
UC Irvine
ICS Technical Reports

Title
Zonohedra and Zonotopes

Permalink
https://escholarship.org/uc/item/8035q4gn

Author
Eppstein, David

Publication Date
1995-12-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8035q4gn
https://escholarship.org
http://www.cdlib.org/

3L

Zonohedra and Zonotopes

David Eppstein*

Dept. ofInformation & Computer Science

U.C. Irvine, CA, 92717

ht^://www.ics.uci.edu/~eppsteiii/

Tech. Report 95-53

December 15,1995

Abstract: We useMathematica to construct zonotopes and display zonohedra.

*Work supported in partby NSF grant CCR-9258355 and by matching funds from Xerox corp.

Notice: This Wlateriai
may be protected
by Copyright Law
(Title 17 U.S.C.)

H Introduction

A zonotope is a set of points in d-dimensional space constructed by the sum of scaled vectors

a[[i]] v[[i]] where a[[i]] is a scalar between 0 and 1 and v[[i]] is a d-dimensional vector.

Alternately it can be viewed as a Minkowski sum of line segments connecting the origin to the

endpoint of each vector. It is called a zonotope because the faces parallel to each vector form a

so-called zone wrapping around the polytope. A zonohedron is just a three-dimensional

zonotope. This notebook contains code for constructing zonotopes and displaying zonohedra.

There is some confusionin the definition of zonotopes; Wells [W91] requires the generating

vectors to be in general position (all d-tuples of vectors must span the whole space), so that all

the faces of the zonotope are paraUelotopes. Others [BEG95,Z95] do not make this restriction.

Coxeter [C73] starts with one definition but soon switches to the other. We use the unrestricted

definition here.

The combinatorics of the faces of a zonotope are equivalent to those of an arrangement of

hyperplanes in a space of one fewer dimension, so for instance zonohedra correspond to planar
line arrangements. This can be mosteasilyseen by considering the spaceof d-dimensional

h)q)erplanes tangent to the zonotope. The space of aU d-dimensionalunit vectors can be seen as a

unit sphere, equivalentto orientedprojective (d-l)-space. For any given unit vector, there is a

unique hyperplane normal to the vector and tangent to the zonotopeat some kind of face. One

can swing a hyperplane tangentto a k-dimensional face through a collection of angleswith

(d-l-k) degrees of freedom; this corresponds to a cell withdimension (d-l-k) in this projective

space. Thus the faces of the zonotopecorrespond to a dual cell decompositionof space (dual

because the dimensions are reversed — high dimensional faces correspond to lowdimensional
cells). If therewere only a single vector, this decomposition would be givenby a single

hyperplane (partitioning thetangents into those thattouch the origin, those thattouch theendpoint
of thevector, andthose parallel to thevector that touch both points). Butthe decomposition
corresponding to a Minkowski sum is formed by overlaying the decompositions corresponding

to the two summands, so the cell decomposition of the tangentspace to a zonotope is exactly a

hyperplane arrangement The zone of faces parallel to a given vector corresponds exactly to a

hyperplane in the arrangement

Because of this correspondence, wecanconstruct zonotopes in 0(n'̂ (d-I)) time. In particular it
would take 0(0^^2) time to construct a zonohedron from an initial set of n vectors. However our

implementationuses a slower algorithm better suited to the fimctional nature of Mathematica

programming. Wefirst find the subsets of vectors corresponding to thefaces of the zonotope.
These subsets are determined incrementally, by combining each new vector withpreviously

generated subsets, and thenforming additional faces pairing thenewvector with any remaining

old vectors. Once we have generated all faces, we determine coordinates for their vertices

(recursively, since each face is again a zonotope in one lower dimension) and lift them into

position by adding appropriate sets of vectors.

Implementation

I Manipulation of Individual Faces

In the face generation stage, we represent a face by the indices of the vectors generating it. When

we add a new vector to the zonohedron, we test it against each face and determine whether it is

coplanar (by computing a dxd determinant); if so it gets added to the list of indices. In the face

placement stage, we instead represent a face by the coordinates of its vertices, so we need code to

translate between the two representations. Once we have found the coordinates of a face

recursively as a lower-dimensional zonotope, we lift two copies of it in place by using a similar

determinant computation to determine which vectors to add to each copy.

In order to compute recursive faces we need a way of testing signs of determinants when there

are fewer than d vectors involved. We simply add extra vectors on the moment curve

(x,x^2,x^3,...), so that they are independent of each other and (hopefully) of the inputs.

In[1]:=

ZSignTest [w_, f_] : =

Det [Part[vv,f] -Joiii'-

Table[(i+200)

{i,Length[w[[1]]] -Length[f] },

{j,Length[w[[l]]]}]]

This routine tests whether to add a new vector to an existing face.

In[2]:=

ZAddToFace [w_, fi_, d_] : =

If[Length[f] < (d-1) ||

ZSignTest [w. Append [Take [f, d-1] ,i]] == 0,

Append[f,i], f]

The next two routines convert faces from subsets of indices to coordinates. This is simply a

recursive call to Zonotope, except that when the face is one-dimensional the result is just a line

segment and we stop the recursion to compute it more simply.

In[3]:=

ZOrigin[w_] ;= Ted)le[0, {Length[w[[l]]]}]

In[4]:=

ZFace[w_,fd_]:=

If[d==2,

{ZOrigin[w],PlusPart[w,f]},

Zonotope[Part[vv,f],d-1]]

Theremainingroutinesinthissectionareconcernedwithtranslatingtheconvertedfacesintotheir

appropriatepositionsinspace.Eachfaceappearsintwocopies,andeachvectornotcontributing

tothefaceisusedtoshiftexactlyoneofthecopies.Whichoneisdeterminedbyanother

determinantcalculation.

In[5]:=

ZLiftVector[w_,f_,i_,d_]:=

If[MenberQCf,i],{ZOrigin[w],ZOrigin[w]},

If[ZSignTest[vv,Append[Take[f,d-1],i]]<0,

{w[[i]],ZOrigin[w]},

{ZOrigin[w],w[[i]]}]]

Iwanttoaddthesamevectortoalllevel-onelistsinanestedliststructure,butMathematica

doesn'tletPlusworkthisway(althoughitdoesworkwithscalars...)

In[6]:=

ZVecPlus[a_,v_]:=

If[Head[First[a]]===List,

ZVecPlus[#,v]t/&a,a+v]

ln[7]:=:

ZLiftFace[w_,f_,d_]:=

{#1-ZVecPlus-#2[[1]],#1-ZVecPlus-#2[[2]]}&[

ZFace[w,f,d],

Plus&&Table[ZLiftVector[w,f,j,d],{j,Length[w]}]]

IFaceGenerationStage

Asdescribedearlier,wegeneratefaces(assubsetsofvectors)incrementally,addingonevectorat

atimetoourzonotope.Addingonevectorhastwoparts:includingitinthefaceswithwhichitis

coplanar,andthenmakingnewfaceswithwhichitisnoncoplanar.

In[8]:=

ZOldFaces[w_,ff_,i_,d_]:=

(ZAddToFace[w,#,i,d])&/&ff

To generate the new faces, we make all d-tuples of indices involving index i, and then filter out

the ones that are subsets of the indices in existing faces.

In[9]:=

ZTuples [i_, d_] : =

If[d == 1, {{i}},

(Append[#, i]&) /& Join @0

Table[ZTuples[j,d-l],{j,i-l}]]

ln[10]:=

ZSubsetQ[s_,t_] := (Length[t] == Length[Intersection[s,t]])

ln[11]:=

ZFilterTuple[ff_,t_] :=

Not[Or @0 (ZSubsetQ[#,t]&) /0 f£]

ln[12]:=

ZAddTuples [w_, f f_, i_, d_] : =

ff ~Join~ Select[ZTuples[i,d-l], ZFilterTuple[ff,#]&]

ln[13]:=

ZNewFaces [w_, f f_, i_, d_] : =

ZAddTuples [w, ZOldFaces [w, ££, i,d], i, d]

In [14]:=

2U^llFaces [w_, d_] : =

Fold [ZNewFaces [w, #1, #2,d] &,

{{}}, Table[i, {i,Length[w] }]]

I Face Placement Stage

ln[15]:=

ZLiftAll [w_, ff_,d_] : =

Join 00 Nap[ZLi£tFace[w,#,d]&,££]

Main Zonohedron Code

In [16]:=

Zonotope [w_, d_] : =

ZLiftAll [w, ZAllFaces [w,d], d]

The general zonotope code will produce a recursive description in which 2d faces are lists of Id

edges, etc. For nice drawings of zonohedra we need to convert these lists of edges into a single

polygon.

In[17]:=

ZNext [f e_] : =

Join && Map[

If[e[[2]] == #[[!]] && e[[l]] != #[[2]], #,

If[e[[2]] == #[[2]] && e[[l]] != #[[!]],

Reverse[#], {}]]&, f]

ln[18]:=

ZMakePolygon [f_] ; =

First /& NestListE ZNextf[[l]], Length[f]-1]

In [19]:=

Zonohedron [w_] : =

Show [Graphics3D[Polygon /@ ZMakePolygon /(?

Zonotope [N[w], 3]],

Viewpoint->{12,3,5},

Boxed -> False]

• WAV.V.W.ViV%VVi'>."iSV.V.ViS*i*A-«SWi'ASViNSWi*.\S".VSVV.V."A.V.'.-.V.'.*.*.S'.-.\V.V.%W.%vXV!A-.WJAW." <

roii[{{l,Sqrt[3],0},{l,-Sqrt[3] ,0}, {2,0,0}, {0,0,2}}]

Zonohedron[{{2, 0,0},{0,2,0},{0,0,2},

{Sqrt[2],Sqrt[2],0},{Sqrt[2], -Sqrt[2],0}}]

•' ^ ' A. ' <S •

s .

• The Truncated Octahedron

The octahedron itself is not a zonohedron, since its faces are triangular and do not form zones.

However if one uses the edges of the octahedron as generators, one gets this zonohedron, in

which the triangular faces of the octahedron have been truncated to hexagons and squares added

to connect them. The twelve octahedron edges come in six pairs, so there are six generators.

This shape can fill space without leaving any gaps.

Zonohedron[{{l,l,0}, {1,-1,0},,{1,0,1}, {1,0,-1},

{0,1,1},{0,1,-1}}]

The Rhombic Dodecahedron

This is the dual to the cuboctahedron, an Archimedean solid formed by combining the six

squares of a cube with the eight triangles of an octahedron. The cuboctahedron itself is not a

zonohedron because of its triangular faces.

Zonohedron[{{1,1,1},{1,-1,1},{1,1,-1},{1,-1,-1}}]

The Extended Rhombic Dodecahedron

This zonotope is noteworthy for (like the cube, hexagonal prism, truncated octahedron, and

rhombic dodecahedron) being able to fiU space without leaving any gaps. The one here is drawn

with different angles from the rhombic dodecahedron itself, to make the hexagonal sides regular.

Zonohedron[{{0,Sqrt[3],1},{Sqrt[3] ,0,1},

{0,-Sqrt[3],1},{-Sqrt[3],0,1},

{0,0,2}}]

The Truncated Cuboctahedron

As can be seen from its set of generators, this is the Minkowski sum of a cube and a truncated

octahedron. It is also known as the Great Rhombicuboctahedron.

Zonohedron[{{1,1,0}, {1,-1,0}, {1,0,1}, {1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2],0,0},{0,Sqrt[2],0},{0,0,Sqrt[2]}}]

The Truncated Rhombic Dodecahedron

This is the Minkowski sum of a cube and a rhombic dodecahedron. The hexagons can not be

regular, although they do have all sides the same length, since three regular hexagons would meet

in a flat solid angle instead of the comers here. Although this shape does not fill space on its

own, it can be combined with cubes in a regular space-filling pattern.

Zonohedron[{{1,1,!},{!, 1,-1}, {1,-1,!},{!,-1,-1},

{Sqrt[3],0,0},{0,Sqrt[3],0},{0,0,Sqrt[3]}}]

Two non-Archimedean zonohedra

This is the Minkowski sum of a a truncated octahedron and a rhombic dodecahedron. Its faces

are squares, regular hexagons, and long irregular hexagons.

Zonohedron[{{1,1,0}, {1,-1,0}, {1,0,1}, {1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]}}]

This is the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.

Some of the octagonal faces are non-regular.

Zonohedron[{ {1,1,0},{1,-1,0},{1,0,1},{1,0,-1},

{0,1,1},{0,1,-1},

{Sqrt[2/3],Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],Sqrt[2/3]},

{Sqrt[2/3],-Sqrt[2/3],-Sqrt[2/3]},

{Sqrt[2],0,0},{0,Sqrt[2],0},{0,0,Sqrt[2]}}]

The Rhombic Triacontahedron

This is the dual of the icosidodecahedron, one of the Archimedian solids that (like the

cuboctahedron) is not a zonohedron as it has odd faces.

Zonohedron[{{1,0,-GoldenRatio},{1,0,GoldenRatio},

{0,-GoldenRatio,1},{0,GoldenRatio,1},

{-GoldenRatio, 1,0},.{GoldenRatio, 1,0} }]

The Truncated Icosidodecahedron

This is also known as the Great Rhombicosidodecahedron.

Zonohedron[{

{l,GoldenRatio,GoldenRatio-l},{1,-GoldenRatio,GoldenRatio-l},

{1, -GoldeiiRatio,1-GoldenRatio},{l,GoldenRatio,1-GoldenRatio},

{GoldenRatio,1-GoldenRatio,1},{GoldenRatio,1-GoldenRatio,-1},

{GoldenRatio,GoldenRatio-l,-1},{GoldenRatio,GoldenRatio-1,1},

(GoldenRatio-l,1,GoldenRatio},{GoldenRatio-1,-1,-GoldenRatio},

{GoldenRatio-1,1,-GoldenRatio},{GoldenRatio-1,-1,GoldenRatio},

{2,0,0},{0,2,0},{0,0,2}}]

