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Abstract. Performing dilation and erosion using large structuring ele-
ments can be computationally slow – a problem especially pronounced
when processing volumetric data. To reduce the computational complexity
of dilation/erosion using spherical structuring elements, we propose a
method for approximating a sphere with a zonohedron. Since zonohedra
can be created via successive dilations/erosions of line segments, this
allows morphological operations to be performed in constant time per
voxel. As the complexity of commonly used methods typically scales with
the size of the structuring element, our method significantly improves the
run time. We use the proposed approximation to detect large spherical ob-
jects in volumetric data. Results are compared with other image analysis
frameworks demonstrating constant run time and significant performance
gains.

Keywords: Morphology · Computational Efficiency · Zonohedra.

1 Introduction

Morphological operations of dilation and erosion are well-established image
processing methods, and significant effort has been put into developing efficient
algorithms for gray-scale morphology. An important advance, also for our work,
is the van Herk/Gil-Werman algorithm [8,20] which computes 1D dilation and
erosion in constant time per pixel – regardless of the length of the structuring
element. This opens a possibility for efficient 2D and 3D algorithms, if the
structuring element can be decomposed in linear components.

Decompositions and approximations of various 2D structuring elements have
been known for decades, while 3D structuring elements have received almost no
attention. This also holds true for the 3D sphere, which is a structuring element
of large practical importance, as it is invariant to rotation. To our knowledge,
approximation of the 3D sphere has not been treated in the context relevant for
morphological filtering of digital volumes. Furthermore, when investigating how
3D morphology is handled by software commonly used for image processing, we
found no evidence of fully utilizing the approximation of the sphere.

Efficient computation is especially important in 3D image processing, where
the volume of a spherical structuring element grows cubically with the radius, and
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datasets are often large. In particular, applications requiring multiple passes of
morphological filtering, like granulometry or porosity analysis, might be seriously
affected by the lack of efficient algorithms for 3D dilation and erosion.

In this paper we treat the problem of approximating a 3D sphere of an
arbitrary radius with linear components. Our main contribution is an algorithm for
approximating a 3D sphere using a zonohedron. The resulting linear components
can be used for morphological filtering in any image processing framework. When
combined with the van Herk/Gil-Werman algorithm, computational complexity
of dilation or erosion is independent of the radius of the sphere. Furthermore,
based on our sphere approximation, we implemented an efficient GPU-based
dilation/erosion which is available at https://github.com/patmjen/Zonohedra.
To exemplify the use of our method we apply gray-scale opening to detect spheres
in µCT data of cement and stone wool. And lastly, we perform tests showing the
benefits of our sphere approximation, and the efficiency of our implementation.

1.1 Related Work

Research in increasing the computational speed in 2D morphology [18] generally
falls in two categories. The first seek to exploit simplifying assumptions, for
example by only considering binary or integer data [13, 19] or by assuming
a flat structuring element [17]. The other category attempts to decompose
or approximate the structuring element with a series of shapes which can be
processed quickly. The flat line segment is particularly attractive thanks to the
van Herk/Gil-Werman [8, 20] algorithm. They have shown that erosion/dilation
with a horizontal, vertical or diagonal structuring element requires only three
operations per pixel. This was improved [7] and generalized to operations with
discrete lines at arbitrary angles [16].

Many structuring elements cannot be decomposed into line segments and
one has to resort to a approximation. As stated by Adams [1], a 2D disk can be
approximated via successive dilations/erosions of line segments. This technique
was extended to 3D in the context of solid modeling [10]. However, they only
deal with the case where all line segments have equal and continuous length,
which makes it impractical for digital images defined on a discrete grid. An
extensive theoretical study of the approximation of n-dimensional spheres (and
other shapes) using dilations of continuous line segments has been performed by
Bourgain et al. [3] and Campi et al. [5]. Techniques for exact decomposition have
also been explored, e.g. where a structuring element is decomposed into elements
of size 3× 3 [14,15], or with an explicit focus on spheres [21]. However, these still
scale with the size of the structuring element and are therefore still problematic
when working with large structures – especially for volumetric data.

2 Method

2.1 Computational Complexity of Mathematical Morphology

Fundamental operations of mathematical morphology are the dilation and erosion.
For an image I and a binary (flat) structuring element S, dilation and erosion

https://github.com/patmjen/Zonohedra
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are given by, respectively,

(I ⊕ S)(x) = max
y∈S

{I(x+ y)} , (1)

and
(I ⊖ S)(x) = min

y∈S
{I(x+ y)} , (2)

where y ∈ S refers to the position of non-zero values in S. A direct implementation
of dilation/erosion leads to an algorithm requiring s comparisons per image pixel,
s being a number of non-zero values in S. In 3D morphology using a spherical
structuring element, the direct algorithm scales with the cube of the sphere
radius.

An important reduction in computational complexity can be made in the
special case where non-zero voxels are arranged on a line. In this case, the
van Herk/Gil-Werman algorithm [8,20] allows dilation/erosion with only three
comparisons per image pixel, independent of the structuring element size.

Since dilation is associative [9] we have

I ⊕ (S1 ⊕ S2 ⊕ ...⊕ Sm) = (...((I ⊕ S1)⊕ S2)⊕ ....)⊕ Sm, (3)

with the dual property valid for erosion

I ⊖ (S1 ⊕ S2 ⊕ ...⊕ Sm) = (...((I ⊖ S1)⊖ S2)⊖ ....)⊖ Sm. (4)

Thus, if a sphere S can be decomposed such that S = S1 ⊕ S2 ⊕ ... ⊕ Sm,
dilation/erosion with S may be accomplished via successive dilations/erosions
with S1, S2, ..., Sm. When the number of non-zero values in S exceeds the sum of
non-zero values in the decomposition, the implementation utilizing decomposition
of S will be more efficient. Even better, if m is fixed and decomposition is such
that dilations/erosions with S1, S2, ..., Sm exploit the constant-time algorithm of
van Herk/Gil-Werman, we can achieve an implementation with computational
complexity independent of the radius of S. This will reduce the computational
work per voxel from O(r3) to O(1) and allow efficient morphological filtering
with large structuring elements.

Our aim is to approximate a 3D spherical structuring element using a series
of dilations with line segments. The similar 2D approximation, utilized for 2D
image morphology by Adams [1], is illustrated in Fig. 1. Since a series of dilations
with line segments corresponds to a Minkowski sum, the resulting shape will, by
definition, be a zonohedron [11].

2.2 Constructing the Zonohedral Approximation

A zonohedron is a convex polyhedron defined as a Minkowski sum (dilation) of a
finite number of line segments [11]. For a zonohedron centered around the origin,
line segments are usually represented as vectors V = {v1,v2, ...,vn}, vi ∈ R

3,
called generators. The zonohedron is then given as

Z =

{

n
∑

i=1

divi

∣

∣

∣
−1/2 ≤ di ≤ 1/2,vi ∈ V

}

. (5)
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Fig. 1: Successive dilations with line segments. The resulting shape approximates
a disk.

For the purpose of volumetric filtering, generators with a simple voxelization
are of highest interest. Therefore, we restrict ourselves to three sets of direction
vectors

V1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ,

V2 = {(1, 1, 0), (−1, 1, 0), (0, 1, 1), (0,−1, 1), (1, 0, 1), (1, 0,−1)} ,

V3 = {(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)} .

(6)

On a unit cube, vectors in V1 connect centers of opposite faces, those in V2

connect midpoints of opposite edges, and those in V3 connect opposite corners.
To change the shape and the size of a zonohedron, while keeping it roughly

spherical, we scale the direction vectors in each set with aj ≥ 0 , j = 1, 2, 3, and
consider zonohedra defined by the set of 13 generators

V = a1V1 ∪ a2V2 ∪ a3V3 , (7)

where ajVj = {ajv | v ∈ Vj}. Examples of zonohedra generated by these
vectors are shown in Fig. 2, which also shows the most general case, a truncated
rhombicuboctahedron. Note that for integer values of a1, a2, a3 the generators
will all have integer coordinates, and simple voxelization.

2.3 Minimizing Approximation Error

To find a good approximation, we chose to minimize the directed Hausdorff
distance dh between the surface of Z, denoted ∂Z, and a sphere with radius r,
denoted ∂B. The directed Hausdorff distance is defined by [12]

dh(∂Z, ∂B) = sup
x∈∂Z

inf
y∈∂B

d(x,y) , (8)

and since ∂B is a sphere this reduces to

dh(∂Z, ∂B) = max
x∈∂Z

| ‖x‖ − r| . (9)
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(a) (b) (c) (d) (e)

Fig. 2: A few zonohedra constructed from generator set V = a1V1 ∪ a2V2 ∪ a3V3.
(a) Truncated octahedron from V2. (b) Truncated cuboctahedron from V1 ∪ V2.
(c) Truncated cuboctahedron from 3V1∪V2. (d) Truncated rhombicuboctahedron
from V1 ∪ V2 ∪ V3. (e) Truncated rhombicuboctahedron from 4V1 ∪ V2 ∪ 2V3.

The directed Hausdorff distance finds the point in ∂Z which has the greatest
distance to ∂B and then reports that distance. The point in question, in our
case, will either be the point in ∂Z furthest away from the origin (maximizer of
‖x‖ − r), or the point closest to the origin (maximizer of r − ‖x‖).

The point in ∂Z furthest away from the origin has to be a vertex of Z, and
since all vertices of our zonohedron have one of two distances from the origin (see
Fig. 3(a)), only two vertices need to be considered when maximizing ‖x‖ − r.

To find the point in ∂Z closest to the origin, we notice that Z has four
different types of faces (see Fig. 3(a)). Three of those (two kinds of octagons and
a hexagon) have the point closest to the origin in the center of the face. It can
be shown that the last type of face (quadrilateral) never contains a point either
furthest or closest to the origin, so these need not be considered. In conclusion,
we can reduce (9) to

dh(∂Z, ∂B) = max

{

max
k=1,2

{‖pk‖ − r}, max
k=3,4,5

{r − ‖pk‖}

}

, (10)

where pk are two vertices of Z and centers of three faces of Z as indicated in
Fig. 3(b).

Each of five points pk can be expressed as a linear combination of generators
from V. Due to our grouping of the generators, we can find five matrices Mk

such that

pk = Mka ,

where a = (a1, a2, a3)
T . For the points indicated in Fig. 3(b) we identified the

five matrices as

M1=







1

2
0 1

1

2
1 1

1

2
2 1






, M2=







1

2
0 0

1

2
1 0

1

2
2 2






, M3=







1

2
2 2

0 0 0

0 0 0






, M4=







1

2

3

2
1

1

2

3

2
1

0 0 0






, M5=







1

2
1 1

1

2
1 1

1

2
1 1






. (11)
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(a) Faces/vertices with the same color are
equivalent with respect to the distance
from the origin.

(b) Points needed for the directed Haus-
dorff distance. Blue are vertices, red are
face centers.

Fig. 3: The symmetry of the truncated rhombicuboctahedron.

To find the values of a = (a1, a2, a3)
T resulting in the best zonohedral

approximation, we solve the following optimization problem

min
a

max

{

max
k=1,2

{‖Mka‖ − r}, max
k=3,4,5

{r − ‖Mka‖}

}

s.t. 0 ≤ aj .

(12)

Rewriting this on epigraph form results in a second order cone problem which
is convex [4]. Thus, using a branch and bound method [2], we can find integer
solutions which are globally optimal but not necessarily unique.

It should be noted that one can additionally constrain the zonohedron so it
is either contained within, or contains, the sphere of radius r, without losing
convexity. Furthermore, it is useful to add the constraint that a1 ≥ 1, otherwise
the resulting structuring element is not guaranteed to be solid – instead it will
have a checkerboard pattern.

3 Results

We first assess the quality of the zonohedral approximation by comparing it with
a sphere. Fig. 4 shows the result of dilating a single voxel with a discretized
sphere and with a corresponding zonohedral approximation. For small radii the
discretized sphere and its zonohedral approximation are equal, but for larger radii
the difference is more apparent. This is also illustrated in Fig. 5, which shows
that the directed Hausdorff distance increases linearly with the radius. When the
zonohedron is constrained to be inside or outside the sphere the distance roughly
doubles. The jagged lines are due to constraining the zonohedron to have integer
side lengths.
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Fig. 4: Discretized spheres (top) and their zonohedral approximations (bottom).
The radii are (left to right): 3, 6, 9, and 12 voxels.
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Fig. 5: Directed Hausdorff distances between zonohedral approximation and a
sphere at different radii. Distances are shown for the best possible approximation,
and two constrained cases.

We now apply the developed method to two 3D X-ray µCT scans containing
large spherical structures. The first is a porous cement sample which contains
spherical bubbles of varying size. The second is a network of stone wool fibers, that
holds a number of spherical impurities. The volumes consist of 2048×2048×2048
for the cement sample and 958× 1011× 3642 voxels for the stone wool sample.
A morphological opening was performed on both volumes using a discretized
sphere of radius 16 and a zonohedral approximation, with results shown in Fig. 6
and 7. The zonohedron was constrained to be within the sphere of radius 16, to
ensure it could be contained in any object which contains the discretized sphere.
With the discretized sphere, the operation took 40 minutes for the cement sample
and 15 minutes for the stone wool sample. Using the zonohedral approximation,
the operation took, respectively, 2 minutes and 1 minute. All experiments were
performed on a machine with an IntelR© XeonR© E5-2637 v3 CPU, and NVIDIA
TITAN X GPU, and 256 GB of RAM. Visually, the results are quite similar;
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the main difference lies with small objects as illustrated in the bottom right
of Fig. 6(c). Furthermore, since the zonohedron is constrained to be inside the
discretized sphere it introduces additional objects, as is apparent in the top row
of Fig. 7. These objects will mainly be those with a radius similar to that of the
structuring element since if any part of the structuring element is outside an
object it is removed. To quantify the effect of this, an ellipsoid was fitted to each
object (after thresholding) and a radius was then estimated from the length of
the major principal axis. From the results in Fig. 8 it is clear that the radius
distributions only differ for small objects, as expected. Thus, if the shape of the
structuring element is of critical importance, care must be taken before applying
the zonohedral approximation.

Finally, we evaluate the computational performance of our method. In order to
make the method viable for large volumes we made a GPU implementation of the
van Herk/Gil-Werman algorithm [8,20] based on the description by Domanski et
al. [6]. This serves as the basis of the benchmark. First, we compare the run time
when using a naive GPU implementation of dilation with a discretized sphere and
a zonohedral approximation using the van Herk/Gil-Werman algorithm. Results
for different radii are displayed in Fig. 9 and show the expected cubic scaling for
the naive method and constant run time for the approximation.

Next, we compare with other known image processing frameworks – both
open source and commercial. Since ITK provides a way to do dilations/erosions
with line segments, the zonohedral approximation was also implemented in terms
of these. Fig. 10 shows that all except Avizo and the zonohedral approximation
scale with the size of the structuring element. However, for larger volumes Avizo
does scale with the radius which is evident from Fig. 11. The reason for ITK’s
improvement when using integers is that it changes to a moving histogram
algorithm, such as the one proposed by Droogenbroeck et al. [19]. Still, the GPU
based zonohedral approximation achieves the best performance out of the tested
alternatives.

4 Conclusion

We have presented an approach for approximating a spherical structuring element
with a zonohedron and how to compute its generator vectors by solving a
convex optimization problem with integer constraints. Morphological operations
with the zonohedral approximation can easily be implemented in any image
processing framework which supports dilation/erosion with line segments. This
allows morphological filtering to be run efficiently with significantly reduced
computation times compared to other frameworks. Finally, the run times are
independent of the size of the structuring element, which further increases the
performance benefit for large structures.
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(a) Original data
(inverted).

(b) Opening with dis-
cretized sphere.

(c) Opening with zonohe-
dral approximation.

Fig. 6: Morphological opening of a 3D X-ray CT scan of cement containing
spherical bubbles. Data has been inverted and thresholded to make the structures
of interest more visible. The two top rows show a 3D rendering of the full volume
and a zoom on a small region. The bottom rows show a horizontal slice of the
full and zoomed volume. Results are shown using both a discretized sphere of
radius 16 and its zonohedral approximation as the structuring element.
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(a) Original data. (b) Opening with dis-
cretized sphere.

(c) Opening with zonohe-
dral approximation.

Fig. 7: Morphological opening of a 3D X-ray CT scan of stone wool containing
spherical impurities. The data has been thresholded to enhance structures of
interest. The two top rows show a 3D rendering of a subset of the full volume
and a zoom on a small region. The bottom rows show a horizontal slice of the
full and zoomed volume. Results are shown using both a discretized sphere of
radius 16 and its zonohedral approximation as the structuring element.
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Fig. 8: Radius distributions for the detected objects shown in Fig. 6 and 7.
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Fig. 9: Run times for dilation with a spherical structuring element using a naive
implementation and a zonohedral approximation. Benchmarks were run on a
volume of unsigned 8-bit integers with size 500× 500× 500.
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spherical structuring element shown in a log-log plot. Benchmarks were run on a
volume of size 100× 100× 100.

0 10 20 30
1

2

3

Radius [voxels]

T
im

e
[s
ec
o
n
d
s] 32-bit float

0 10 20 30

0.6
0.8
1

1.2
1.4

Radius [voxels]

T
im

e
[s
ec
o
n
d
s] 8-bit unsigned int

Zono. approx. (GPU impl.) Avizo

Fig. 11: Comparison of run times for dilation with a spherical structuring element
using the zonohedral approximation and the one provided by Avizo. Benchmarks
were run on a volume of size 500× 500× 500.
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