests. More advanced

numerical diagnostics must be developed, and more systematic regime surveys must be

implemented. Though numerical simulation has contributed much to our understanding of

drift wave–zonal flow turbulence, its full potential has not yet been tapped. Finally, it must

be said that the greatest opportunities for future research on zonal flows lie in the realm of
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experiment. Particular challenges include the simultaneous study, correlation and synthesis of

generation dynamics in real space (i.e. via vorticity transport) and k-space (i.e. via nonlinear

mode coupling), and the development of methods to control zonal flows. More generally,

future experiments must emphasize challenging the theory and confronting it with stressful

quantitative tests.

Finally, it should be emphasized that the zonal flow dynamics problem represents one

well-defined example of a broad class of bifurcation phenomena in confined plasmas. As

such, it can and will join with other firm webs of interacting feedback loops which collectively

govern plasma dynamics. For example, in burning plasmas, both burning and quenching can

be expected to appear as dual, bistable states. Transitions between them, either periodic or

intermittent, could be triggered by transport events, for which the dynamics of drift wave–zonal

flow turbulence in high temperature D–T plasmas would be of central importance. Internal

transport barrier formation in burning plasmas is another example of events from this category.

The predictability of such transition phenomena merits intense theoretical study. However,

interest in zonal flow physics is not limited to the realm of fusion plasma physics. Zonal

flow generation is an example of a broad class of problems dealing with the amplification of

an axial vector field with global symmetry by microscopic turbulence which is driven by the

gradient of a scalar field. This category of problems also includes the magnetic dynamo (solar,

terrestrial and galactic), accretion disc dynamics, jet formation, the global circulation of the

ocean, etc. Thus, the study of zonal flows is a splendid opportunity for plasma and fusion

science to demonstrate its capability to make a significant contribution to this now classic lore

of problems.
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Table A1. Quasi-isomorphism between ITG and ETG.

Key issue ITG ETG

Linear response in

the electrostatic limit

ñi From gyrokinetic equation −eφ/Ti: pure adiabatic

ñe e(φ − 〈φ〉)/Te: adiabatic

with zonal flow

From gyrokinetic equation

Disparity in transport

channels caused by

particular turbulence

χi ∼ χφ > χe, D χe ∼ χJ > D, χi, χφ

Zonal flow strength

in nonlinear regime

Typically strong Typically weaker

Radial correlation length

of ambient turbulence

at nonlinear saturation

Several ρi Uncertain—current research

Isomorphism breaker Zonal flow Residual magnetization of

ion response

Electromagnetic effect

Debye shielding
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Appendix A. Near-isomorphism between ITG and ETG

Here the quasi-isomorphism between ITG and ETG are tabulated in table A1.

In this table, D, χφ and XJ are diffusivities of particle, momentum and current. Note that

ETG turbulence will transport current much like ITG turbulence transports momentum. XJ is

like a hyper-resistivity.

Appendix B. Hierarchy of nonlinear governing equations

In this appendix, the hierarchy of nonlinear governing equations is explained. The steps

for reduction, and physics lost in the process of reduction are also listed, as summarized in

table B1.

As is explained in the main text, most simulations mentioned above have used

the conventional nonlinear gyrokinetic equation [212], which ignores the velocity space

nonlinearity, which is formally smaller than the E×B nonlinearity. The conventional nonlinear

gyrokinetic equation fails to obey the fundamental conservation laws, such as energy (of

particles and fluctuation fields), and phase-space volume at a non-trivial order. For longer

times, well after the initial nonlinear saturation of turbulence, even very small errors in

the governing equation can accumulate (in time, regardless of computational method) and

muddy the physics predictions. A recent simulation [236] in cylindrical geometry used a fully

nonlinear energy conserving and phase-space conserving form of the nonlinear gyrokinetic

equation [214]. The importance of using governing equation with proper conservation laws

is demonstrated in this series of simulations, with and without velocity space nonlinearity.
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Table B1. Hierarchy of governing equations.

Nonlinear equations: from

fundamental, primitive

to reduced, simplified Steps for reduction Physics lost due to reduction

Vlasov–Klimontovich

equation [406]

⇓ Remove high frequency

terms (�ωci)Gyrokinetic equation:

conservative [214, 407–410]

⇓

High frequency phenomena [411]

Neglect velocity

space nonlinearityGyrokinetic equation:

conventional [212]

⇓

Conservation of energy between particles

and fields, of phase-space volume,

nonlinear trapping of particles along B.

(Influence is illustrated in figure B.1.)
Take moments in

velocity spaceGyrofluid equation

[215, 412, 413]

⇓

Some nonlinear kinetic effects including

inelastic Compton scattering [414],

accuracy in damping rates of zonal

flow [42, 43] and damped mode [415]
Expansion in finite Larmor

radius terms; ordering

for collisional plasmas

Fluid equations

[416–421]

Most kinetic effects associated

with long mean free paths

and finite size orbits.

The authors reported that neglecting velocity space nonlinearity in an ITG simulation resulted

in undesirable consequences. The energy was no longer conserved between particles and

fluctuating fields, and a precious indicator of the quality of numerical integration was lost. The

zonal flow pattern and the radial heat transport pattern were affected as well. (See an extended

description in [2].)
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