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Abstract 

Two new versions of the k - w two-equation turbulence 

model will be presented. The new Baseline (BSL) model 

is designed to give results similar to those of the original 

k - w model of Wilcox. but without its strong dependency 

on arbitrary freestream values. The BSL model is identical 

to the Wilcox model in the inner SOC7£; of the boundary-layer 

but changes gradually to the standard k - f. model (in a 

k - w fonnulation) towards the boundary-layer edge. The 

new model is also virtually identical to the k - f. model for 

free shear layers. The second version of the model is called 

Shear-Stress Transport (SSn model. It is a variation of the 

BSL model with the additional ability to account for the 

transport of the principal turbulent shear stress in adverse 

pressure gradient boundary-layers. The model is based on 

Bradshaw's assumption that the principal shear-stress is pro­

portional to the turbulent kinetic energy, which is introduced 

into the definition of the eddy-viscosity. Both models are 

tested for a large number of different fiowfields. The results 

of the BSL model are similar to those of the original k - w 

model, but without the undesirable free stream dependency. 

The predictions of the SST model are also independent of 

the freestrearn values but show better agreement with exper­

imental data for adverse pressure gradient boundary-layer 

flows. 

Introduction 

The main field of application of Navier-Stokes meth­

ods in aerodynamics will be for complex turbulent flows 
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that cannot be treated by inviscid, or viscous-in viscid inter­

action schemes. Examples are massively separated flows, 

flows involving multiple length-scales, flows with three­

dimensional separation and complex unsteady tlows. In 

these flows, the application of algebrillc turbulence mod­

els. like the Cebeci-Smith [1], the Baldwin-Lomax [2] or 

the Johnson-King [3] model, becomes very complicated and 

often ambiguous, millnly because of the difficulty to define 

an algebrillc length-scale. It is obvious that the improve­

ment of numerical methods must be accompanied by the 

development of more general turbulence models and their 

implementation into Navier-Stokes codes. 

In addition to being independent of the specification of 

an algebrillc length-scale, there is a long list of characteristics 

a good turbulence model would, have to satisfy. Obviously, 

the model should be "sufficiently" accurate for the intended 

type of applications. Furthennore, and almost as important. 

the model must be numerically robust and should not con­

sume excessive amounts of computation time (compared to 

the mean-flow solver). Another important demand is that the 

results should not have a strong dependency on ambiguous 

quantities, especially on the specified freestream values. 

The most popular non-algebrillc turbulence models are 

two-equation eddy-viscosity models. These models solve 

two transport equations, generally one for the turbulent ki­

netic energy and another one related to the turbulent length­

(or time-) scale. Among the two-equation models, the k - f. 

model is by far the most widely used today. The first low 

Reynolds number k -.{ model was developed by Jones and 

Launder [4] and has subsequently been modified by many 

authors. 

The Ie: - { model has been very successful in a large 

variety of different flow situations. but it also has a num­

ber of well known shortcomings. From the standpoint of 

aerodynamics. the most disturbing is the lack of sensitivity 

to adverse pressure-gradients. Under those conditions. the 

model significantly overpredicts the shear-stress levels and 



thereby delays (or completely prevents) separation [5]. Rodi 

[6] attributes this shortcoming to the overprediction of the 

turbulent length-scale in the near wall region and has shown 

that a correction proposed by Hanjalic and Launder improves 

the predictions considerably. However, the correction is not 

coordinate-invariant and can therefore not be applied gener­

ally. An alternative way of improving the results has been 

proposed by Chen and Patel [7] and by Rodi [8]. They re­

place the (-equation in the near wall region by a relation 

that specifies the length-scale analytically. This also reduces 

some of the stiffness problems associated with the solution 

of the model. AI though the procedure is coordinate indepen­

dent, it has only been applied to relatively simple geometries, 

where the change between the algebraic relation and the ( -

equation could be performed along a pre-selected gridline. 

Clearly this cannot be done in flows around complex geome­

tries. Furthermore, the switch has to be performed in the 

loganthmic part (the algebraic length-scale is not known in 

the wake region), so that the original k - ( model is still 

being used over most of the boundary layer. 

Another shortcoming of the k - ( model is associated 

with the numerical stiffness of the equations when integrated 

through the viscous sub layer. This problem clearly depends 

on the specific version of the k - ( model selected, but there 

are some general aspects to it. All low Reynolds number k-( 

models employ damping functions in one form or another in 

the sublayer. These are generally nonlinear functions of di-

mensionless groups of the dependent variables like Rt = ~~. 
The behavior of these functions cannot easily be controlled 

by conventional linearization techniques and can therefore 

interfere with the convergence properties of the scheme. A 

second problem is that t does not go to zero at a no-slip sur­

face. That in tum leaves two alternatives. One is to employ 

a nonlinear boundary condition on ( (t = f( at!», or to 

add additional terms to the t - equation [4] that allow the use 

of a homogeneous boundary condition. Both approaches in­

troduce additional nonlinearities that can upset a numerical 

procedure. 

There is a significant number of alternative models 

[9, 10, 11] that have been developed to overcome the short­

comings of the k - t model. One of the most successful, 

with respect to b"r:l. accuracy and robustness, is the k - w 

model ofWllcox [9]. It solves one equation for the turbulent 

kinetic energy k and a second equation for the specific turbu­

lent dissipation rate (or turbulence frequency) w. The model 

performs significantly better under adverse pressure-gradient 

conditions than the k - ( model although it is the author's 

experience that an even higher sensitivity to strong adverse 

pressure-gradients would be desirable [12]. Another strong­

point of the model is the simplicity of its formulation in the 

viscous sub layer. The model does not employ damping func­

tions and has straightforward Dirichlet boundary conditions. 

This leads to significant advantages in numerical stability. 
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However. the k - w model also has a major shortcom­

ing. It has been reported recently that the results of the 

model depend strongly on the freestream values, W f, that 

are specified outside the shear-layer. In [13] this problem 

has been investigated in detail, and it has been shown that 

the magnitude of the eddy-viscosity can be changed by more 

than 100% just by using different values for W f. This is 

clearly unacceptable and corrections are necessary to ensure 

unambiguous solutions. 

In this paper. two new turbulence models will be pre­

sented. First, a new baseline (BSL) k - w model will be 

described. It is identical to the k - w model of Wilcox [9) 

for the inner region of a boundary layer (up to approximately 

6/2) and gradually changes to the standard k - ( model in the 

outer wake region. In order to be able to perform the com­

putations with one set of equations. the k - ( model was first 

transformed into a k - w formulation. The blending between 

the two regions is performed by a blending function Fl that 

gradually changes from one to zero in the desired region. No 

a priori knowledge of the flowfield is necessary to perfonn 

the blending. The function also ensures that the k - ( for­

mulation is selected for free shear-layers. The performance 

of the new (BSL) model is very similar to that of the Wilcox 

k - w model for adverse pressure gradient boundary-layer 

flows (and therefore significantly better than that of the k - ( 

model), but without the undesirable freestream dependency. 

For free shear layers the new model is basically identical 

to the k - ( model. which predicts spreading rates more 

accurately than the k - w model. 

Although the original - and the new BSL k - w model 

perform better in adverse pressure gradient flows than the 

k - t model, they still underpredict the amount of separa­

tion for severe adverse pressure gradient flows [12]. In an 

attempt to improve matters, the eddy-vicosity formulation of 

the BSL model will be modified to account for the transport 

effects of the principal turbulent shear-stress. The motiva­

tion for this modification comes from the Johnson-King (JK) 

model [3] which has proven to be highly successful for ad­

verse pressure gradient flows. The JK-model is based on 

the assumption that the turbulent shear-stress is proportional 

to the turbulent kinetic energy in the logarithmic and wake 

regions of a turbulent boundary layer. Johnson and King 

solve an equation for the maximum turbulent shear-stress 

at each downstream station and limit the eddy-viscosity in 

order to satisfy this proportionality. In the framework of 

two-equation models the turbulent kinetic energy is already 

known and it is there{ore only necessary to limit the eddy­

viscosity to account for the same effect. The resulting model 

will be called shear-stress transport (SST) model. First pre­

dictions based on this assumption have already been reported 

in [12]. 

The BSL and the SST models are not significantl y more 

complicated than the original k - w model and consume only 

little more computing time. Because the two models are 

virtually identical to the original k - w model in the near wall 



region, the modifications developed by Wilcox [9] for rough 

walls and for surface mass injection can be applied without 

changes. Furthermore, the models have shown the same 

numerical robustness as the original model for all the flows 

computed so far. The present paper is based on the work 

presented in [14]. However the equations have been changed 

somewhat in order to optimize the model performance for 

transonic flows and through transition. 

The Turbulence Model 

The new Baseline (BSL) Model 

TIle idea behind the BSL model is to retain the robust 

and accurate formulation of the Wilcox k - (..) model in the 

near wall region. and to take advantage of the freestream 

independence of the k - ( model in the outer part of the 

boundary-layer. In order to achieve this, the k - f model 

is transformed into a k - w formulation. The difference 

between this formulation and the original k - w model is that 

an additional cross-diffusion term appears in the w-equation 

and that the modeling constants are different. The original 

model is then multiplied by a function Fl and the transformed 

model by a function (1 - Fl) and both are added together. 

The function Fl will be designed to be one in the near wall 

region (activating the original model) and zero away from 

the surface. The blending will take place in the wake region 

of the boundary-layer. The left hand side of the following 

equations is the Lagrangian derivative: D/ Dt := a/at + 
u/J/OXj. 

Original k - w model: 

Transformed k - ( model: 

1 ok aw 
+ 2puw2--. --­wax' ox· J J 

(4) 

Now, equation (1) and equation (2) are multiplied by F1 and 

equation (3) and equation (4) are multiplied by (1 - F1) and 

the corresponding equations of each set are added together 

to give the new model: 

Let rZll represent any constant in the original model (0' k1 ' ... ), 

rP2 any constant in the transformed k - E model (0' k2 ' ... ) and 

tP the corresponding conSi.lIlt of the new model (0' k .. . ). then 

the relation between them is: 

the following two sets of constants will be used: 

Set 1 (<<P1) (Wilcox): 

O'k1 = 0.5, O'w1 = 0.5, ~1 = 0.0750, (8) 

~* = 0.09, /'i, = OAl, 11 = Pl/P* - O'wl/'i,2/v!J* 

Set 2 «h) (standard k - (): 

uk2 = 1.0, O'w2 = 0.856, fh = 0.0828. (9) 

~* = 0.09, K. = OAl, n = P2/0* - O'w2 1 .. 
2 /!J* 

Set 1 corresponds to the originhl k - w model and will be 

used in the near wall region exclusively. Set 2 corresponds 

to the transformation of the standard k - E model (c 1 ( = 
1.44, c2( = 1.92) and its main area of application is for free 

shear-layers. 

The model has to be supplemented by the definition of 

the eddy-viscosity: 

Itt k 
LIt =: - = -. 

p w 
(10) 

The turbulent stress tensor Tij = - puiuj is then given by: 

(11 ) 

In order to complete the derivation of the model it is 

necessary to define the blending function Fl - Starting from 

the surface. the function should be equal to one over a large 

portion of the boundary layer in order to preserve the de­

sirable features of the k - w model. but go to zero at the 

boundary layer edge to ensure the freestrearn independence 
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of the k - ( model. The function will be defined in tenns of 

the variable: 

. Vf 50011 4prTw2k 
argl = mm(max(0-09 ; -2-); y2) (12) 

. wy y w CDkw 

as follows: 

Fl = tanh( argi) (13) 

where C Dk...; is the cross-diffusion tenn of equation (4): 

(14) 

The first argument in equation (12) is the turbulent length 

scale L t = Vf / (0.09w) (= k3 /2 / d. divided by the shortest 

distance to the next surface. y. The ratio Ltl y is equal 

to 2.5 in the logarithmic region of the boundary-layer and 

goes to zero towards the boundary-layer edge. The second 

argument in equation (12) ensures that the function Fl does 

not go to zero in the viscous sublayer. The third argument 

is an additional safeguard against the "degenerate" solution 

of the original k - w model with small freestream values 

for w [l3]. Figure la shows the typical behavior of the 

function Fl for different velocity profiles in a strong adverse 

pressure gradient boundary layer (it also depicts the function 

F2 explained later). Figure 1 also includes the underlying 

velocity profiles (same linestyle). The function is equal to 

one over about 50% of the boundary-layer and then gradually 

goes to zero. The behavior of the new BSL model will 

obviously lie somewhere between the original k - wand the 

k - ( model. However. since most of the production of both. 

k and ...J. takes place in the inner 50% of the layer, it can be 

expected that the model perfonnance will be closer to that 

of the k - w model. governing this area Recall that the 

replacement of the E equation by an algebraic length-scale. 

as proposed by [7.8] has to be perfonned in the logarithmic 

region so that the original k - E model still covers the largest 

part of the boundary layer and results will therefore be much 

closer to those of the k - ( model. 

The Shear-Stress Transport (SST) Model 

One of the major differences between eddy-viscosity 

and full ReynolM-stress models. with respect to aerodynamic 

applications. is that the latter accounts for the important 

effect of the transport of the principal turbulent shear-stress 

T =: - pu l 
Vi (obvious notation) by the inclusion of the tenn 

DT a~ . aT 
--'-+Uk-
Dt -. at aXk' 

(15) 

The importance of this tenn has clearly been demonstrated 

by the success of the Johnson-King (JK) [3] model. Note 

that the main difference between the JK - model and the 

Cebeci-Smith model lies in the inclusion of this tenn in the 

fonner, leading to significantly improved results for adverse 

pressure gradient flows. The JK model features a transport 
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equation for the turbulent shear-stress T that is based on 

Bradshaw's assumption that the shear-stress in a boundary­

layer is proportional to the turbulent kinetic energy, k, : 

(16) 

with al being a constant . On the other hand. in two-equation 

models. the shear-stress is computed from: 

(17) 

with n = ~~. For conventional two-equation models this 

relation can be rewritten to give: 

T=p 
Productionk a k 

Dissipationk 1 
(18) 

as noted in [121. In adverse pressure gradient flows the ratio 

of production to dissipation can be significantly larger than 

one. as found from the experimental data of Driver [151. and 

therefore equation (18) leads to an overprediction of T. In 

order to satisfy equation (16) within the framework of an 

eddy-viscosity model. the eddy-viscosity would have to be 

redefined in the following way: 

alk 
lit = n' (19) 

The rational behind this modification can also be explained in 

the following way: In conventional two-equation models the 

turbulent shear-stress responds instantaneously to changes in 

(he shear-strain rate n. much like an algebraic eddy-viscosity 

model, whereas equation (19) guarantees that T does not 

change more rapidly than pal k. Obviously. equation (19) 

is not desirable for the complete flow field. since it leads to 

infinitely high eddy-viscosities at points where n goes to 

zero. Note however. that in adverse pressure gradient flows, 

production is larger than dissipation for the largest part of 

the layer (or n > al w). The following expression: 

alk 
lit = ----,...!.--~ 

max(alw;n) 
(20) 

guarantees therefore the selection of equation (19) for most 

of the adverse pressure gradient regions (wake region of the 

boundary layer), whereas the original equation (10) is used 

for the rest of the boundary layer. Figure 2 shows the relation 

of (-11.' vi / al k) versus j Production/ Dissipation forthe 

SST model (equation (20». the conventional k - w (k - £) 

model (equation (10». Bradshaw's relation (equation (16») 

and a relation proposed by Coakley [10]. Note that Coakley's 

relation contains the relations of Bradshaw (f3 = 1) and that 

of the conventional two-equation models (f3 = 0) as a subset, 

but not equation (20) (f3 is a free parameter of Coakley's 

model). 

In order to recover the original fonnulation of the eddy­

viscosity for free shear-layers (where Bradshaws assump­

tion, expressed in equation (16) does not necessarily hold) 



the modification to the SST model hao; to be limited to wall 

bounded flows. This can be done in the same way as for the 

BSL model by applying a blending function F2. 

(21) 

where F2 is defined similarly to equation (13): 

v1 500v 
a1"92 = T1!ax(2-

0 
09 : -2-) 
. wy y w 

(22) 

(23) 

F2 is depicted in Fig. Ib in the same way as Fl in Fig. la. 

Since the modification to the eddy-viscosity hao; its largest 

impact in the wake region of the boundary layer, it is im­

perative that F2 extends further out into the boundary-layer 

than Fl' (Note on the other hand that Fl hao; to falloff to 

zero well within the boundary-layer in order to prevent the 

freestream dependence of the k - w model). 

This modification to the eddy-viscosity is used in con­

nection with the BSL model derived above. However, in 

order to recover the correct behavior for a flat plate boundary 

layer, the diffusion constant <7kl had to be adjusted accord­

ingly. The constants for the SST model are: 

Set I (SST - inner): 

<7k1 = 0.85. <7w l = 0.5, ,81 = 0.0750, al = 0.31, (24) 

. 3* = 0.09, '" = 0.41, -(1 = ,3d3* - <71.411/'1:
2 /#. 

Set 2 remains unchanged. Furthennore, for general flows Q 

is taken to be the absolute value of the vorticity. Both models 

are given in their full fonn in Appendix A. 

Two new turbulence models have been introduced in 

this section. Both can be regarded ao; zonal models, since 

they utilize different models for different areas of the flow­

field. However, in contra'>t to the c1ao;sical zonal approach 

the present models do not require an a priori knowledge of 

the flowfield in order to define the zonal boundaries where 

the different models are to be used. The change between 

the different sub-models is achieved by "smart" functions 

that can distinguish between the different zones. Note that 

similar functions could also be designed for the k - f model. 

This makes it possible to design one set of constants for wall 

bounded flows and a second set for free shear-layers and 

to switch between the different sets in the same way as in 

equation (7). 

The BSL model rerains the advantages of the Wilcox 
k - w model for boundary-layer applications. but avoids its 
undesirable freestream dependency. Furthermore it switches 

to the more accurate k - f model for free shear-layer ap­

plications. In addition to this. the SST model modifies the 

definition of the eddy-viscosity for adverse pressure gradient 

boundary-layer flows in much the same way ao; the 10hnson­

King model does. From a computational point of view both 

models are not significantly more complex than the original 

k - w model. 

Boundary Conditions 

At a no-slip wall, all turbulent quantities, except w are 

set to zero. As pointed out by Wilcox [9], ...; satisfies the 

following equation near the wall: 

6v 
w~--

31 y2 
y~O. (25) ao; 

Wilcox recommends to specify this analytical solution for 

the first few grid points away from the wall explicitly. The 

present author found it much easier and ao; accurate to im­

plement the following boundary condition: 

at y=O (26) 

where 6.y is the distance to the next point away from the wall. 

Equation (26) simulates the boundary condition 25 without 

the need of changing the solution at interior points. It should 

be noted that models bao;ed on the w-equation give accurate 

results if the near wall values of ware sufficiently large. Both, 

equations (25) and (26) satisfy this demand. The results are 

not sensitive to the factor (10) used in equation (26). 

At inflow boundaries, the turbulence quantities are spec­

'ified and at outflow boundaries a zero gradient is ao;sumed . 

Two of the computed ftowfields have a rotational sym­

metry. In this case, the gradients of all turbulence quantities 

in the circumferential direction are set to zero. 

Numerical Method 

The mean flow equations are solved by the INS3D code 

ofS. E.Rogers and D. Kwak [16] which is bao;ed on a pseudo­

compressibility method. The convective terms are upwind 

differenced with a third-order flux-difference scheme. The 

viscous fluxes are differenced with second-order accurate 

central differences. The linear equations resulting from the 

first-order backward Euler time differencing are solved with 

an implicit line relaxation scheme. 

The turbulence equations have been solved with a num­

ber of different schemes. from a third-order upwind differ­

encing, to a second-order TVD (total variation diminishing) 

[17] to a first order upwind scheme. It was found in all 

computations that the solutions were virtually independent 

of the scheme used in the turbulence equations. although a 

change of accuracy in the mean flow solver had a large ef­

fect. The reason for the insensitivity to the treatment of the 

convection terms in the turbulence model is. that unlike in 

the Navier-Stokes equations. they are not the leading order 
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terms. For this reason most of the computations are based on 

a first order upwind scheme. The turbulence equations were 

solved decoupled from the mean flow equations in a separate 

subroutine. One of the important aspects in the discretization 

of turbulence models is the implicit treatment of the source 

terms. The following approximate linearization gave good 

numerical properties: 

(27) 

o (P C' _ D ) _ lewl + 2Dw - ..,+ w w -- . 
ow w 

(28) 

where P, D, C are the production. the destruction and the 

additional cross diffusion terms respectively. The above 

expressions go to the left hand side of the algorithm with a 

change of sign and thereby increase the diagonal dominance 

of the method. The resulting numerical scheme has proven 

to be very robust and all of the computations with the k - w 

models could be run with an infinite time step. An exception 

is the backward facing step flow where the time step had 

to be reduced for all models tested so far by the author. 

Furthermore. the computations could be started with very 

crude initial conditions (like freestream values). 

Experience with two-equation turbulence models has 

shown that in regions of low values of w (f / k), small dis­

turbances in the shear strain rate can lead to erroneous 

spikes in the eddy-viscosity in the freestrearn or near the 

boundary layer edge. In order to understand the effect. 

the transport equation for the eddy-viscosity was derived 

from the k - w model for incompressible flows (note that 

Dvt! Dt = l/..;Dk/ Dt - k/w2 Dw/ Dt): 

If w goes to zero and Vt is finite (typically a fraction of 

the molecular viscosity), the production term for the eddy­

vicosity goes to infinity for small disturbances in the strain 

rate. A simple way to prevent this from happening is to 

compute both the production term of k, Pk. and the dissipa­

tion term, Dk. and than to limit the production term by the 

following formula: 

(30) 

This limiter has been very carefully tested and it was found 

that even for complex flows the ratio of Pk/ Dk reaches max­

imum levels of only about two inside shear layers. There­

fore. Equation (30) does not change the solution but only 

eliminates the occurrence of spikes in the eddy-viscosity due 

to numerical Nwiggles" in the shear-strain tensor. It also 

eliminated the unphysical buildup of eddy-viscosity in the 

stagnation region of an airfoil. as reported in [14]. Note that 

this is not a specific problem of the Ie - w model but has also 

been observed with the Ie - f model. 
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All computations have been performed on different 

grids. to ensure that the presented solutions are grid inde­

pendent. The airfoil computations were performed on a 

standard grid kindly provided by S. E. Rogers [18]. 

Results 

Flat Plate Boundary Layer 

In order to show the motivation for the derivation of the 

BSL model. flat plate zero pressure gradient boundary-layer 

computations with different freestream values for w pave 

been performed. It has been shown in [131 that the correct 

freestream values for w outside the boundary-layer are: 

(31 ) 

where U; = J iw / p is the friction velocity, defined in terms 

of the wall shear-stress iw. Ue is the freestream velocity 

and 6* is the displacement thickness. For the first set o'f 

computations, the above value has been specified at the in­

flow boundary in the freestream for both the original and 

the BSL Ie - w model. Then. the above value was reduced 

by four orders of magnitude and the computations were re­

peated with both models. Note that the freestream value of Ie 

was also reduced in order to keep the freestream value of the 

eddy-viscosity constant (equal to the molecular viscosity). 

Figure 3 shows eddy-viscosity profiles for the original and 

the BSL Ie - w model. The eddy-viscosity of the original 

model changes by almost 100% due to the changes in u,) f. 
whereas the BSL model gives the same results for both cases. 

The strong sensitivity of the original model to w f is clearly 

unacceptable and can lead to a severe deterioration of the 

results for complex flows. as will be shown later. Results of 

the SST model were also found to be independent of w f. 

In each of the following comparisons between the dif­

ferent models. w f for the original Ie - w model was always 

chosen according to equation (31) whenever possible. In 

cases where the freestrearn values had to be chosen differ­

ently. it will be mentioned in the text. Figure 4 shows a 

comparison of the SST. the BSL. the original Ie - w and the 

Jones-Launder (JL) k - f model (all JL model computations 

have been performed with damping functions as given in 

[19]) for a zero pressure gradient flat plate boundary layer. 

Obviously, all models predict the correct c rdistributions 

and velocity profiles. The Ie - w models can be run with the 

first gridpoint as far dut as y+ = 3 without a deterioration 

of the results. 

Free Shear Layers 

For free shear layers the SST and the BSL model reduce 

to the same model (F1 = 0; F2 = 0). which will be called 

new Ie - w model in this subsection. Note that the new 

Ie -w model is formall y almost identical to the Jones-Launder 

k - f model. However a small cross-diffusion term has 



been .,c:.;;:\!cted in the derivation of equation (4). In order 

to show that this tenn is truly negligible. the original k - ( 

model is also included in the comparison. All computations 

were perfonned with 200 gridpoints across the layer. A grid 

refinement study on a grid with 300 points gave the same 

results. 

Figure 5 shows the results of the solution of the equi­

librium far wah: equations for the different models. The 

results are compared to the experimental data of Fage and 

Falkner [20]. Obviously. the new k - w model and the JL 

k - f model produce almost identical results. The original 

k - w model predicts a somewhat lower spreading-rate than 

the other models. As is well known for two-equation mod­

els. they fail to predict the smooth behavior of the data at 

the edge of the layer. The freestream value for the original 

k - :.; model has been derived from an expression similar to 

equation (31) [13]. 

Figure 6 shows solutions for a self-similar plane jet. as 

reported in [21]. Again. the new k - ,,,; and the JL model pro­

duce almost identical results and are in very good agreement 

with the experiments. whereas the original k - w model 

shows a rather peculiar behavior. A major difference be­

tween the far-wake flow and the present flow is that the 

freestream velocity is zero (still air). The only acceptable 

freestream value for w in still air is w f = O. as can be seen 

from the equilibrium equations [13] and from physical intu­

ition. The specification of small values for w f leads to large 

edd y-viscosi ties in the original k - w model, as demonstrated 

in Fig. 3 for the flat plate boundary-layer. The same is true 

in the present flow to an even larger extent, because of the 

missing wall influence. The original k - w model predicts 

about five times as high an eddy-viscosity as the other two 

models, resulting in the large spreading rates shown in Fig. 6. 

A comparison with the free mixing-layer experiment of 

Liepman and Laufer [22] is shown in Fig. 7. Note that the 

freestream velocity below the mixing-layer is zero, leading 

to the same problem with the original k - w model as for the 

plane jet. The other two models again produce almost iden­

tical results in acceptable agreement with the experiments. 

Adverse Pressure Gradient Flows 

One of the most important aspects of a turbulence model 

for aerodynamic applications is its ability to accurately pre­

dict adverse pressure gradient boundary-layer flows. It is 

especially important that a model can predict the location of 

flow separation and the displacement effect associated with 

it. The reason is that the viscous-in viscid interaction has 

a strong influence on the overall pressure distribution and 

therefore on the performance of the aerodynamic body. 

The most widely used test case to measure the perfor­

mance of turbulence models under adverse pressure gradient 

conditions is the flow reported by Samuel and Joubert [23]. 

It is a flat plate boundary-layer. developing under an increas­

ingly adverse pressure gradient. The upstream Reynolds 

number is 1. 7 . 106 m -1. The flow is retarded by the pres­

sure gradient, but not separated. 

Two different sets of computations have been performed. 

At first, the experimental pressure distribution was specified 

at the outer edge of the computational domain (opposite to 

the wall). Since this is not a very straightforward bound­

ary condition for a Navier-Stokes method, a second set of 

computations was performed based on the specification of an 

inviscid external streamline. The inviscid streamline y( x) s 

is defined by the preservation of mass: 

y(x)s 

nl = J PUexp.(x, y)dy = const. (32) 

o 
Note that the specification of a streamline does not mean that 

the displacement thickness is prescribed like in an inverse 

boundary-layer method. Both computations produced very 

similar results. The solutions shown here are for the pre­

scribed streamline, which is thought to be the more consis­

tent boundary condition from a numerical point of view. The 

eddy-viscosity at the inflow boundary was determined from 

the experimental shear-stress and velocity profiles. the turbu­

lent kinetic energy k from the requirement k = (- u l 
VI) I a 1 

and w and f from the definition of the eddy-viscosity. The 

same grid of 90x90 points as in [12] was used for the com­

putations. The results are virtually identical to those on a 

60x60 and a 120x120 grid. 

Figure 8 shows a comparison of the computed and the 

experimental skin-friction distribution. All three k - w mod­

els reproduce the experimental data almost exactly. whereas 

the JL k - f. model gives significantly to high values. 

Figure 9 shows the same comparison for the velocity 

profiles. There are no large differences to be found between 

the different models. Only the SST model predicts a some­

what stronger retardation of the flow near the surface. The 

same behavior has been observed with the Johnson-King 

model in [12]. 

Turbulent shear-stress profiles are shown in Fig. 10. 

All models are slightly overpredicting the amount of shear­

stress. with the SST model closest and the JL model furthest 

away from the data. 

It is obvious that the small differences between the so­

lutions. especially between the different k - w models, do 

not allow final conclusions about the abilities of the mod­

els to predict adver~ pressure gradient flows. It appears 

that the Samuel-Joubert flow does not pose a sufficiently 

strong challenge to the models to assess their potentials for 

this type of flows. The author has reached a similar con­

clusion in [12], where a solution of the Johnson-King (JK) 

model has shown, that the model did not significantly depart 

from its equilibrium formulation. It is therefore important to 

test models under more demanding conditions, with stronger 

adverse pressure gradients and possibly separation. The fol­

lowing flowfield, reported by Driver [15], has proven to be a 
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highly self-consistent and demanding test case. and is there­

fore strongly recommended for the assessment of turbulence 

models under adverse pressure gradients. 

In Driver's flow. a turbulent boundary-layer develops 

in the axial direction of a circular cylinder. An adverse 

pressure gradient is imposed by diverging wind tunnel walls 

and suction applied at these walls. The pressure gradient is 

strong enough to cause the flowfield to separate. The inflow 

Reynolds number is 2.8 . 105 based on the diameter D of the 

cylinder (l40mm). 

The boundary conditions for this flow are similar to 

those used for the Samuel-Joubert flow. Again an inviscid 

streamline is extracted from the experimental velocity pro­

files and a slip condition is applied along this line. The 

inflow conditions are detennined from the experimental pro­

files in the same way as described above. The computations 

have been perfonned with a three-dimensional version of 

the code. In order to account for the axial symmetry, three 

closely spaced circumferential planes where introduced and 

symmetry conditions were applied. A 60x3x60 grid [12] 

was used for the present computations. A computation on a 

100x3x 100 grid gave almost identical results. 

Figure 11 shows the wall pressure distribution for Driver's 

flow as computed by the different models. The SST model 

gives superior results to the other models due to its ability 

to account for the transport of the principal turbulent shear­

stress. As expected. the JL k - € model produces the worst 

results. and the BSL and the original k -w model being close 

to each other in the middle. 

Figure 12. depicting the wall shear-stress distribution 

for Driver's flow. shows that the SST model predicts the 

largest amount of separation. whereas the JL model stays 

firmly attached. Again. the BSL and the orig. k - w model 

produce very similar results, in good agreement with the 

experiments. 

The differences between the models can be seen more 

clearly in Fig. 13 which shows the velocity profiles. The 

SST model clearly produces the best agreement with the 

experiments. The larger displacement effect predicted by 

this model is reflected in the flattening of the cp-distribution 

as observed in Fig. 11. The orig. k - w model predicts 

slightly better results than the BSL model, and the JL k - € 

model shows very little sensitivity to the pressure gradient, 

as already reflected in Figs. 11 and 12. 

The reasons for the different behavior of the models 

can be seen in the following two pictures. Figure 14 com­

pares turbulent shear-stress profiles at different stations. The 

experimental data are shown both, in a surface (earth.) ori­

ented and in a streamline (Strml.) oriented coordinate sys­

tem. (Note that the numerical results were. due to the eddy­

viscosity fonnulation. not found to be sensitive to smail 

changes in direction). 
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The JL model obviously predicts significantly higher 

shear-stress levels than the other models, especially in the 

region where separation is approached. This in turn leads to 

the firmly attached velocity profiles of Fig. 13. The differ­

ences between the models can be seen more clearly by look­

ing at the eddy-viscosity distributions. Figure 15 shows the 

maximum value of the kinematic eddy-viscosity profiles for 

all x-stations. nondimensionalized by ue6*. The SST model 

predicts the reduction of this quantity due to the adverse pres­

sure gradient in very good agreement with the experiments. 

The BSL and the orig. k - w model are very close to each 

other up to separation (around x I D = 0), whereas the orig. 

model is closer to the experiments in the recovery region. 

Both models give consistently to high values for the maxi­

mum eddy-viscosity in the adverse pressure gradient region. 

The k - € model falls only barely below the value of 0.0168 

recommended by Clauser for equilibrium boundary-layers 

(and used in the Cebeci-Smith model) and thereby fails to 

account for the nonequilibrium effects altogether. 

Backward-Facing Step Flow 

Results for the flow over a backward facing step as 

reponed by Driver and Seegmiller [25] will be discussed 

next. This flowfield was a test case in the 1981 Stanford 

conference for the evaluation of turbulence models. How­

ever. most of the computations at the time were perfonned on 

comparatively coarse grids and there is substantial evidence 

that significantly finer grids have to be used in order to ob­

tain grid-independent results [26]. The present computations 

have been perfonned on a 120x120 grid. with substantial grid 

refinement near the step. Figure 16 shows the distribution 

of grid points. As with the other flowfields a grid refinement 

study was made. The present results are virtually identical 

to those perfonned on a 90x90 "and on a 240x240 grid. The 

Reynolds number. based on the upstream momentum thick­

ness 0 is. Ree = 5000 and the ratio of the boundary-layer 

thickness to the step height is about 1.5. The expansion ratio 

(height of the tunnel behind the step divided by the height of 

the tunnel in front of the step) is 1.125. 

Figure 17 shows a comparison of computed and ex­

perimental skin friction distributions. The k - w models 

all perfonn significantly better than the k - € model. The 

reattachment length of the four models are 6.4 (SSn, 5.9 

(BSL). 6.4 (org. k - w) and 5.5 (JL k - f) compared to 

a value of about 6.4 in the experiments. The reattachment 

length predicted by the k - € model is better than previously 

reported. certainly as ~ result of the fine grid employed in the 

present computations (see also [26]). However. the model 

predicts significantly too large variations of C f in the recir­

culation and the reattachment region. The good results of 

the k - w models show that it is not necessary to account for 

the anisotropy of the stress tensor, as suggested in [27], in 

order to get accurate results for the reattachment length. 

The surface pressure distribution. shown in Fig. 18. re­

flects the trends already seen in C f. The larger the separation 



region predicted by the model the larger is the displacement 

effect of the boundary layer and the smaller is the pressure 

rise in the expansion region after the step. 

Figure 19 shows a comparison of the velocity profiles. 

All models fail to capture the relaxation downstream of reat­

tachment correctly. The results of [27] show that this is also 

true for more complex models which account for anisotropy 

effects. 

NACA 4412 Airfoil Flow 

The following set of computations is forthe flow around 

a NACA 4412 airfoil at 13.87 degrees angle of attack. The 

Reynolds number with respect to the chord length is Re = 
1.52.106. Experimental data for this flow have been reported 

by Coles and Wadcock [28]. The grid for the computations 

consists of 241 x61 points and was made available by S. 

Rogers [18]. It is similar to the one used in [29]. 

In the experiment the transition was fixed by transition 

strips at x/c of 0.023 and 0.1 for the upper and lower sur­

face respectively. As reported in [29], if these locations are 

specified in the computations. a laminar separation bubble 

appears before the transition point on the upper surface of 

the airfoil. This separation bubble was not observed in the 

experiments which indicates that transition may take place 

already before the strip is reached. Computations have been 

performed with and without a specified transition location 

and differences between the computations are small. Results 

are given here for the case were transition was not specified. 

so that the models picked their own transition location. Tran­

sition takes place at a downstream station of x / c ::::: 0.006 on 

the upper and x / c ::::: 0.06 on the lower surface of the airfoil. 

Figure 20 shows a comparison of the computed and 

the experimental velocity profiles at different stream wise 

stations. The results are similar to those for the separated 

case of Driver. Fig. 13. Again. the SST model predicts the 

displacement effect in very good agreement with the ex­

periments. The BSL model is showing some response to 

the pressure gradient. and produces results similar to those 

reported in [29] for the Baldwin-Barth model. Another in­

teresting result of this computation is that the original k - w 

model predicts velocity profiles even further away from the 

experiments than fhelones-Launder k - (model. The reason 

for the poor performance of the orig. k - w model lies in its 

freestream dependency. In order to understand the problem. 

one has to look at the development of w from the inflow 

boundary to the leading edge of the airfoil. In this inviscid 

region production and diffusion of'w are zero. The balance 

in the w equation reduces therefore to: 

dw 2 
Us - = -f3w 

ds 
(33) 

where s is the streamline direction and Us is the velocity in 

this direction. Assuming that Us is constant and equal to 

Uoo • the equation can be solved to give: 

w( s) = j3 l' 

V;;S + Woo 

(34) 

The largest value of w that can be achieved for a certain 

distance s from the inflow boundary is: 

1 
c..!(s) = -J-

V;;;; oS 

(35) 

corresponding to an infinitely large woo. As s gets largeihis 

maximum value becomes small. In the present computations. 

the distance between the inflow boundary and the airfoil is 

about 15 chord lengths. Non-dimensionalizing all quantities 

with Uoo and the chord length. c.leads to a freestream value 

of w in the leading edge region of the airfoil of about W f = 1 

whereas the formula given in [13] for the estimation of the 

correct freestream value: 

(36) 

indicates that it should be about three orders of magnitude 

larger. The low freestream value of w in tum leads to the very 

high eddy-viscosities shown in Fig. 3 which in tum prevent 

separation. This example clearly shows the dangers of using 

the orig. k - w model for aerodynamic applications. If the 

correct freestream values could be specified. the results of 

the orig. k - w should be very close to those of the BSL 

model. 

Figure 21 shows a comparison of the computed and the 

experimental surface pressure distributions. The agreement. 

especially for the SST model is not as good as should be 

expected from the velocity profiles shown in Fig. 20. Al­

though the SST model predicts the displacement effect of the 

boundary layer almost exactly, it fails to reproduce the pres­

sure distribution. This indicates an inconsistency between 

the computations and the experiments. Likely candidates 

are blockage effects in the wind tunnel (however. including 

wind tunnel walls in the computations does not improve the 

results [18]) or three-dimensional effects in the experiment. 

Transonic Bump Flow 

The final test case is the axisymmetric transonic shock­

wave/turbulent boundary layer experiment of Bachalo and 

Johnson [30]. In this t;xperirnent, an axisymmetric boundary 

layer interacts with a shock wave created by a circular arc. 

as shown in Fig. 22. It is beyond the scope of this paper 

to present a detailed study of transonic flows and only the 

highest Mach number case will be shown. The Mach num­

ber for this experiment is 0.925. The number of gridpoints 

used was 150x3x80. Grid-independence was established by 

using different grids (129x3x60 and l80x3x100). Figure 23 

shows the wall pressure distribution computed by the three 

different k - w models. compared with the experiment. The 
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SST model predicts significantly better results than the BSL 

and the original k - w model, due to its improved transport 

features. A compressible version of the k - ( model has not 

yet been coded and results for that model are therefore miss­

ing in the comparison. Earlier results of [31] show however 

a similar behavior as the BSL and the original k - w model. 

Detailed comparisons for transonic flows will be presented 

at a later time. 

Conclusions 

Two new turbulence models have been derived from 

the original k - w model of Wilcox [9]. The motivation 

behind the new baseline (BSL) model was to eliminate the 

freestrearn dependency of the k - w model but retain its sim­

ple and reliable form, especially in the near wall region. In 

order to achieve this goal, a switching function was designed 

that can discriminate between the inner part (appr. 50%) of 

a boundary-layer and the rest of the flowfield. In this inner 

part the original k - w model is solved, and in the outer wake 

region a gradual switch to the standard Ie - ( model, in a 
k - w formulation, is performed. 

The BSL model was then used to derive a model that can 

account for the transport of the turbulent shear stress (Shear­

Stress Transport or SST model). The derivation of the model 

was inspired by the success of the Johnson-King (JK) model. 

The main assumption in the JK model that the principal 

turbulent shear-stress is proportional to the turbulent kinetic 

energy was incorporated into the new SST model. This 

modification ensures that the principal turbulent shear-stress 

satisfies the same transport equation as the turbulent kinetic 
energy. It is designed to act only inside the boundary-layer 

in order to retain the k - ( model (transformed to a k - w 

formulation) for free shear-layers. 

Both models were applied to a selection of well docu­

mented research flows, that are meaningful for aerodynamic 

applications. The results of the computations were compared 

against solutions of the standard k - wand the standard k - ( 

model, as well as against experimental data. 

The free shear-layer computations have shown that the 

new models give results almost identical to those of the k - ( 

model. Another important aspect of those computations is 

that they show clearly the strong ambiguity in the results of 

the original k - w model with respect to freestrearn values. 

The central part of the comparisons is for the behavior 

of the models under adverse pressure gradient conditions. 

The computations of the Samuel-Joubert flow, as well as 

Driver's separated adverse pressure gradient flow show that 

the SST model gives highly accurate results for this type of 

problem. The BSL and the original k - w model produce 

rather similar results, provided the correct freestrearn values 

are specified in the latter. 

Computations were also performed for the backward 

facing step flow of Driver and Seegmiller [25]. A very fine 
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grid was employed to ensure grid independence of the re­

sults. For this problem, the original Ie - w and the SST 

model give very accurate results. They predict the reatt<lch­

ment length within the uncertainty of the measurements and 

give an accurate representation of the wall pressure distribu­

tion. The BSL model gives about 8% too small values for 

the reattachment length. These results are still very accurate. 

considering the notorious difficulties this flow poses to nu­

merical a:;sessmenL All models fail to predict the relaxation 

of the velocity profiles downstream of the reattachment point 
correctly. 

Computations for a NACA 4412 airfoil at an ang'le of 

attack near maximum lift condition confirm the findings of 

the adverse pressure gradient computations. The SST model 

predicts highly accurate velocity profiles, almost identical 

to those of the experiments. The BSL model has a smaller 

sensitivity to the adverse pressure gradient than the SST 

model and therefore predicts less retarded profiles. A very 

surprising result of the computations is that the original k - w 

model gives even less accurate solutions than the Jones­

Launder k - ( model. The reason for the failure of the 

model is again its freestream dependency. This computation 
clearly shows that the original k -w model cannot be applied 

unambiguously for industrial applications. 

The last set of computations is for a transonic shock­
wave/turbulent boundary layer interaction. The accurate 

prediction of the shock location by the SST model shows 

that the good performance of this model for incompressible 
applications can be extended to transonic flows. 

Appendix 

The Baseline (~SL) Model 

I 

The constants rp of the new model are calculated from 

the constants, cPl' rp2' as follows: 

The constants of Set 1 (rp 1) are (Wilcox): 

O"k1 = 0.5, O"wl = 0.5, {J1 = 0.0750, (A-4) 

{J* = 0.09, '" = 0.41, /1 = {JII{J* - O"wl",2;j{F. 



The constants of Set 2 (1)2) are (standard k - f): 

O'k2 = 1.0,0',,-,2 = 0.856, /h. = 0.0828, (A-5) 

The function F j is defined as follows: 

(A-6) 

with: 

. vk 500v 4pO'w2k 
argj =ml1l(max(-009' ;-.,-);, .,) (A-7) 

. ""Y Y~:"; C DkwY'" 

where Y is the distance to the next surface and C Dkw is the 

cross-diffusion term of equation (A-2): 

. I uk Ow -20 
(Db = m(l.r(2pO'w2-~-;:;-1 10 ) 

W VXj VX] 

(A-8) 

The eddy-viscosity is defined as: 

k 
Vt = - (A-9) 

:..; 

and the turbulent stress tensor TiJ = - pu; u~ is: 

The following choice of freestrearn values is recommended: 

Uoc 
woe = (1 -+ 10)­

L 
(A-ll) 

(A-12) 

where L is the approximate length of the computational do­

main. 

Appendix 

The Shear-Stress Transport (SST) Model 

The SST model is identical to the above fonnulation. 

except that the constants. ¢J 1. have to be changed to: 

Set 1 (SST - inner): 

O'kl =0.85'O'wl =0.5, (31 =0.0750,a1 =0.31 (A-13) 

(3* = 0.09, '" = 0.41, 1'1 = (311{3* - O'w1",2;v'7F 

and the eddy-viscosity is defined as: 

(A-14) 

where n is the absolute value of the vorticity. F2 is given 

by: 

with: 

.Jf 500v 
arn = max(2-

0 
09 ; -2-) 
. wy y:..; 

Important detail!: 

(A-IS) 

(A-16) 

In applying this model. it is important that the reader is 

aware of the following ambiguity in the formulation of the 

production tenn of w for the SST model. The definition of 

the production tenn of w is sometimes written as: 

(A-l7) 

which introduces the nondimensional group Vt T in front of 

the strain rate tensor. In the original and in the BSL model 

this group is equal to one and the two fonnulations for P.;.) 

are therefore identical. This is not the case for the SST 

model because of equation (A-14). The SST model h,l<; heen 

calibrated with respect to equation (A-2) and equation (A-17) 

should therefore not be used. 
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