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ZONOID TRIMMING FOR MULTIVARIATE
DISTRIBUTIONS

By Gleb Koshevoy and Karl Mosler

C.E.M.I. and Universität zu Köln

A family of trimmed regions is introduced for a probability distribu-
tion in Euclidean d-space. The regions decrease with their parameter α,
from the closed convex hull of support (at α = 0) to the expectation vector
(at α = 1). The family determines the underlying distribution uniquely.
For every α the region is affine equivariant and continuous with respect to
weak convergence of distributions. The behavior under mixture and dila-
tion is studied. A new concept of data depth is introduced and investigated.
Finally, a trimming transform is constructed that injectively maps a given
distribution to a distribution having a unique median.

1. Introduction. A most fundamental tool of data analysis is ordering.
One approach is to order a set of multivariate observations via trimmed re-
gions. For univariate data, a trimmed region is the interval between two prop-
erly chosen quantiles. Tukey (1975) and Eddy (1984) suggested a multivariate
analogue of the quantile function. Based on such quantiles, concepts of multi-
variate trimmed regions have been introduced by Nolan (1992) and Massé and
Theodorescu (1994). These trimmed regions are generalizations of univariate
quantile intervals.

Newey and Powell (1987) defined the expectiles of a random variable. An
expectile relates to the mean in a way similar to a quantile relating to the
median; see also Abdous and Remillard (1995). Intervals between expectiles
play the same role with respect to the mean as interquantile intervals do
with respect to the median. Such interexpectile intervals have been studied
in a more general setting by Averous and Meste (1990) and Breckling and
Chambers (1988).

In this paper we propose a new concept of multivariate trimming. Based on
the lift zonoid introduced recently in Koshevoy and Mosler (1997), we provide
multivariate trimmed regions that are centered about the mean instead of
some median. Our trimming regions give rise to a new concept of depth related
to the mean. Both the trimming regions and the depth have nice mathematical
properties, which are studied in detail. We also consider natural estimators of
trimmed regions and investigate their asymptotic behavior.

Given a d-variate probability distribution µ; we define a family of trimmed
regions as follows.
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Definition 1.1. Let M denote the set of probability distributions µ on
�Rd;Bd� that have a finite expectation E�µ�. For µ ∈M , α ∈ �0;1�, we call

Dα�µ� =
{∫
Rd

xg�x�dµ�x�x

g x Rd→
[
0;

1
α

]
measurable and

∫
Rd
g�x�dµ�x� = 1

}(1.1)

the zonoid α-trimmed region of µ. For α = 0 we define

D0�µ� = cl
( ⋃

α∈�0;1�
Dα�µ�

)
(1.2)

where cl denotes closure.

In the univariate case, d = 1; the usual quantile trimming is a family of
intervals of the form

Dqu
α �µ� = �Q�1− α�;Q�α��; α ∈

[ 1
2 ;1

)
(1.3)

with the usual left-continuous quantile function Q�s� = inf�x ∈ Rx µ��−∞;
x�� ≥ s�, s ∈ �0;1�: We call them the quantile α-trimmed region of µ.

The zonoid trimmed regions are of the form

Dα�µ� =
[

1
α

∫ α
0
Q�s�ds; 1

α

∫ 1

1−α
Q�s�ds

]
:(1.4)

Equation (1.4) may be seen as an average quantile trimming; see also Sec-
tion 8.

Newey and Powell (1987) define the τ-expectile of µ as the solution ξ = ξ�τ�
of the equation

τ

1− τ =
∫ ξ
−∞�ξ − x�dµ�x�∫∞
ξ �x− ξ�dµ�x�

; 0 < τ < 1:(1.5)

A relation between the expectile function and the zonoid trimmed intervals is
the following: the expectile is a convex combination of the mean and left or
right ends of the zonoid trimmed interval.

For example, if µ is the empirical distribution on the points 0 and 1, then
the interquantile intervals areDqu

α �µ� = �0;1� for α ∈ � 1
2 ;1�; the interexpectile

intervals are �τ;1− τ� for 0 < τ ≤ 1
2 and the zonoid trimmed intervals are

Dα�µ� =





�0;1�; for α ∈
[
0;

1
2

]
;

[
1− 1

2α
;

1
2α

]
; for α ∈

[
1
2
;1
)
:

If µ is the continuous uniform distribution on �0;1� we get Dα�µ� =
D
qu
1−α/2�µ� = �α/2;1− α/2� for every α ∈ �0;1�; while the interexpectile inter-

vals are of the form �√τ/�√τ +
√

1− τ�;1−√τ/�√τ +
√

1− τ��:
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In the case of a continuous (with respect to Lebesgue measure) distribution,
Dα may be defined in two other equivalent ways. For any Borel set U; let
EU�µ� = �µ�U��−1

∫
U x dµ�x� denote the U-centroid of µ, provided µ�U� > 0.

If µ is continuous and 0 < α ≤ 1, then Dα�µ� equals the set of all U-centroids,
U ∈ Bd, µ�U� = α; and, equivalently, the convex hull of all H-centroids,
H ∈ H d, µ�H� = α; where H d is the set of halfspaces in Rd (Theorem 3.1).

In view of this, the zonoid trimmed interval �D−α ;D+α � of a univariate con-
tinuous distribution has the following probabilistic interpretation: D−α and D+α
are the gravity centers of the lower respectively upper tails that have proba-
bility α.

To derive many important properties of the trimming, we establish a close
relation between our α-trimmed regions and the so-called lift-zonoid of µ. This
is the reason for naming our trimming the zonoid trimming. The zonoid of a
probability distribution is a well-known notion; see Bolker (1969) and Goodey
and Weil (1993). The lift-zonoid of a distribution µ ∈ M has been introduced
in Koshevoy and Mosler (1997) as follows. Let X be a random vector in Rd
whose distribution is µ, and let µ̂ be the distribution of the “lifted” random
vector �1;X� in Rd+1. The zonoid of µ̂ is called the lift zonoid of µ (and of
X). Now, for some α ∈ �0;1�, consider the α-cut of the lift zonoid of µ; that
is, its intersection with the hyperplane �x:x0 = α�: The set Dα�µ� comes out
to be the projection of the α-cut on the last d coordinates, enlarged by 1/α
(Proposition 2.1).

Section 2 introduces the lift-zonoid and its relation to our notion of trim-
ming, while Section 3 gives equivalent definitions of trimmed regions for con-
tinuous distributions. In Section 4 we characterize the trimmed regions of an
empirical distribution in a way which easily lends itself to a computer code
(Theorem 4.1).

Section 5 collects properties of the trimming. Under affine transformations
of d-space Dα�µ� is equivariant and, for 0 < α ≤ 1, a continuous function of
µ and α: In particular, the α-trimmed region Dα�µ̃n� of a random empirical
distribution µ̃n converges to the α-trimmed region of the underlying law. As
a consequence of this, in case d = 1, the usual law of large numbers for
order statistics follows. The α-trimmed regions decrease in α; at α = 0 we
get the convex hull of the distribution’s support and at α = 1 the expectation
vector. The family �Dα�µ�� uniquely determines µ. Finally, we show that the α-
trimmed region of a mixture of distributions is the union of certain mixtures of
trimmed regions. Several examples and a numerical illustration are presented
in Section 6.

In Section 7, we propose a new notion of data depth, the zonoid data depth.
We establish its properties and contrast it with other notions of depths. In Sec-
tion 8, we define an injective mapping, which we call the trimming transform.
It maps a given distribution to a distribution that has a unique multivariate
median. As a consequence, the zonoid data depth of µ equals twice the Tukey
data depth of the trimming transform of µ.

Some notation: M0 is the set of distributions in M that are continuous with
respect to Lebesgue measure, Mc the set of distributions in M that have a
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compact support, M0c =M0 ∩Mc. Further, →w denotes weak convergence of
measures with corresponding convergence of the expectations of the norm and
→H convergence of sets in Hausdorff distance. The term conv�µ� is the convex
hull of the support of µ. For a set S and β ∈ R, conv�S� is the convex hull of
S, and β ·S = �βxx x ∈ S�y clS, intS and ∂S denote the closure, interior and
boundary, respectively. Vectors are rows, �x;y� is the inner product of x and y
and a prime denotes the transpose. We writeSd−1 for the unit sphere in Rd: For
p ∈ Sd−1 and t ∈ R, H�p; t� = �x ∈ Rdx �p;x� ≤ t�; and µp�t� = µ�H�p; t��:
If a random vector X in Rd is distributed by µ then µp is the distribution
function of the random variable �X;p�:

Of a point x ∈ Rd+1, the coordinates are indexed from 0 to d, x =
�x0; x1; : : : ; xd�. For a set S in Rd+1 and α ∈ �0;1�, S�α� denotes the inter-
section S with the hyperplane �x ∈ Rd+1x x0 = α�; projα�S� ∈ Rd denotes the
projection of S�α� to the last d coordinates.

2. The zonoid trimming. The lift zonoid of a d-variate probability dis-
tribution is a convex set in Rd+1 and is defined as follows.

Definition 2.1. Let µ be a probability distribution. For a measurable func-
tion hx Rd → �0;1�, consider the point z�µ;h� = �z0�µ;h�; ζ�µ;h�� ∈ Rd+1,
where

z0�µ;h� =
∫
Rd
h�x�dµ�x�; ζ�µ;h� =

∫
Rd

xh�x�dµ�x�:(2.1)

The set

Ẑ�µ� =
{
z�µ;h�x hx Rd→ �0;1� measurable

}

is called the lift-zonoid of µ. If X is a random vector distributed by µ, then
Ẑ�X� = Ẑ�µ� is called the lift-zonoid of X:

The lift zonoid of a probability distibution may be seen as the set-valued ex-
pectation of a random segment.

Recall that a random convex set C is a Borel measurable map from a proba-
bility space ��;B;P� to the space of nonempty, compact, convex subsets of Rk:
The set-valued expectation, E�C�; of a random convex set C is the set given
implicitly by

φE�C��p� = E�φC�p��; p ∈ Rk;(2.2)

where φC�p� = maxx∈C�x, p�; p ∈ Sk−1; is the support function of C. This set-
valued expectation has been used in different settings; see Weil and Wieacker
(1993). If there exists a finite expectation of the norm of a random set, then
its expectation is a compact set.

Proposition 2.1 [Koshevoy and Mosler (1997)]. Let µ ∈ M0 and X be a
random vector distributed by µ: Then Ẑ�X� = E��0;X��:

Next we state some properties of the lift zonoid which will be of use in the
sequel.
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Theorem 2.1 [Koshevoy and Mosler (1997)]. (i) For µ ∈M , the lift zonoid

Ẑ�µ� is a convex compact set. It contains 0 ∈ Rd+1 and is symmetric about

� 1
2 ;

1
2E�µ��. If the support of µ is in Rd+, then Ẑ�µ� is contained in the �d+ 1�-

dimensional rectangle between 0 and �1;E�µ��.
(ii) A distribution µ ∈M is uniquely determined by its lift zonoid.

(iii) If µn→w µ, then Ẑ�µn� →H Ẑ�µ�.
(iv) Given µ ∈ M ; there exists a sequence �µn� of empirical distributions

such that µn→w µ, Ẑ�µn� →H Ẑ�µ� and Ẑ�µn� ⊂ Ẑ�µ� for all n.

Proposition 2.2, whose proof is immediate from Definition 2.1, provides the
relation between our α-trimmed regions and the lift-zonoid and thus justifies
the name “zonoid trimming.”

Proposition 2.2. Let α ∈ �0;1�: Then

Dα�µ� =
1
α

projα�Ẑ�µ��:(2.3)

Let us explain what the zonoid trimmed regions mean in the univariate
case and establish their relation with the interexpectile intervals. If d = 1;
Ẑ�µ� is the region between the generalized Lorenz curve and its dual, that is,
it is the convex hull of the following points in R2: �0;0�, �1;E�µ��,

(∫
�−∞; y�

µ�dx�;
∫
�−∞; y�

xµ�dx�
)
; y ∈ R and(2.4)

(∫
�y;∞�

µ�dx�;
∫
�y;∞�

xµ�dx�
)
; y ∈ R:(2.5)

Or, equivalently, Ẑ�µ� is the convex hull of
(
t;
∫ t

0
Q�s�ds

)
; 0 ≤ t ≤ 1 and

(
t;
∫ 1

1−t
Q�s�ds

)
; 0 ≤ t ≤ 1:

Therefore, in such a case,

Dα�µ� =
[

1
α

∫ α
0
Q�s�ds; 1

α

∫ 1

1−α
Q�s�ds

]
;(2.6)

that is, (1.3).
A relation between the expectile function ξ = ξ�τ� defined by (1.5) and the

zonoid trimmed intervals is the following: let µ be a continuous univariate
distribution, E�µ� be its mean. Given τ; denote α∗ = µ��−∞; ξ�τ���, and let
D−α ; D

+
α denote the left and right ends of the interval Dα�µ�: Then

ξ�τ� =





τE�µ� + �1− 2τ�α∗D−α∗
τ + �α∗ − 2τα∗� ; if τ ≤ 1

2
;

�1− τ�E�µ� + �2τ − 1��1− α∗�D+α∗
�1− τ� + �2τ − 1��1− α∗� ; if τ ≥ 1

2
:

(2.7)
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In view of (2.7), ξ�1/2� = E�µ� and the continuity of trimmed intervals, the
interexpectile interval �ξ�τ�; ξ�1−τ�� has the form �D−α1

;D+α2
� for some α1 > α

∗

and α2 < µ��1− ξ�τ�;∞��.

3. Continuous distributions. Recall that, given a Borel set U; µ�U� >
0, a vector EU�µ� = �µ�U��−1

∫
U xdµ�x� is the U-centroid of µ: The U-

centroid of µ is the gravity center of U with respect to µ: When we apply
our notion, with respect to Lebesgue measure, to continuous distributions,
the following holds.

Theorem 3.1. Let µ ∈M0 and α > 0: Then we have the following:

(i) Dα�µ� = �EU�µ�x U ∈ Bd; µ�U� = α�:
(ii) Dα�µ� = conv�EH�µ�x H ∈ H d; µ�H� = α�:

The theorem says that, for 0 < α ≤ 1; the α-trimmed region of a continuous
distribution is equal to the set of U-centroids where U has probability α:
In other words, a point y belongs to Dα�µ� iff there is a Borel set having
probability α of which y is the gravity center. Note that, in the continuous
distribution case, for every α there is some U with µ�U� = α; hence, given
α, the set of centroids is nonempty. Equivalently, Dα�µ� is the convex hull of
U-centroids where U is a halfspace having probability α: For α = 0; D0�µ� is
the convex hull of the support of µ.

Proof. (i) In the case of a continuous µ; the lift zonoid is given by all
points of the form (2.1) with functions h that are indicator functions of sets
in Bd. This follows from Liapunov’s theorem [Bolker (1969)]. With respect to
(2.3), we get that every point of Dα�µ� has the form �µ�U��−1

∫
U xdµ�x� with

some U such that µ�U� = α. This proves (i).
(ii) Extreme points of Ẑ�µ� have the form (2.1) with h being the indicator

function of a halfspace; see Koshevoy and Mosler (1997), Theorem 2.1. Due
to the continuity of µ; for every α > 0 and every direction in Rd, there is
a halfspace whose normal vector equals the chosen direction and which has
µ-probability α: Extreme points of a section x0 = α remain extreme points of
its projection on the last d coordinates. That yields the proof of (ii). 2

4. Empirical distributions. Let x1; : : : ;xn be arbitrary points in Rd. By
an empirical distribution on x1; : : : ;xn, we mean a probability distribution
that assigns probability 1/n to each xi.

The lift-zonoid of an empirical distribution µ on x1; : : : ;xn [see Koshevoy
and Mosler (1997)] is the sum of line segments �0; �1/n;xi/n��,

Ẑ�µ� =
n∑
i=1

[
0;
(

1
n
;

xi
n

)]
:(4.1)
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Theorem 4.1. Let α ∈ �k/n; �k+ 1�/n�; k = 1; : : : ; n− 1: Then

Dα�µ� = conv
{

1
αn

k∑
j=1

xij +
(

1− k

αn

)
xik+1
x �i1; : : : ; ik+1� ⊂N

}
;(4.2)

where N = �1; : : : ; n�. For α ∈ �0;1/n�;
Dα�µ� = conv�x1; : : : ;xn� =

⋂
�H ∈ H dx µ�H� = 1�:(4.3)

Proof. It follows from the definition that Ẑ�µ� is a convex polytope,

Ẑ�µ� = conv
{ n∑
i=1

δi�1/n;xi/n�x δi ∈ �0;1�; i ∈N
}

= conv
( n⋃
k=0

Vk

)
;

(4.4)

where Vk = �
∑k
j=1�1/n;xij/n�x �i1; : : : ; ik� ⊂N�: The Vk are pairwise disjoint

sets. Denote Ẑ�µ;α� = Ẑ�µ� ∩ �xx x0 = α�. Then every extreme point z∗

of Ẑ�µ;α� is either an extreme point of Ẑ�µ� or the intersection of an edge
of Ẑ�µ� with the hyperplane at x0 = α. Note that every edge, that is, one-
dimensional face, of Ẑ�µ� can be written [Shephard (1974)]

[
0;
(

1
n
;

xs
n

)]
+
∑
i6=s
εi

(
1
n
;

xi
n

)
;(4.5)

where εi ∈ �0;1�; i 6= s; s = 1; : : : ; n: We proceed in three steps.
Step 1. First we prove (4.2) for α = k/n, k = 1; : : : ; n. Obviously, conv�Vk� ⊂

Ẑ�µ;k/n� holds. Let z∗ be an extreme point of Ẑ�µ;k/n�. Then z∗ either is an
extreme point of Ẑ�µ�, hence in z∗ ∈ Vk, or belongs to an edge of Ẑ�µ�; in the
latter case (4.5) implies that z∗ ∈ Vk. We conclude that conv�Vk� = Ẑ�µ;k/n�.
Then Dk/n�µ� = n/k projk/n�Ẑ�µ�� = conv�∑k

j=1 xij/kx �i1; : : : ; ik� ⊂ N�:
That yields (4.2) for α = k/n:

Step 2. Second, we show (4.2) for α ∈ �k/n; �k + 1�/n�; k = 1; : : : ; n − 1:
Again, let z∗ be an extreme point of Ẑ�µ;k/n�. As z∗ cannot be an extreme
point of Ẑ�µ�, from (4.5) we get

z∗ =
(
α− k

n

)(
1;xik+1

)
+

k∑
j=1

1
n

(
1;xij

)
:(4.6)

The convex hull of all z∗ is Ẑ�µ;α�, given by (4.6). So,

1
α

projα�Ẑ�µ�� = conv
{ k∑
j=1

1
nα

xij +
(

1− k

nα

)
xik+1
x �i1; : : : ; ik+1� ⊂N

}
:

That yields (4.2) also for α ∈ �k/n; �k+ 1�/n�.
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Step 3. It remains to prove (4.3), the second equality of which is obvious.
For α = 1/n, Dα�µ� = conv�x1; : : : ;xn� follows from (4.2). Let α ∈ �0;1/n�
and x ∈ Ẑ�µ;α�. Then x is no extreme point of Ẑ�µ�; it is a convex com-
bination of the origin 0 and some y ∈ Ẑ�µ;1/n�. As x0 = α, we get x = αy.
Further, since Ẑ�µ;1/n� = conv�V1� = �1/n� conv��1;x1�; : : : ; �1;xn��; we con-
clude that Ẑ�µ;α� ⊂ α · conv��1;x1�; : : : ; �1;xn��: As the reverse set inclusion
is obvious, we get

Dα�µ� =
1
α

projα�Ẑ�µ�� = conv�x1; : : : ;xn�y

hence (4.3) for α ∈ �0;1/n�. For α = 0, (4.3) follows from this and the definition
of D0�µ�. This completes the proof. 2

An immediate consequence of Theorem 4.1 is the monotonicity of Dα for
empirical distributions.

Corollary 4.1. Let µ be an empirical distribution. Then, for 0 ≤ α1 ≤
α2 ≤ 1;

Dα2
�µ� ⊂ Dα1

�µ�:

5. General properties of zonoid trimmed regions. Various properties
of zonoid trimmed regions are collected in the following theorems. The first
two state that Dα�µ� is a continuous function of α and µ.

Theorem 5.1. Let µ ∈M, αn→ α and α > 0. Then

Dαn
�µ� →H Dα�µ�:

Proof. Let αn → α > 0. Then, due to the convexity and compactness of
Ẑ�µ�; we get projαn Ẑ�µ� →H projα Ẑ�µ�: Therefore, limn Dαn

= limn�1/αn�×
projαn Ẑ�µ� = �1/α� limn projαn Ẑ�µ� = �1/α�projα Ẑ�µ� = Dα�µ�: 2

Theorem 5.2. Let µn→w µ in M . Then we have the following:

(i) Dα�µ� = limn Dα�µn� in the Hausdorff distance if 0 < α ≤ 1;
(ii) D0�µ� ⊂ limn D0�µn�:

Proof. Let µn→w µ. Then Ẑ�µn�→H Ẑ�µ� by Theorem 2.1(iii). Therefore,
for any α ∈ �0;1�; Ẑ�µn; α�→H Ẑ�µ;α� holds where Ẑ�ν; α� = Ẑ�ν� ∩ �x:x0 =
α�: So, Dα�µn�→HDα�µ� holds for α ∈ �0;1�: The convergence is not uni-
form in α, therefore D0�µ� = cl�⋃α∈�0;1�Dα�µ�� = cl�⋃α∈�0;1� limn Dα�µn�� ⊂
limn cl�⋃α∈�0;1�Dα�µn�� = limn D0�µn�: 2

A law of large numbers follows from this theorem. Let X1; : : : ;Xn be i.i.d.
random vectors in Rd that are distributed with µ, and let µ̃n be their random
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empirical distribution. By the Glivenko–Cantelli theorem we know that µ-a.s.
limn→∞ µ̃n = µ, and from Theorem 5.2 we derive the corollary

Corollary 5.1. limn→∞ Dα�µ̃n� = Dα�µ� holds µ-a.s. if 0 < α ≤ 1.

In the univariate case we get the following. Let X1; : : : ;Xn be given i.i.d.
random variables in R that are distributed with µ, and let X1 x1 ≤ · · · ≤Xn xn
denote their order statistics. Then (Theorem 4.1)

Dα�µ̃n� =
[�1− �nα���nα�

nα

(∑�nα�
i=1 Xi xn
�nα�

)
+ �nα���nα� + 1�

nα

(∑�nα�+1
i=1 Xi xn
�nα� + 1

)
;

�1− �nα���nα�
nα

(∑n
i=n−�nα�+1Xi xn
�nα�

)

+ �nα���nα� + 1�
nα

(∑n
i=n−�nα�Xi xn
�nα� + 1

)]
:

As usual, �β� and �β� are the fraction and the integer parts of a real number β.
Obviously,

lim
n→∞

Dα�µ̃n� = lim
n→∞

[∑�nα�
i=1 Xi xn
nα

;

∑n
i=n−�nα�+1Xi xn

nα

]
:(5.1)

Thus, in the univariate case, from Corollary 5.1 we derive the law of large
numbers for order statistics.

[∑�nα�
i=1 Xi xn
nα

;

∑n
i=n−�nα�+1Xi xn

nα

]
→
[∫ α

0 Q�s�ds
α

;

∫ 1
1−αQ�s�ds

α

]

µ-a.s. if 0 < α ≤ 1. From this we get

∑�nα�
i=1 Xi xn
nα

→
∫ α

0 Q�s�ds
α

; µ–a.s.(5.2)

∑n
i=n−�nα�+1Xi xn

nα
→

∫ 1
1−αQ�s�ds

α
; µ–a.s.(5.3)

For empirical distributions in Rd we have already shown (Corollary 4.1) that
the Dα decrease with α. The result is now extended to general distributions.
Moreover, it is shown that Dα is strictly decreasing as soon as it differs
from D0.

Theorem 5.3. Let µ ∈M, 0 ≤ α1 < α2 ≤ 1. Then:

(i) Dα2
�µ� ⊂ Dα1

�µ� ⊂ D0�µ�:
(ii) If Dα1

�µ� 6= D0�µ� then Dα2
�µ� 6= Dα1

�µ�.
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Proof. (i) Let µ be an empirical distribution. Then Corollary 4.1 says that
Dα�µ� is monotone decreasing in α: For a general µ, according to Theorem
2.1(iv), there exists a sequence of empirical distributions µn →w µ such that
Ẑ�µn� →H Ẑ�µ� for all n. Therefore, for α2 ≥ α1 > 0; because of Theorem 5.2,
Dα2
�µ� = limn Dα2

�µn� ⊂ limn Dα1
�µn� = Dα1

�µ�: For α1 = 0, the proposition
follows from the definition of D0:

(ii) Let Dα1
�µ� 6= D0�µ� and assume that Dα2

�µ� = Dα1
�µ�. Then

Ẑ�µ� ∩ �x0 = α1� =
α1

α2

(
Ẑ�µ� ∩ �x0 = α2�

)
:(5.4)

As Ẑ�µ� is convex and 0 ∈ Ẑ�µ�, (5.4) implies that, for any 0 < α ≤ α1,

Ẑ�µ� ∩ �x0 = α� ⊂
α

α2

(
Ẑ�µ� ∩ �x0 = α2�

)
;(5.5)

hence Dα�µ� ⊂ Dα2
�µ�. We conclude that D0�µ� = cl�⋃α>0Dα�µ�� ⊂

cl�Dα2
�µ�� = Dα2

�µ�, which contradicts our assumption. 2

The trimming regions have the following geometric properties.

Theorem 5.4. Let µ ∈M .

(i) Dα�µ� is convex and closed if 0 ≤ α ≤ 1 and, in addition, compact if
0 < α ≤ 1.
(ii) If the support of µ is in Rd+, then Dα�µ� is contained in the d-dimensional

rectangle between 0 and �1/α�E�µ�.

Proof. (i) The property is derived from Theorem 2.1(i). For α = 0 we use
the monotonicity of trimming regions (Theorem 5.3).

(ii) For µ with support in Rd+; Ẑ�µ� is a subset of the �d + 1�-dimensional
rectangle between 0 and �1;E�µ��. The d-dimensional rectangle between 0
and E�µ� is projα of this rectangle, so Dα�µ� belongs to the d-dimensional
rectangle between 0 and �1/α�E�µ�. 2

The following theorem says that the zonoid 0-trimmed region is the convex
hull of the support of the distribution.

Theorem 5.5. For µ ∈M , D0�µ� =
⋂�H ∈ H dx µ�H� = 1�:

Proof. Let µn →w µ be a sequence of empirical distributions according
to Theorem 2.1(iv). As Ẑ�µn� ⊂ Ẑ�µ�, there holds Dα�µn� ⊂ Dα�µ� for all
α > 0, and therefore D0�µn� ⊂ D0�µ�. We conclude that limn D0�µn� ⊂ D0�µ�.
Theorem 5.2 yields that D0�µ� ⊂ limn D0�µn�, hence D0�µ� = limn D0�µn�.
Due to (4.3), D0�µn� =

⋂�H ∈ H dx µn�H� = 1� holds. When n goes to infinity
we get D0�µ� = limn D0�µn� =

⋂�H ∈ H dx µ�H� = 1�. 2

Now we show a uniqueness result: the family �Dα�µ�� uniquely determines
µ in M .
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Theorem 5.6. Let µ; ν ∈M .

(i) If Dα�µ� = Dα�ν� for all α ∈ �0; 1
2 � then µ = ν.

(ii) If Dα�µ� = Dα�ν� for all α ∈ � 12 ;1� then µ = ν.

Proof. Due to Theorem 2.1(ii),Dα�µ� = Dα�ν� for 0 < α ≤ 1 implies µ = ν.
As the lift-zonoid Ẑ�µ� is symmetric, we get that

projα�Ẑ�µ�� − αE�µ� is centrally symmetric to proj1−α�Ẑ�µ�� − �1− α�E�µ�:
Therefore it is sufficient to have Dα�µ� = Dα�ν� either for α in the lower or in
the upper half of the interval. 2

Theorem 5.7 states that the zonoid trimming is affine equivariant.

Theorem 5.7. Let A be a regular d × d matrix, a be a vector in Rd and
µ ∈M . We denote µ�A;a��x� = µ�A−1�x − a��: Then

Dα�µ� = ADα�µ�A;a�� + a; α ∈ �0;1�:

Proof. According to Theorems 2.1(iv) and 5.2, we restrict ourselves to
the case of an empirical distribution. Let µ be an empirical distribution with
support �x1; : : : ;xk�: Then µ�A;a� is an empirical distribution with support
�A−1�x1 − a�; : : : ;A−1�xk − a��: Therefore, in view of (4.2), Dα�µ�A;a�� =
A−1�Dα�µ� − a�: 2

Finally, we prove that the α-trimmed region of a mixture of distributions is
the union of certain mixtures of trimmed regions.

Theorem 5.8. Let µ, ν ∈M ; β ∈ �0;1�: Then

Dα�βµ+ �1− β�ν�

=
⋃{βδ

α
Dδ�µ� +

�1− β�δ′
α

Dδ′�ν�x βδ+ �1− β�δ′ = α
}
:

(5.6)

Proof. Ẑ�βµ+ �1− β�ν� = βẐ�µ� + �1− β�Ẑ�ν�: Therefore,

Ẑ�βµ+ �1− β�ν; α�

=
⋃{

βẐ�µ; δ� + �1− β�Ẑ�ν; δ′�x βδ+ �1− β�δ′ = α
}
:

(5.7)

Thus,

1
α

projα�Ẑ�βµ+ �1− β�ν��

=
⋃{β

α
projδ�Ẑ�µ�� +

1− β
α

projδ′�Ẑ�ν��x βδ+ �1− β�δ′ = α
}

=
⋃{βδ

α
Dδ�µ� +

�1− β�δ′
α

Dδ′�ν�x βδ+ �1− β�δ′ = α
}
;

that is (5.6). 2
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6. Examples. Let us consider several examples. The expression B�x; r�
denotes the Euclidean ball about some x ∈ Rd with radius r.

1. We consider the uniform distribution µ on the unit disc B�x;1� in R2. Then

Dα�µ� = B�x; rα� with rα =
�1− c2�α��3/2

3πα
;

where c�α� ∈ �0;1� is the solution to 2πα = π/2− arcsin c− c
√

1− c2/2 if
α ≤ 1/2 and is the solution to 2πα = π/2− arcsin c+ c

√
1− c2/2 if α > 1/2.

2. Let µ be the uniform distribution on the boundary of the unit disc B�x;1�
in R2. Then

Dα�µ� = B�x; rα� with rα =
{

sinπα
πα

; if α > 0,

1; if α = 0.

3. Let µ be a multivariate standard normal distribution, µ =N�0; I�. Then

Dα�µ� = B�0; rα� with rα =
exp�−t2�α�/2�√

2πα
; α ∈ �0;1�:

Here t�α� is the unique solution to
∫∞
t exp�−x2/2�dx =

√
2πα: In view of

Theorem 5.7, the trimmed regions of a general nondegenerate multivariate
normal N�a; 6� are given by

Dα�N�a; 6�� = �xx �x − a�T6−1�x − a� ≤ r2
α�:(6.1)

Recall that for every µ ∈ M that has a positive definite covariance matrix
6µ, the Mahalanobis distance [Mahalanobis (1936)] gives rise to the trimmed
regions

Dα�µ� = �xx �x −E�µ��T6−1
µ �x −E�µ�� ≤ α�; 0 ≤ α <∞:(6.2)

These regions parallel the zonoid trimmed regions of the multivariate normal
N�E�µ�; 6µ�:

In the nondegenerate normal case, the zonoid trimmed regions are parallel
to the trimmed regions defined by Massé and Theodorescu (1994), and both
regions are parallel to the Mahalanobis trimmed regions.

Figure 1 exhibits the trimmed regions, for α = 0:0;0:1;0:2; : : : ;1:0, of an
empirical distribution on ten given points in the plane.

7. Zonoid data depth. We introduce a new notion of data depth, called
zonoid data depth and investigate its properties.

Definition 7.1. The zonoid data depth, depthµ�x�; of a point x ∈ Rd is
defined by

depthµ�x� =
{

sup�αx x ∈ Dα�µ��; if x ∈ Dα�µ� for some α,
0; otherwise.

(7.1)
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Fig. 1. Zonoid trimmed regions, for α = 0:0;0:1;0:2; : : : ;1:0; of an empirical distribution on ten
points in the plane.

A geometrical interpretation reads as follows. The data depth of a point x
is the maximal height α at which αx ∈ projα Ẑ�µ�; see Proposition 2.2.

Several properties of the zonoid data depth are immediate from the defini-
tion: the depth of x equals zero if x lies outside Dα�µ� for all α; it equals one
if x is the expectation. If α > 0, Dα�µ� is the set of all points that have data
depth greater than or equal to α.

We give an equivalent definition of the zonoid data depth which is easily
extended to more general situations. For given µ ∈ M and x ∈ Rd, define the
set

A �µ;x� = �ν ∈M x ν is µ–continuous and E�µ� = x�:

The subset of distributions ν that have expectation x and possess a density g
with respect to µ, ν = gµ, is A �µ;x�.

Proposition 7.1. Let µ ∈M and x ∈ Rd and assume that depthµ�x� > 0:
Then

depthµ�x� = sup
{

1
��g��∞

x gµ ∈ A �µ;x�
}
:(7.2)
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Proof. According to Definition 1.1, x ∈ Dα�µ� if and only if there exists a
measurable function gx Rd→ R such that

x =
∫
Rd

yg�y�dµ�y�;
∫
Rd
g�y�dµ�y� = 1 and

0 ≤ g�y� ≤ 1
α

for all y:
(7.3)

Equation (7.3) says that g is a density with �g�∞ ≤ 1/α and E�gµ� = x. In
other words, x ∈ Dα�µ� iff there exists some probability measure ν such that

x = E�ν�; ν = gµ and �g�∞ ≤
1
α
:(7.4)

Then depthµ�x� is the supremum of all α that meet (7.4); hence

depthµ�x� = sup
{
αx x = E�ν�; ν = gµ; �g�∞ ≤

1
α

}

≤ sup
{

1
�g�∞

x gµ ∈ A �µ;x�
}
:

On the other hand, let α′ > depthµ�x�. Then x 6∈ Dα′�µ�, and it follows that
there exists no gµ ∈ A �µ;x� with ��g��∞ < 1/α′, hence (7.2). 2

If µ is an empirical distribution on x1; : : : ;xn, (7.1) becomes

depthµ�x� = sup
{
αx x =

n∑
i=1

λixi;
n∑
i=1

λi = 1; 0 ≤ nλi ≤
1
α
∀ i
}
:(7.5)

In such a case, µ-continuous distributions form the set of discrete distributions
with support ⊂ �x1; : : : ;xn�. We identify them with their probability vectors
and write

A �µ;x� =
{
λ ∈ Rnx x =

n∑
i=1

λixi;
n∑
i=1

λi = 1; λi ≥ 0 ∀ i
}
:(7.6)

The alternative formula (7.2) for the zonoid depth then reads

depthµ�x� = sup
{

1
nmax1≤i≤n λi

x x =
n∑
i=1

λixi;
n∑
i=1

λi = 1; λi ≥ 0 ∀i
}
:

Again let µ ∈M . For any x ∈ ∂ convµ and α ≥ 0; we have

x ∈ ∂Dα�µ� ⇔ α ≤ depthµ�x�:(7.7)

Moreover, for any x ∈ int conv�µ� holds

x ∈ ∂Dα�µ� ⇔ α = depthµ�x�:(7.8)

This is due to the definition (7.1) and Theorems 5.3 and 5.5.
The main properties of the zonoid data depth are summarized in the fol-

lowing theorem.
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Theorem 7.1. (i) (Zero at infinity) For µ ∈ M, sup�x�≥M depthµ�x� → 0
as M→∞.

(ii) (Continuous on x) Let µ ∈M, x ∈ conv�µ�, xn→ x. Then depthµ�xn� →
depthµ�x�.
(iii) (Continuous on µ) Let µ;µn ∈ M with µn →w µ and x ∈ int conv�µ�:

Then depthµn�x� → depthµ�x�:
(iv) (Unity only at expectation) If µ ∈ M and x 6= E�µ�, then depthµ�x� <

1 = depthµ�E�µ��:
(v) (Monotone on x) For every x ∈ Rd, depthµ�cx +E�µ�� is monotone de-

creasing on c ≥ 0.
(vi) (Affine equivariant) depthµA;a�x� = depthµ�Ax + a� if A is a regular
d×d matrix and a ∈ Rd.
(vii) (Monotone on dilation) depthµ�x� ≤ depthν�x� if ν is a dilation of µ.

Proof. (i) Let �xi� be an unbounded sequence in Rd. Assume that there
exists some α such that depthµ�xi� ≥ α > 0 holds for all i. Then xi ∈ Dα�µ�
for all i, which contradicts the compactness of Dα�µ�. Therefore

sup
i

depthµ�xi� = 0:

(ii) Let µ ∈M , xi ∈ conv�µ� for i ∈ N, and xi→ x: Then �depthµ�xi��i∈N is
a bounded sequence. In order to prove that limi depthµ�xi� = depthµ�x�, we
shall show that, whenever a subsequence �depthµ�xij��j∈N converges, then

lim
j

depthµ�xij� = depthµ�x�:(7.9)

Let �depthµ�xij��j∈N be a convergent subsequence. Then, as Dα�µ� is continu-
ous on α (Theorem 5.1), limj Ddepthµ�xij ��µ� = Dlimj depthµ�xij ��µ�: Since xij → x
and xij ∈ ∂Ddepthµ�xij ��µ� for any j, we get x ∈ ∂Dlimj depthµ�xij ��µ�:

If x ∈ int conv�µ�; then (7.9) follows from (7.8). If x ∈ ∂ conv�µ�;
we conclude from (7.7) that limj depthµ�xij� ≤ depthµ�x�. Assume that
limj depthµ�xij� < depthµ�x� and let γ = �limj depthµ�xij� + depthµ�x��/2.
Then Dγ�µ� ⊃ Ddepthµ�x��µ� and, for all j that are larger than some j0,
depthµ�xij� < γ holds, hence xij 6∈ Dγ�µ� and therefore xij 6∈ Ddepthµ�x��µ�.
That contradicts the convergence xij → x:

(iii) According to Theorem 5.2, we have

lim
k
Ddepthµn �x��µk� →H Ddepthµn �x��µ�

for every n ∈ N: The sequence �depthµn�x��µn�� is bounded. Consider a conver-
gent subsequence �depthµnj �x��µnj��: Then

lim
j
Ddepthµn �x��µnj� →H Ddepthµn �x��µ� for all n ∈ N:(7.10)

We select n = nj in (7.10) and go to the limit j → ∞ on both sides. This
yields limj Ddepthµnj

�x��µnj� = limj Ddepthµnj
�x��µ�. Theorem 5.1 ensures that
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limj Ddepthµnj
�x��µ� = Dlimj depthµnj

�x��µ�, hence

lim
j
Ddepthµnj

�x��µnj� = Dlimj depthµnj
�x��µ�:

As x ∈ int conv�µ�, due to (7.8) we have x ∈ ∂Ddepthµnj
�x��µnj�: Therefore,

x ∈ ∂Dlimj depthµnj
�x�; and, again with (7.8), limj depthµnj �x� = depthµ�x�: As

the last equality holds for every convergent subsequence, it remains true for
the original sequence.

(iv) D1�µ� = E�µ�:
(v) For any µ and α, E�µ� ∈ Dα�µ� holds. The monotonicity on c ≥ 0 follows

from this fact and from the monotonicity of Dα�µ� on α (Theorem 5.3).
(vi) Follows from the affine equivariance of Dα�µ� (Theorem 5.7).

(vii) Assume that ν is a dilation of µ. Dilation implies inclusion of the lift
zonoids; see Koshevoy and Mosler (1997), Theorem 5.2. Therefore Dα�µ� ⊂
Dα�ν� for every α ∈ �0;1� or, equivalently, depthµ�x� ≤ depthν�x� for every
x ∈ Rd: 2

Our notion differs from other depth notions: Mahalanobis’s depth, Tukey’s
depth [Tukey (1975)], simplicial depth [Liu (1990)], majority depth [Singh
(1991)]. However, there are some connections.

The Mahalanobis depth of µ ∈M is given by

dMaµ �x� =
(
1+ �x − E�µ��′6−1

µ �x −E�µ��
)−1
;

provided µ has a positive definite covariance matrix 6µ. It follows from (6.2)
that the Mahalanobis depth of a given µ is a strictly increasing transform of
the zonoid depth of the normal distribution N�E�µ�; 6µ�:

In the case of an empirical distribution, we have the following relation with
the simplicial depth. In (7.6) A �µ;x� is a convex polytope. The simplicial depth
of the point x equals a properly counted number of vertices of this polytope.

Theorem 7.1 shows that our notion has many properties in general which
other notions have under some restrictions only, see, for example, Liu and
Singh (1993) for properties of Tukey’s, simplicial and majority depths. As will
be clear from the next section, our notion of data depth equals twice Tukey’s
data depth of a properly transformed distribution.

8. A trimming transform. In this section we shall indicate the dimen-
sion d by a superscript. Let M d

∗ ⊂M d be the subset of distributions that have
a unique median. That is, for every µ ∈ M d

∗ , there is some x�µ� ∈ Rd, the
median, such that any hyperplane passing through x�µ� divides Rd in two
halfspaces with equal µ-masses.

We shall construct a trimming transform that is an injection 9dx M d →
M d
∗ : Let us start with the univariate case, µ ∈ M 1: We define 91�µ� via its
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inverse function.

�91�µ��−1�α� =





1
2α

∫ 2α

0
Q�s�ds; α ∈

(
0;

1
2

]
;

1
2�1− α�

∫ 1

2α−1
Q�s�ds; α ∈

(
1
2
;1
]
:

(8.1)

Obviously �91�µ��−1 is a monotone and continuous function. Therefore it may
be considered as the quantile of a distribution function 91�µ�: As this quantile
function is continuous, E�µ� is the unique median of 91�µ�; hence, 91�µ� ∈
M 1
∗ . Observe that the convex hull of the support of µ and that of 91�µ� are the

same: conv�µ� = conv�91�µ��. So, we see that the zonoid α-trimmed region of
µ ∈M 1 equals the quantile �1−�α/2��-trimmed region of 91�µ�: Averous and
Meste (1990) have constructed a similar relation for expectiles.

Our aim is to extend this relation between the lift zonoid trimming and the
quantile trimming to higher dimensions.

To introduce quantile trimmed regions in many dimensions, let µ ∈ M d

and p ∈ Sd−1. Eddy (1984) defines the quantile of µ in the direction p as the
halfspace

Hα�p; µ� = �x ∈ Rdx �x;p� ≤ Qp�α��;(8.2)

where µp�t� = µ�H�p; t�� and Qp�α� = inf�tx µp�t� ≥ α� is the quantile
function of µp: Therefore we rewrite (8.2) as follows.

Hα�p; µ� =
⋂{

H�p; t�x
∫
H�p;t�

dµ ≥ α
}
:

The following set is named the quantile α-trimmed region of a distribution
µ ∈M d.

Dqu
α �µ� =

⋂

p∈Sd−1

Hα�p; µ�; α ∈ � 12 ;1�:(8.3)

Obviously, Dqu
α �µ� = ⋂{

H ∈ H dx µ�H� ≥ α
}
: Trimmed regions of this form

have been considered by Massé and Theodorescu (1994).
Define a map 9dx M d → M d

∗ by the following: for every α ∈ �0;1�; the
quantile �1−�α/2��-trimmed region of 9d�µ� is equal to the zonoid α-trimmed
region of µ ∈M d: The main result of this section states that such a map exists
for distributions having compact support.

Theorem 8.1. An injective map 9dx M d
c → M d

∗ exists, such that for every
µ ∈ M d

c and every α ∈ �0;1� there holds: the zonoid α-trimmed region of µ
equals the quantile �1− α

2 �-trimmed region of 9d�µ�:

Proof. Consider some p ∈ Sd−1. An extreme point of Dα�µ� in direc-
tion p ∈ Sd−1 has the form α−1

∫
H�−p;p0� xdµ�x�; where p0 is such that
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µ�H�−p; p0�� = α: See Koshevoy and Mosler (1997). By this, the support
function of Dα�µ� is of the form

φDα�µ��p� =
1
α

∫
H�−p; p0�

�x;p�dµ�x�:(8.4)

In view of (8.4), we have

Dα�µ� =
⋂

p∈Sd−1

{
xx �x;p� ≤ 1

α

∫ 1

1−α
Qp�s�ds

}
:(8.5)

It is easy to check that
∫ 1

1−αQ−p�s�ds = −
∫ α

0 Qp�s�ds: Therefore we get

{
xx �x;−p� ≤ 1

α

∫ 1

1−α
Q−p�s�ds

}
=
{

xx �x;p� ≥ 1
α

∫ α
0
Qp�s�ds

}
:(8.6)

In view of (8.6), we rewrite (8.5) as follows:

Dα�µ� =
⋂

p∈Pd−1

{
xx 1
α

∫ α
0
Qp�s�ds ≤ �x;p� ≤

1
α

∫ 1

1−α
Qp�s�ds

}
;(8.7)

where Pd−1 = Sd−1/+1 is the factor space of Sd−1 with respect to reflection.
So, to prove the existence of 9d, we have to demonstrate that there exists a
random vector X̃ such that, for every p ∈ Pd−1; 91�µp� is the distribution of

�X̃;p�.
Let us start with the case when µ has an infinitely differentiable distri-

bution function. Then the existence of 9d is tantamount to the existence of
an inverse to the Radon transform. According to the Paley–Wiener theorem
[Helgason (1980)], we employ the following conditions:

(i) The distribution function 91�µp��t� is infinitely differentiable by p and
t and has a compact support.

(ii) The integral
∫∞
−∞ t

k d91�µp��t� is a homogeneous polynomial of degree
k on p1; : : : ;pd, k = 0;1; : : : :

Here and below, the notation 9d is used for the transform of the respective
distribution functions as well.

As the distribution function of µ is infinitely differentiable, Qp�t� is in-

finitely differentiable by p and t, hence α−1
∫ 1

1−αQp�s�ds is infinitely differen-
tiable by p and α. Moreover, as conv�µ� is compact, conv�µp� = conv�91�µp��:
So, Condition 1 is met.

Recall [e.g., Schweizer and Sklar (1983)] that if F is a d-dimensional distri-
bution function with one-dimensional marginals F1; : : : ;Fd then there exists
a d-dimensional copula C such that F�x1; : : : ; xd� = C�F1�x1�; : : : ;Fd�xd��:
Observe that Fi�xi� = Fei��ei;x��; where ei is the ith canonical base vector,
i = 1; : : : ; d:
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Lemma 8.1. Let F be the distribution function of some µ ∈M d; Ax Rd →
Rd be a regular matrix, FA�x� = F�A−1x�; C and CA be the copulas of F and
FA, respectively. Then

CA�FA′e1
��A′e1;x��; : : : ;FA′ed��A

′ed;x�� = C�F1�x1�; : : : ;Fd�xd��:(8.8)

Proof.

FA
i �xi� = FA

ei��ei;x�� =
∫
�yx �ei;y�≤�ei;x��

dFA�y�

=
∫
�yx �ei;y�≤�ei;x��

dF�A−1y� =
∫
�zx �ei;Az�≤�ei;x��

dF�z�

=
∫
�zx �A′ei; z�≤xi�

dF�z� = FA′ei�xi�:

Therefore,

C�F1�x1�; : : : ;Fd�xd�� = F�x� = FA�Ax�
= CA�FA′e1

��A′e1;x��; : : : ;FA′ed��A′ed;x��: 2

Fix some p ∈ Sd−1 and let A be a regular matrix with A′e1 = p: Then there
exists a copula C such that C�91�µp���A′e1;x��; : : : ;91�µA′ed���A′ed;x��� is
a distribution function, e.g., the product copula. Let G�x1; : : : ; xd� denote this
distribution function.

Plugging thisC into the right-hand side of (8.8) yieldsGp = GA′e1
= 91�µp�:

Therefore,
∫∞
−∞ t

k dGp�t� =
∫
Rd�p;x�k dG�x� is a homogeneous polynomial,

and
∫∞
−∞ t

kd91�µp��t� is a homogeneous polynomial as well. That yields Con-
dition 2. For a general µ ∈M d

c , a limit argument completes the proof. 2
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Germany
E-mail: mosler@wiso.uni-koeln.de


