UC Irvine
ICS Technical Reports

Title
Zonohedra and Zonotopes

Permalink
https://escholarship.org/uc/item/8035g4an

Author
Eppstein, David

Publication Date
1995-12-15

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8035q4gn
https://escholarship.org
http://www.cdlib.org/

Zonohedra and Zonotopes
David Eppstein*
Dept. of Information & Computer Science
U.C. Irvine, CA, 92717
http://www.ics.uci.edu/~eppstein/

Tech. Report 95-53

December 15, 1995
| Abstract: We use Mathematica to construct zonotopes and display zonohedra.

*Work supported in part by NSF grant CCR-9258355 and by matching funds from Xerox corp.

Notice: This Material
; may be protected
by Copyright Law
E | (Title 17 u.S.C)

| Introduction

A zonotope is a set of points in d-dimensional space constructed by the sum of scaled vectors
a[[i]] v([[i]] where a[[i]] is a scalar between O and 1 and v[[i]] is a d-dimensional vector.
Alternately it can be viewed as a Minkowski sum of line segments connecting the origin to the
endpoint of each vector. Itis called a zonotope because the faces parallel to each vector form a
so-called zone wrapping around the polytope. A zonohedron is just a three-dimensional
zonotope. This notebook contains code for constructing zonotopes and displaying zonohedra.

There is some confusion in the definition of zonotopes; Wells [W91] requires the generating
vectors 1o be in general position (all d-tuples of vectors must span the whole space), so that all
the faces of the zonotope are parallelotopes. Others [BEG95,Z95] do not make this restriction.
Coxeter [C73] starts with one definition but soon switches to the other. We use the unrestricted
definition here.

The combinatorics of the faces of a zonotope are equivalent to those of an arrangement of
hyperplanes in a space of one fewer dimension, so for instance zonohedra correspond to planar
line arrangements. This can be most easily seen by considering the space of d-dimensional
hyperplanes tangent to the zonotope. The space of all d-dimensional unit vectors can be seen as a
unit sphere, equivalent to oriented projective (d-1)-space. For any given unit vector, there is a
unique hyperplane normal to the vector and tangent to the zonotope at some kind of face. One
can swing a hyperplane tangent to a k-dimensional face through a collection of angles with
(d-1-k) degrees of freedom; this corresponds to a cell with dimension (d-1-k) in this projective
space. Thus the faces of the zonotope correspond to a dual cell decomposition of space (dual
because the dimensions are reversed — high dimensional faces correspond to low dimensional
cells). If there were only a single vector, this decomposition would be given by a single
hyperplane (partitioning the tangents into those that touch the origin, those that touch the endpoint
of the vector, and those parallel to the vector that touch both points). But the decomposition
corresponding to a Minkowski sum is formed by overlaying the decompositions corresponding
to the two summands, so the cell decomposition of the tangent space to a zonotope is exactly a
hyperplane arrangement. The zone of faces parallel to a given vector corresponds exactly to a
hyperplane in the arrangement.

Because of this correspondence, we can construct zonotopes in O(n”(d-1)) time. In particular it
would take O(n”2) time to construct a zonohedron from an initial set of n vectors. However our
implementation uses a slower algorithm better suited to the functional nature of Mathematica
programming. We first find the subsets of vectors corresponding to the faces of the zonotope.
These subsets are determined incrementally, by combining each new vector with previously
generated subsets, and then forming additional faces pairing the new vector with any remaining

old vectors. Once we have generated all faces, we determine coordinates for their vertices
(recursively, since each face is again a zonotope in one lower dimension) and lift them into
position by adding appropriate sets of vectors.

£ Implementation

M Manipulation of Individual Faces

In the face generation stage, we represent a face by the indices of the vectors generating it. When
we add a new vector to the zonohedron, we test it against each face and determine whether it is
coplanar (by computing a dxd determinant); if so it gets added to the list of indices. In the face
placement stage, we instead represent a face by the coordinates of its vertices, so we need code to
translate between the two representations. Once we have found the coordinates of a face
recursively as a lower-dimensional zonotope, we lift two copies of it in place by using a similar
determinant computation to determine which vectors to add to each copy.

In order to compute recursive faces we need a way of testing signs of determinants when there
are fewer than d vectors involved. We simply add extra vectors on the moment curve
(x,x72,x"3,...), so that they are independent of each other and (hopefully) of the inputs.

In[1]:=
ZSignTest[vv_,f] :=
Det [Part([vv,£f] ~Join~
Table[(i+200) 43,
{i,Length[vv[[1]]]-Length[f]},
{j,Length[vv[[1]]]1}]]

This routine tests whether to add a new vector to an existing face.

In[2]:=
ZAddToFace[vv_,f ,i_,d_] :=
If[Length[f] < (d4-1) ||
zSignTest[vv, Append[Take[f,d-1],i]] == 0,
Append[f,i], £]

The next two routines convert faces from subsets of indices to coordinates. This is simply a
recursive call to Zonotope, except that when the face is one-dimensional the result is just a line
segment and we stop the recursion to compute it more simply.

In[3]:=
ZOrigin[vv_] := Table[0, {Length[vv[[1]] 1} 1

33 9/ 3([p 'T '# ’‘An]eORIOLPPVZ)
=: [P" T' 33’ AA]SS0ORIAPTOZ
=:[8]ul
“reue[doouou ST 11 YOIym [IIm S0BJ Mau Sunyew uay) pue ‘reueidod
ST YOIy YIrm $99eJ Y ur 1t Jurpnyout :sured omy sey 103094 9u0 Fuippy 2do10uoz Ino 0} oW ©
18 10109A 9UO JUIPpE ‘A[[RIUSWIAIOUL (SI0IOAA JO S1SQNS SB) SI0BJ 2JeIOUIT oM ‘IOI[IED PAQLIOSIP SY

a3e)S uoneIdUIN e .|

[[{[aa]y3bueT L}’ [P’L'I'AA]IO3DBAIITIZ]OTIARL 99 SNId
‘[p’3‘an]eDRazZ
1 2{[[Z]]lZ# ~snigoeAz~ T# ‘[[T]1]Z# ~sSnTaosAZ~ T#}
=: [P 3’ AA]®DRIIFITIZ
=:[£]u|

[A+e ‘e ®/ B[A’#]SNTIOOAZ
‘38T === [[e]3saTd]pesH]II
=: [[A’ e]sSnigoeAzZ
=:[9]u|
(**SIereas M JIom S0P 11 y3noylre) Aem STY) JIom Sn[g 19 3,Usa0p
DIUDWYIDHY INQ “QUNIONNS IST[PIISIU © UT SIST[JUO-[AI[[[B 03 J0JOA JUIBS I} PPE 01 JUBM |

[[{[[T]l]aa ‘[AA]uTETIOZ}
‘{[aa]utrbTa0Z “[[T]1]AA}
‘0 > [[T'[T-p’F]eyer]pueddy ‘An]3lsorubtsz] 3II
‘{[Aa]uTbTI0Z ‘ [Aa]UTETIOZ} ‘[T ‘F]10IeoqWen] 3I
=: [P" 1" 3" AA]I03D9A3FTIZ
=:[g]u]

“UONE[NO[Ed JUBUIULIA)RD
IIOUE AQ PAUTULIAIAP ST U0 YOIyA\ "so1dod 9y JO QU0 ATIOBX? 1JIYS 0} Pasn ST Ade] Y} 0)
Sunnqrnuos 10u 101994 Yora pue ‘sardoo o ur sreadde 20wy yoeg -ooeds ur suonisod syeudordde
II3Y) OJUT SA0BJ PALISAUOD) SUNE[SULN (IIM PIWISOUOD 2B UONIAS STY) UT SAUNNOI JUrurewar oy,

[[T-P ‘[F‘an]3xRg]®dOj0UOZ |
‘{[F'an]l3xed 9® SnTd ‘[aAA]UuTbTIOZ} |
‘T ==7P] 3I

=: [P’ 3’ An]eDRIAZ
=:[v]ul

To generate the new faces, we make all d-tuples of indices involving index i, and then filter out
the ones that are subsets of the indices in existing faces.

In[9]:=
ZTuples[i_,d_] :=
If[d == 1, {{i}},
(Append[#,i]&) /@ Join @@
Table[ZTuples([j,d-1],{j,i-1}]]

In[10]:=
ZSubsetQ[s_,t_] := (Length[t] == Length[Intersection[s,t]])

!n[? 1].‘:
ZFilterTuple[ff ,t_] :=
Not [Or @R (ZSubsetQ[#,t]l&) /@ ££f]

In[12]:=
ZAddTuples|[vv_,ff ,i ,4d] :=
ff ~Join~ Select[ZTuples[i,d-1], ZFilterTuple[ff,#]&]

!n[13]=
ZNewFaces([vv_,ff ,i ,4d] :=
ZAddTuples [vv, ZOldFaces([vv,ff,i,d], i, 4]
fﬂ[14]=
ZAllFaces[vv_,d] :=

Fold[ZNewFaces|[vv, #1,#2,d] &,
{{}}, Tablel[i, {i,Length[vv]}]]

M Face Placement Stage

In[15]:=
ZLiftAll[vv ,ff ,4] :=
Join @@ Map[ZLiftFacel[vv,#,d]l&, £f£f]

B Main Zonohedron Code

In[16]:=
Zonotope[vv_,d] :=
ZLiftAll[vv, ZAllFaces[vv,d],d]

The general zonotope code will produce a recursive description in which 2d faces are lists of 1d
edges, etc. For nice drawings of zonohedra we need to convert these lists of edges into a single

polygon.
ni17):=
ZNext[f_ ,e] :=
Join @@ Map|[
If[e[[2]] == #[[1]] && e[[1]] != #[[2]], #,
If[e[[2]] == #[[2]] && e[[1]] != #[[1]],
Reverse[#], (}]11&, £l

In[18]:=
ZMakePolygon[f] :=
First /@ NestList[ZNext[f,#]&, £[[1]], Length[f]-1]

In[19]:=
Zonohedron([vv_] :=
Show[Graphics3D[Polygon /@ ZMakePolygon /@
Zonotope [N[vv], 311,
ViewPoint->{12, 3,5},
Boxed -> False]

Examples

M The Cube

Zonohedron([{{1,0,0},{0,1,0},{0,0,1}}]

M Prisms

Zonohedron[{{1,Sqrt[3],0},{1, -Sqrt[3],0},{2,0,0},{0,0,2}}]

Zonohedron[{{2,0,0},{0,2,0},{0,0,2},
{Sqrt[2],Sqrt[2],0}, {Sqrt[2],-Sqrt[2],0}}]

Bl The Truncated Octahedron

The octahedron itself is not a zonohedron, since its faces are triangular and do not form zones.
However if one uses the edges of the octahedron as generators, one gets this zonohedron, in
which the triangular faces of the octahedron have been truncated to hexagons and squares added
to connect them. The twelve octahedron edges come in six pairs, so there are six generators.
This shape can fill space without leaving any gaps.

Zonohedron[{{1,1, 0},{(1,-1, 0}1.{11'011]% {1,0,-1},
‘[or 1: 1}: '[or 1:"'1}]’]

B The Rhombic Dodecahedron

This is the dual to the cuboctahedron, an Archimedean solid formed by combining the six
squares of a cube with the eight triangles of an octahedron. The cuboctahedron itself is not a

zonohedron because of its triangular faces.

Zonohedron[{{1,1,1},{1,-1,1},{1,1,-1},{1,-1,-1}}]

M The Extended Rhombic Dodecahedron

This zonotope is noteworthy for (like the cube, hexagonal prism, truncated octahedron, and
rhombic dodecahedron) being able to fill space without leaving any gaps. The one here is drawn
with different angles from the rhombic dodecahedron itself, to make the hexagonal sides regular.

10

Zonohedron[{{0,Sqrt[3],1}, {Sqrt[3],0,1},
{0, -Sqrt[3],1}, {-Sqrt[3],0,1},
{0,0,2}}]

B The Truncated Cuboctahedron

As can be seen from its set of generators, this is the Minkowski sum of a cube and a truncated
octahedron. Itis also known as the Great Rhombicuboctahedron.

11

Zonohedron[{{1,1, 0},{(1,-1,0},¢(1,0,1},{1,0,-1},
{Or 1:1}: {Ol‘ll’-l}l
{Sqrtlzl ’ D: O}r {0:sqrt[2] :0}: {or U;Sqrt [2] }}]

M The Truncated Rhombic Dodecahedron

This is the Minkowski sum of a cube and a rhombic dodecahedron. The hexagons can not be
regular, although they do have all sides the same length, since three regular hexagons would meet
in a flat solid angle instead of the corners here. Although this shape does not fill space on its
own, it can be combined with cubes in a regular space-filling pattern.

12

Zonohedron[{{1,1,1},{1,1,-1},{1,-1,1},{1,-1,-1},
{Sqrt[3],0,0},{0,Sqrt[3],0},{0,0,Sqrt[3]}}]

B Two non-Archimedean zonohedra

This is the Minkowski sum of a a truncated octahedron and a rhombic dodecahedron. Its faces
are squares, regular hexagons, and long irregular hexagons.

13

Zonohedron[{{1,1,0},{(1,-1,0},{1,0,1},{1,0,-1},
{0,1,1},{0,1,-1},
{Sqrt[2/3],Sqrt[2/3],8Sqrt[2/3]},
{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},
{Sqrt[2/3],-Sqrt[2/3],8qrt[2/3]},
{Sgrt[2/3],-Sqrt[2/3],-Sqrt[2/3]}}]

This is the Minkowski sum of a cube, a truncated octahedron, and a rhombic dodecahedron.
Some of the octagonal faces are non-regular.

14

Zonohedron([{{1,1,0},{1,-1,0},{1,0,1},{(1,0,-1},
{0,1,1}),{0,1,-1},
{Sqrt[2/3],Sqrt[2/3],S8qrt[2/3]1},
{Sqrt[2/3],Sqrt[2/3],-Sqrt[2/3]},
{Sqrt[2/3],-Sqgrt[2/3],8qrt[2/3]},
{Sgqrt[2/3],-Sqrt[2/3],-Sqrt[2/31]1},
{Sqrt[2],0,0},{0,Sqrt[2],0},{0,0,Sqrt[2]}}]

B The Rhombic Triacontahedron

This is the dual of the icosidodecahedron, one of the Archimedian solids that (like the
cuboctahedron) is not a zonohedron as it has odd faces.

15

Zonohedron[{{1,0,~-GoldenRatio}, {1, 0, GoldenRatio},
{0, -GoldenRatio, 1}, {0,GoldenRatio, 1},
{-GoldenRatio, 1,0}, {GoldenRatio,1,0}}]

The Truncated Icosidodecahedron

This is also known as the Great Rhombicosidodecahedron.

16

Zonohedron| {
{1,GoldenRatio,GoldenRatio-1}, {1, -GoldenRatio, GoldenRatio-1},
{1, -GoldenRatio, 1-GoldenRatio}, {1,GoldenRatio, 1-GoldenRatio},
{GoldenRatio, 1-GoldenRatio, 1}, {GoldenRatio, 1-GoldenRatio, -1},
{GoldenRatio,GoldenRatio-1,-1}, {GoldenRatio, GoldenRatio-1,1},
{GoldenRatio-1,1,GoldenRatio}, {GoldenRatio-1, -1, -GoldenRatio},
{GoldenRatio-1,1, -GoldenRatio}, {GoldenRatio-1, -1,GoldenRatio},
{2,0,0},{0,2,0},{0,0,2}}]

17

