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Université Paris 7, 75205 Paris, France
cCPT, Aix Marseille Université,
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EPFL Lausanne, Switzerland

E-mail: a.nicolis@columbia.edu, rpenco@columbia.edu,

piazza@cpt.univ-mrs.fr, riccardo.rattazzi@epfl.ch

Abstract: We classify condensed matter systems in terms of the spacetime symmetries

they spontaneously break. In particular, we characterize condensed matter itself as any

state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while pre-

serving at large distances some form of spatial translations, time-translations, and possibly

spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry

breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature

usually adopts a more cumbersome strategy: that of introducing internal translational

symmetries — and possibly rotational ones — and of spontaneously breaking them along

with their space-time counterparts, while preserving unbroken diagonal subgroups. This

symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, su-

perfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves

replacing these internal symmetries with other symmetries that do not commute with the

Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries.

Among these options, we pick the systems based on the galileon symmetry, the “galileids”,

for a more detailed study. Despite some similarity, all different patterns produce truly

distinct physical systems with different observable properties. For instance, the low-energy

2 → 2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids

and galileids scale respectively as E2, E4, and E6. Similarly the energy momentum tensor

in the ground state is “trivial” for framids (ρ + p = 0), normal for solids (ρ + p > 0) and

even inhomogenous for galileids.
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1 Introduction

When we think about condensed matter, we rarely invoke relativity as a guiding principle.

The reason is twofold. On the one hand, ordinary condensed matter systems in the lab

are extremely non-relativistic: their mass density is much bigger than their energy density

and pressure, the propagation speeds of their excitations (e.g., phonons) are extremely
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subluminal, etc. On the other hand, and more to the point, each such system has an asso-

ciated rest frame, which breaks the equivalence of all inertial frames and makes relativistic

considerations apparently useless. As a result, the collective excitations of macroscopic

bodies are usually modelled with Lagrangians and Hamiltonians that have nothing to do

with relativity.

However, sometimes it can be useful to keep in mind that — to the best of our knowl-

edge — the fundamental laws of physics are Lorentz invariant, and that real-world con-

densed matter systems emerge as particular Lorentz-violating states subject to such fun-

damentally relativistic laws. In other words, condensed matter systems break Lorentz

invariance spontaneously. As Goldstone’s theorem and its subsequent refinements (current

algebra techniques, effective field theory) have taught us, spontaneous symmetry breaking

can have profound physical implications. For instance, in the case at hand, the state-

ment that a superfluid’s phonons have to non-linearly realize the spontaneously broken

Lorentz boosts, forces their interactions to have a very constrained structure, involving

solely powers of the combination

π̇ +
1

2
π̇2 − 1

2
(~∇π)2 (1.1)

in the low-energy limit [1].1 This is much less general than what one would have for a

generic superfluid in a fictitious world with no fundamental Lorentz invariance, where all

combinations of π̇ and (~∇π)2 would be allowed. Likewise, for solids, spontaneously broken

Lorentz invariance forces the phonons to appear in the action at low energies always through

the particular combination [3, 4]

∇iπj +∇jπi − π̇iπ̇j + ~∇πi · ~∇πj . (1.2)

In this paper, we take spontaneously broken Lorentz invariance as the defining feature

of condensed matter. The other symmetries that we postulate are unbroken spatial homo-

geneity — which in certain systems like solids is recovered only upon coarse-graining on

large enough scales — and time-translational invariance. To make our (and the reader’s)

life easier, we focus on systems that also feature unbroken three-dimensional rotations, at

least on large enough scales. We thus give up describing the peculiarities of anisotropic

systems like crystalline solids, although extending our considerations and results in that

direction is, if algebraically tedious, conceptually straightforward.

We leave open the possibility that the unbroken translational and rotational sym-

metries featured by a given condensed matter system — those governing the collective

excitations, or quasi-particles — may not be those originally appearing in the Poincaré

group. Rather, they can be linear combinations of the latter and of certain additional sym-

metries. As we will see, this seemingly exotic possibility is in fact ubiquitous in Nature, so

1The point is often made that for most condensed matter systems — which are non-relativistic in the

first sense spelled out above — the relevant spontaneously broken boosts one should focus on are Galilei’s

rather than Lorentz’s, in which case the invariant combination becomes π̇− 1

2
(~∇π)2 [2]. However, Galilean

relativity is certainly an excellent approximation to Lorentzian relativity in many physical situations, but

it is never more precise than the latter. So, if technically feasible, we see no harm in imposing full Lorentz

invariance and just neglecting (v/c)2 relativistic corrections when desired and appropriate.
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much so that we are not aware of any condensed matter system that does not implement

it: all condensed matter systems seem to require some additional symmetries.

As we will explain below, an hypothetical system without such symmetries would not

have the usual degrees of freedom associated with the positions of infinitesimal volume

elements, like ordinary solids and fluids, but only the degrees of freedom associated with

the local rest frame picked by the system. In other words, for ordinary fluids and solids we

can think of each volume element as having some position and some velocity, while for this

system the position degree of freedom is absent — the ‘volume element’ language itself is

absent — and one can only talk about the local velocity of the medium. We dub such an

hypothetical system (type I) framid, since it involves the most economical set of ingredients

that an homogeneous physical system needs to ‘pick a frame’. Its only degrees of freedom

are the components of the velocity vector of the local rest frame of the medium.

To be concrete, consider for example a relativistic theory featuring a homogeneous and

isotropic state |ψ〉 that breaks Lorentz boosts via a non-trivial expectation value for some

four-vector local operator in the theory:

〈Aµ(x)〉 = δ0µ . (1.3)

Let us assume further that the original spacetime translations and spatial rotations ap-

pearing in the Poincaré group are unbroken by |ψ〉, meaning that there are no expectation

values of local operators breaking them. Then, according to our characterization above,

this state describes a framid. The only local degrees of freedom whose presence is guar-

anteed by symmetry are the Goldstone excitations, which can be thought of as localized

infinitesimal boosts of the order parameter:

Aµ(x) =
(

ei~η(x)·
~K
)

µ
α 〈Aα(x)〉 , (1.4)

where ~η(x) denotes a triplet of Goldstone fields — the ‘framons’ — and ~K is the vector of

boost generators. Since the medium does not break translations or rotations, it cannot be

translated, rotated, stretched, compressed, twisted, or “deformed” in any standard spatial

sense. It can only be boosted.

Now contrast this with the field-theoretical description of a solid for instance. To

keep track of the positions of the individual volume elements, one needs to introduce a

triplet of scalar fields φI(~x, t) (I = 1, 2, 3), which can be thought of as giving the comoving

(Lagrangian) coordinates of the volume element occupying physical position ~x at time t.

The ground state of the system (at some reference external pressure) has

〈φI(x)〉 = xI . (1.5)

That is, each volume element is at rest and occupies its own equilibrium position. Such

expectation values break Lorentz boosts of course, as desired, but they also break spatial

translations and rotations. To recover the observed homegeneity and isotropy of a solid

at large scales, one needs to impose some internal translational and rotational symmetries

acting on the fields,

φI → φI + aI , φI → SO(3) · φI , (1.6)
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so that the expectation values above preserve suitable linear combinations of spatial sym-

metries and internal ones. As a result of breaking spatial translations and rotations, the

solid, unlike the framid, admits standard spatial deformation degrees of freedom, param-

eterized by the phonons, which serve as Goldstone bosons for all the broken symmetries

(including boosts.)

One might wonder whether the extra structure needed to describe ordinary solids and

fluids in effective field theory — the additional internal symmetries — just corresponds to

a suboptimal, redundant description of these systems. Is it possible that the framid simply

corresponds to a more economical description of the same systems, rather than to a phys-

ically different system altogether? Is there perhaps a complicated field redefinition that

maps the effective field theory of a framid into that of a solid or a fluid? In fact, the stan-

dard hydrodynamical description of a fluid never involves explicitly the individual volume

elements’ positions, but rather the energy density ρ, the pressure p, the fluid’s four-velocity

uµ, etc. — none of which breaks translations or rotations for a fluid at equilibrium, but

only boosts. To settle the question, one should compute a physical observable and compare

the answers one gets in the two cases. In section 3.2 we show that the 2 → 2 scattering am-

plitude for the Goldstone excitations at low-energies scales like E4 in solids and fluids, and

like E2 in a framid, thus proving that the framid is a physically distinct system rather than

just a rewriting of solids and fluids. Since the framid corresponds to the most economical

way to break Lorentz boosts spontaneously while preserving homogeneity, isotropy, and

time-translational invariance, it is surprising that Nature never uses it. We elaborate on

possible reasons for this in section 4. We have no definite answer yet, but we identify one

stark feature that sets framids apart from ordinary stuff: the energy momentum tensor

on their ground state is proportional to a cosmological constant term. From a condensed

matter perspective such energy momentum is equivalent, by a tuning of the cosmologial

term, to ρ = p = 0. This property remarkably corresponds to the absence, in opposition

to ordinary stuff, of a moduli space of homogeneous and isotropic vacuum solutions that

can be associated with a change of boundary conditions, e.g. a change of pressure.

Beyond the simple framid and beyond ordinary condensed matter, there finally are

“extra-ordinary” systems. These break spacetime translations and possibly spatial rota-

tions, but make up for them via extra symmetries that do not commute with the Poincaré

group. Extra-ordinary systems form a possibly wide class whose thorough exploration we

leave for future work. In section 5 we limit our discussion to a few representatives including

the simplest ones, the galileids. The latter are based on a galileon field [5], that is a scalar

field φ(x) whose dynamics enjoy a generalized shift symmetry

φ(x) → φ(x) + c+ bµx
µ , (1.7)

where c and bµ are constant transformation parameters. At lowest order in derivatives,

its equation of motion is a non-linear algebraic equation for its second derivatives, which

admits a continuum of solutions of the form

φ(x) = A |~x|2 +B t2 , (1.8)
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where A and B are suitable constants. Such a solution breaks Lorentz boosts as well as

spacetime translations, but the latter can be made up for by the generalized shift symme-

try (1.7). That is, there is an unbroken linear combination of spacetime translations and

shifts of φ which can serve as the symmetry defining homogeneity and time-translational

invariance in the Lorentz-violating background above.

For all these systems, we will only deal with the infrared degrees of freedom that are

forced to be there by the symmetries — the Goldstone excitations. In particular, we will

not discuss fermionic excitations, which are of course responsible for much of the interesting

phenomenology of condensed matter systems in the lab. With this qualification in mind,

we want to classify all possible low-energy, long-distance dynamics of condensed matter.

Then, our problem naturally splits into two questions:

1. What are all the possible ways of breaking the Poincaré group and additional sym-

metries down to spatial translations, time-translations, and rotations (and possibly

residual internal symmetries)? As mentioned above, it should be kept in mind that

the unbroken translations and rotations can differ in general from those appearing

in the Poincaré group. In other words, the breaking can ‘mix’ some of the Poincaré

symmetries with the additional ones.

2. For each symmetry breaking pattern, what is the most general effective field theory

governing the low-energy, long-distance dynamics of the associated Goldstone bosons?

The first question is purely mathematical in nature, and is answered in the next section.

The rest of the paper is devoted to answering the second.

2 Classification of symmetry breaking patterns

We are interested in classifying all the symmetry breaking patterns that can be associated

with a static, homogeneous, and isotropic medium in a relativistic theory. We will thus

assume that the full symmetry group of our system is made up of the Poincaré group,

whose generators are

P0 (time traslations) (2.1)

Pi (spatial traslations) (2.2)

Ji (rotations) (2.3)

Ki (boosts) (2.4)

and (possibly) of some additional internal symmetries — i.e. symmetries whose generators

commute with the Poincaré generators listed above. [We will moreover assume the exis-

tence of a set of translation and rotation generators that govern the excitations inside the

condensed matter system, and, in particular, that leave the ground state invariant,

P̄0, P̄i, J̄i (unbroken) . (2.5)
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The above generators need not be the original ones appearing in the Poincaré group but

they must obey the same algebra, whose only non-vanishing commutators are

[J̄i, J̄j ] = iǫijk J̄
k, [J̄i, P̄j ] = iǫijk P̄

k , (2.6)

or else there is no sense in which we can say that they generate translations and rotations.

In the usual condensed matter jargon, P̄0 is the (usually, non-relativistic) Hamiltonian of

the quasi-particles or collective excitations of the system.]

Clearly, this structure can be complicated at will by the addition of internal symme-

tries, both broken and unbroken. In general, there will be additional Goldstone modes

associated with the broken symmetries, and they will transform linearly under all unbro-

ken symmetries. However, one should keep in mind that there can be subtleties in the

Goldstone phenomenon whenever broken symmetries do not commute with the unbroken

P̄ ’s [6]. For instance, some of the Goldstone excitations can acquire a gap [7–10] and thus

become irrelevant at low enough energies, whereas others may be removed altogether from

the spectrum [11] by imposing certain conditions known as inverse-Higgs constraints [12].

Often these constraints can be interpreted as gauge fixing conditions that eliminate a re-

dundancy in the parametrization of the Goldstone excitations; for certain systems though,

this interpretation is not available and imposing inverse Higgs constraints simply amounts

to integrating out gapped modes [11, 13, 14]. Regardless of their interpretation, the cri-

terion for when inverse Higgs constraints can be imposed goes as follows: whenever the

commutator between some unbroken translation P̄ and a multiplet of broken generators Q

contains another multiplet of broken generators Q′, i.e.

[P̄ , Q] ⊃ Q′, (2.7)

one can impose some inverse Higgs constraints and solve them to express the Goldstones

of Q in terms of derivatives of those of Q′. By doing so, one obtains another nonlinear

realization of the same symmetry breaking pattern with fewer Goldstone fields.

2.1 The eightfold way

In light of these remarks, we propose to classify condensed matter systems based on which

(if any) of the P̄ ’s and J̄ ’s involve internal symmetries. We find that there are in principle

eight possible scenarios. For six of them there is the option to realize them purely with

internal symmetries, while the other two necessarily require additional symmetries that do

not commute with Poincaré. For each of these scenarios we are going to discuss the most

minimal implementations — i.e. those that feature the minimum number of Goldstone ex-

citations. If we denote all additional symmetry generators by ‘Q’ (possibly with indices and

other typographical appendages), the eight conceivable scenarios for static, homogeneous

and isotropic condensed matter systems are:

1. P̄0 = P0, P̄i = Pi, J̄i = Ji.

This first case is the most minimal scenario, in that it does not require any additional

symmetry beyond the Poincaré group. The only space-time symmetries that are
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broken are the three Lorentz boosts, and thus we expect three Goldstone bosons. We

will call type-I framid a medium described by this symmetry breaking pattern. As

already discussed in the Introduction, the simplest order parameter that realizes this

scenario is a single vector operator that acquires a vev 〈Aµ(x)〉 = δ0µ.
2

2. P̄0 = P0 +Q, P̄i = Pi, J̄i = Ji.

In the absence of additional symmetries, Q is simply the generator of an internal

U(1) symmetry. This is the pattern of symmetry breaking associated with ordinary

superfluids, which we will also call type-I superfluids. In this case, we know [1] that

we can make do with only one Goldstone boson — the superfluid phonon — even

though there is a total of four broken generators (Q and the Ki’s). This is because

[P̄i,Kj ] = iδij(Q− P̄0), and thus one can impose three inverse Higgs constraints and

express the boost Goldstones in terms of the Goldstone of Q [4].

Physically, the possibility of having a single Goldstone mode follows from the fact

that one can realize the SSB pattern above with a single weakly coupled scalar — the

superfluid “phase” field — with a time-dependent vev, 〈ψ(x)〉 = t. In this case, Q is

realized as a shift-symmetry on the phase, ψ → ψ+a. Equivalently, one can think of

a weakly coupled complex scalar Φ(x) acted upon by Q in the usual way, Φ → eiaΦ,

acquiring a ‘rotating’ vev 〈Φ(x)〉 = eit. If Φ has a U(1)-invariant potential, the radial

mode is gapped while the angular mode is gapless and can be identified with the

superfluid phonon.

The spectrum of Goldstone bosons for this scenario has been extensively studied

also in the presence of an arbitrary compact group of internal symmetries [11, 16].

Notice that any compact group larger than U(1) inevitably leads — if broken — to

additional Goldstone modes. This is because only the modes corresponding to broken

generators that do not commute with Q can in principle be eliminated by the inverse

Higgs mechanism. However, it can be shown that (i) for a compact group one can

always choose a basis of generators such that all non-commuting generators come in

pairs [8], and that (ii) one can eliminate at most one Goldstone for each pair while

keeping all non-linearly realized symmetries intact [11].

Interestingly, additional Goldstone modes are not compulsory if one embeds U(1)

in a non-compact group. In fact, one can even add an infinite number of broken

internal symmetries by promoting the U(1) shift symmetry to internal (monotonic)

diffeormorphisms,

ψ → f(ψ) , (2.8)

and still have a single Goldstone. A field enjoying such an internal symmetry arises

for instance in the infrared limit of Hořava-Lifshitz gravity [17, 18] and has been

dubbed khronon in the gravity/cosmology literature [19].

2Upon coupling to gravity, a type I framid gives rise to a Lorentz-violating modification of general

relativity known as Einstein-æther theory [15].
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3. P̄0 = P0, P̄i = Pi +Qi, J̄i = Ji.

The commutation relations (2.6) require

[Ji, Qj ] = iǫijkQ
k , (2.9)

which implies the Qi’s cannot generate an internal symmetry. However, as we will

see in section 5, one can still realize this scenario using symmetries that do not

commute with the Poincaré generators. Among various options the most minimal

implementation requires only one Goldstone mode. We will dub such system type-I

galileid.

4. P̄0 = P0, P̄i = Pi, J̄i = Ji + Q̃i.

The commutation relations (2.6) require

[Q̃i, Q̃j ] = iǫijkQ̃
k, (2.10)

which means that the Q̃i’s are the generators of an internal SO(3) group. In this

scenario, we have at least six broken generators (the Ki’s and the Q̃i’s) and six Gold-

stone bosons, since there are no inverse Higgs constraints one can impose. We will

call type-II framid a condensed matter system described by this pattern of symme-

try breaking. A possible order parameter consists of a triplet of vector fields Aa
µ

that rotates under the internal SO(3) symmetry and takes a vev 〈Aa
µ〉 = δaµ, with

a = 1, 2, 3.

5. P̄0 = P0 +Q, P̄i = Pi +Qi, J̄i = Ji.

Once again, consistency with the commutation relations (2.6) implies that the Qk’s

must transform like a 3-vector under rotations, as encoded in equation (2.9). There-

fore, this scenario can only be realized by adding symmetries that do not commute

with the Poincaré group, like case 3 above. The resulting pattern of symmetry break-

ing defines what we will call a type-II galileid, which we will elaborate on in section 5.

6. P̄0 = P0 +Q, P̄i = Pi, J̄i = Ji + Q̃i.

The generators Q̃i must again be the generators of an internal SO(3), like in the

scenario 4 discussed above. It then follows from the algebra (2.6) that these generators

must commute with Q, which in the simplest implementation can be thought of as the

generator of an internal U(1) symmetry. We have therefore a total of seven broken

generators (Q, Q̃i, Ki), but because [P̄i,Kj ] = −iδij(P̄0 −Q), the boost Goldstones

can be eliminated via inverse Higgs constraints. Thus, we expect four independent

Goldstone modes. This symmetry breaking pattern defines a type-II superfluid and,

in the non-relativistic limit, is realized in nature by the B-phase of superfluid He3 [20].

In that case the generators Q̃i describe spin, which in a non-relativistic system with

negligible spin-orbit couplings can be thought of as an internal SO(3) symmetry.

Relativistic type-II superfluids have recently been discussed in [14] with particular em-

phasis on the peculiarities of their UV completion. In this respect, it is interesting to

notice that there is no order parameter realizing their symmetry breaking pattern for

– 8 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
5

which the inverse Higgs constraints correspond to removing gauge-redundant Gold-

stone fields [11]. For instance, a fairly minimal order parameter is an SO(3) triplet

of complex four-vectors with vev3

〈Aa
µ(x)〉 = eit δaµ , (2.12)

which, when acted upon by the broken generators, yields seven independent Gold-

stone fields — three more than the necessary four. It turns out that for all weakly

coupled realizations of this symmetry breaking pattern, the inverse Higgs constraints

always correspond to integrating out three gapped Goldstone fields from the La-

grangian [14].

Like in the case of type-I superfluids, any non-trivial compact extension of the

SO(3) × U(1) group will inevitably lead to additional Goldstone modes. Finally,

notice that, like in the case of type-I superfluids, one could choose to promote the

U(1) internal symmetry to the monotonic internal diffeormophisms (2.8) without

introducing additional Goldstones.

7. P̄0 = P0, P̄i = Pi +Qi, J̄i = Ji + Q̃i.

By the commutation relations (2.6) and by the request that Qi and Q̃i commute with

Poincarè one must have

[Q̃i, Q̃j ] = iǫijkQ̃
k, [Qi, Qj ] = 0, [Q̃i, Qj ] = iǫijkQ

k . (2.13)

This is the algebra of the three-dimensional Euclidean group ISO(3). That is, the

Q̃i’s generate an internal SO(3) symmetry, and the Qi’s generate three-dimensional

internal translations. In this scenario, we have a total of nine broken generators (Qi,

Q̃i and Ki), but we can have as few as three Goldstone excitations. This is because

the commutation relations [P̄0,Ki] = −i(P̄i − Qi) and [P̄i, Q̃j ] = iǫijkQ
k allows one

to impose six inverse Higgs constraints to express the Ki and Q̃i Goldstones in terms

of derivatives of the Qi ones [4]. The minimal implementation in which the internal

symmetry group is just ISO(3) describes ordinary (isotropic) solids. To see this at the

level of the low-energy EFT, it is convenient to characterize this system in terms of

an internal SO(3) triplet of scalar fields φa, which can be interpreted as the comoving

coordinates of a solid’s volume elements [3, 4, 21], and shift under the internal Qi’s,

φa → φa + ca. The expectation values

〈φa(x)〉 = xa (2.14)

realize the correct symmetry breaking pattern, and the three fluctuation fields πa

defined by φa = xa+πa describe the three (acoustic) phonons of the solid, which are

3A slightly more minimal possibility would be a complex scalar plus a triplet of real four-vectors,

with vevs

〈Φ〉 = eit , 〈Aa
µ〉 = δaµ . (2.11)
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the only physical Goldstones that survive upon imposing all available inverse Higgs

constraints for this breaking pattern.

Similarly to the superfluid case, also in this scenario it is possible to enlarge the

internal symmetry group without increasing the number of Goldstone modes. In

fact, one can even add an infinite number of internal generators and promote ISO(3)

to the group of internal diffeomorphisms with unit determinant, Diff ′(3). In terms

of the triplet of scalars defined above,

φa → ξa(φ) , det
∂ξa

∂φb
= 1 . (2.15)

An infinite number of inverse Higgs constraints ensures that the number of Goldstones

remains the same. Such a large internal symmetry group provides a low-energy

effective description of ordinary fluids [3, 22]. Notice that the number of independent

Goldstone fields is still three, but only the longitudinal one features wave solutions

— the fluid’s sound waves. The two transverse Goldstones have a degenerate ω = 0

dispersion law, and can be thought of as the linearized progenitors of vortices.

There is an interesting intermediate case still featuring three Goldstones, where the

internal group is the three dimensional special affine group, which is finite dimensional

but non-compact, and contains ISO(3) as a subgroup. Its action on our triplet of

scalars is

φa → ca +Ma
b φ

b , detM = 1 , (2.16)

where, unlike for the Diff ′(3) case, ca and Ma
b are constant. Curiously, for this

system the full Diff ′(3) is recovered as an accidental symmetry to lowest order in

the derivative expansion [4]. In other words, at low enough energies such a system is

indistinguishable from an ordinary fluid.

8. P̄0 = P0 +Q, P̄i = Pi +Qi, J̄i = Ji + Q̃i.

Starting from (2.6), it is easy to show that the commutation relations (2.13) must

still hold, and that Q must commute with all other generators. This is the algebra of

the three-dimensional Euclidean group (internal translations and rotations), supple-

mented by an extra U(1) symmetry generated by Q. We have a total of ten broken

generators (Q, Qi, Q̃i, and Ki), but by imposing the same inverse Higgs constraints

as in the previous scenario we are left with only four Goldstone bosons. If the inter-

nal symmetry group is exactly ISO(3) × U(1), we recover the pattern of symmetry

breaking associated with supersolids [21]. A useful parameterization of the Goldstone

excitations involves the same φa triplet of scalars we defined above for solids and flu-

ids (case 7), as well as the superfluid phase field ψ we defined for type-I superfluids

(case 2), with symmetry breaking expectation values

〈φa(x)〉 = xa , 〈ψ(x)〉 = t . (2.17)

The four independent fluctuation modes about these backgrounds describe the Gold-

stone excitations.
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System
Modified generators

# G.B.
Internal Extra spacetime

Pt Pi Ji symmetries symmetries

1. type-I framid 3

2. type-I superfluid X 1 U(1)

3. type-I galileid X 1 Gal (3+1,1),4

4. type-II framid X 6 SO(3)

5. type-II galileid X X 1 Gal (3+1,1),4

6. type-II superfluid X X 4 SO(3)×U(1)

7. solid X X 3 ISO(3)

8. supersolid X X X 4 ISO(3)×U(1)

Table 1. The eight possible patterns of symmetry breaking discussed in the text. The checkmarks

denote whether a translation or rotation is mixed with another symmetry. The “# G.B.” column

displays the minimum number of Goldstone modes necessary to non-linearly realize the broken

symmetries, whereas the last two columns display the (minimal) symmetry group needed to realize

the desired breaking pattern.

Once again, the internal symmetry group can be made infinite-dimensional without

the need for additional Goldstone modes. By promoting again ISO(3) to Diff ′(3)

(eq. (2.15)), one recovers the long-distance dynamics of a finite-temperature super-

fluid [23]. In this case two of the four Goldstones — the transverse ones — acquire

a degenerate ω = 0 dispersion law, and can be identified with (linearized) vortex

degrees of freedom in the normal fluid component. The remaining two Goldstones

describe first and second sound. If one further promotes the U(1) constant shifts on

ψ to “chemical shifts” [24],

ψ → ψ + f(φa) , (2.18)

one obtains a charge-carrying ordinary fluid. This makes another Goldstone mode

become degenerate, with ω = 0, thus leaving one with ordinary sound waves only.

Alternatively, one could also choose to promote the U(1) to a khronon-like sym-

metry (2.8), although we are presently not aware of any medium that enjoys these

symmetries.

2.2 Summary

In summary, we have identified eight possible condensed matter scenarios that can be

produced in a Poincaré invariant theory. Six of them can be realised using additional

internal symmetries, while for two of them (cases 3 and 5 above) we have to resort to extra

spacetime symmetries that do not commute with the Poincaré group.

The results of our analysis are summarized in table 1, where for each scenario we

display the minimum number of Goldstone modes and the corresponding symmetry group.

Four of these scenarios — type-I and type-II superfluids, solids (with ordinary fluids being

4See for instance [25] for a general definition of the groups Gal (d + 1, n).
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a special case), and supersolids — are already known to be realized in nature.5 We refer

the reader to the literature for the details of their effective field theories, which have been

studied extensively in recent years [1, 3, 4, 21, 24, 26]. The next two sections are devoted

to a discussion of type I and type II framids — the only scenarios that admit gapless

Goldstone modes associated with the spontaneously broken boosts. Finally, in section 5

we examine the two remaining scenarios, 3 and 5.

3 Framids

For simplicity, we will first develop some intuition by focusing on the simpler type-I case,

and we will show that framids are not just a simpler description of more mundane states

of matter such as solids. We will then derive the low-energy effective action for both type-I

and type-II framids using the coset construction [27–30]. This approach will clearly show

how type-I framids are in essence just a special case of type-II framids.

3.1 Type-I framids

As discussed above, a possible order parameter for type-I framids is a vector local operator

Aµ(x), acquiring an expectation value

〈Aµ(x)〉 = δ0µ (3.1)

on the ground state. This expectation value breaks boosts, and the three corresponding

Goldstone modes ~η(x) — the framons — can be introduced by parametrizing the fluctua-

tions of Aµ(x) as

Aµ(x) =
(

ei~η(x)·
~K
)

µ
α 〈Aα(x)〉 , (3.2)

where the ~K’s are the boost generators in the relevant representation (the four-vector one).

This parametrization is particularly convenient because the vector field Aµ(x) turns out to

have a constant norm, i.e. AµA
µ = −1. Thus the low-energy effective Lagrangian for the

Goldstones ~η can be obtained by writing the most general Poincaré-invariant Lagrangian

with at most two derivatives for a vector field with constrained norm. Up to total derivatives

this is simply6

L = −1

2

{

M2
3 (∂µA

µ)2 +M2
2 (∂µAν)

2 + (M2
2 −M2

1 )(A
ρ∂ρAµ)

2
}

. (3.3)

Although the kinetic terms do not involve just the usual gauge invariant combination

FµνF
µν , ghost instabilities are avoided because the norm of Aµ is constrained. Put an-

other way, the vector field Aµ(x) is just a placeholder for the Lorentz-covariant combination

5There is a controversy as to whether supersolids have actually been observed. However, systems that

qualify as supersolids according to our low-energy EFT criteria — symmetries of the gapless excitations’

dynamics — clearly exist. Take for instance a very porous but fairly rigid material, like a metal (open-cell)

foam, and immerse it in superfluid helium, which will then fill all the voids of the material. At distances

much bigger than the typical cell size, the dynamics will be those of a superfluid coupled to the vibrational

modes of a solid — a supersolid. (A more expensive example is that of a huge empty building with internal

walls and rooms and hallways and staircases — but no closed doors — filled with superfluid helium. . . )
6The rationale behind our definition of the couplings M2

i will become clear in section 3.3.
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of Goldstone fields (3.2), and so only three independent degrees of freedom enter the varia-

tional principle. In fact, we will see in a moment that the three coefficients M2
i can always

be chosen in such a way that all three Goldstones are well-behaved.

The Lagrangian (3.3) is particularly simple because it econdes infinitely many interac-

tions through a finite number of couplings: by substituting the expression (3.2) in eq. (3.3),

one obtains a Lagrangian for the ~η ’s that includes interactions with an arbitrarily large

number of Goldstones but just two derivatives. This should be contrasted with the case

of ordinary matter (solids, fluids, superfluids, supersolids), where each Goldstone field in

the Lagrangian carries at least one derivative, and so at the two-derivative level there are

no interactions [3, 26]. From this viewpoint, the framid Lagrangian is similar to the chiral

Lagrangian for the QCD pions (more below).

In order to study the particle content, it proves useful to separate the vector ~η into its

longitudinal and transverse components:

~η = ~ηL + ~ηT , ~∂ · ~ηT = 0 , ~∂ × ~ηL = 0 , (3.4)

The quadratic Lagrangian then reads

L2 =
1

2
M2

1

[

~̇η 2 − c2L (~∂ · ~ηL)2 − c2T ∂iη
j
T ∂iη

j
T

]

, (3.5)

where we have introduced the transverse and longitudinal propagation speeds,

c2T =
M2

2

M2
1

, c2L =
M2

2 +M2
3

M2
1

. (3.6)

From eq. (3.3), it is clear that the parameter M2
1 can always be factored out of the La-

grangian as a reference scale, and after doing that all interactions are completely determined

by the two propagation speeds cT and cL. For instance, the cubic and quartic interaction

terms read

L3 = M2
1

[

(c2T − 1) ~η · ∂η · ~̇η + (c2L − c2T ) [∂η] ~η · ~̇η
]

, (3.7)

L4 =
1

2
M2

1

[

(

4

3
− c2T

)

~η 2 ~̇η 2 −
(

1

3
+ c2L − c2T

)

(~η · ~̇η)2 + (1− c2T ) ~η · ∂η · ∂ηT · ~η (3.8)

+
1

3
c2T (∂η · η)2 − 1

3
c2T [∂η T∂η] ~η 2 − 1

3
(c2L − c2T ) [∂η]

2 ~η 2 − 2

3
(c2L − c2T ) [∂η] ~η · ∂η · ~η

]

,

where ∂η denotes the matrix with entries (∂η)ij = ∂iηj , ∂η
T its transpose (and not its

restriction to the transverse modes), and the brackets [. . . ] the trace of the matrix within.

A particularly interesting limit to consider is the ultra-relativistic one with cL, cT → 1.

In this case, the Lagrangian for the framons reduces to

LcL,cT→1 = −1

2
M2

1

[

(∂µ~η )
2 − 1

3
∂µη

i∂µηj
(

ηiηj − δij~η
2
)

+O(η6)

]

. (3.9)

In this limit we are in the presence of an enhanced symmetry, which follows from the fact

that the Lagrangian for the order parameter Aµ reduces to the single term

LcL,cT→1 ∝ ∂µA
α∂µAα (3.10)
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[see eqs. (3.3) and (3.6)]. Such a term enjoys two independent Lorentz symmetries, act-

ing on the derivatives (µ index) and on the fields (α index) separately. Interestingly, a

similar enhanced “spin” symmetry applies to gauge-theory amplitudes in certain infinite-

momentum limits [31]. One can thus view the Lorentz group acting on Aα as an internal

group that is spontaneously broken down to internal rotations, i.e. SO(3, 1) → SO(3).

In particular, the boosts of this internal Lorentz group are non-linearly realized on the

Goldstones. The spacetime Lorentz group that acts on the derivatives instead remains un-

broken, because the expectation value of Aα is constant. This is very clear from the form

of (3.9), in which rotations are linearly realized on the ~η triplet and the indices carried

by the derivatives are never contracted with the indices carried by the ~η ’s, i.e. there are

no “spin-orbit” couplings. Note that we are just a factor of i away from the symmetry

breaking pattern relevant for the QCD pions, SU(2) × SU(2) → SU(2). Indeed, the chiral

Lagrangian for the pions πa at the two-derivative level can be obtained from (3.9) upon

the formal replacement ηa = iπa (and M2
1 → −f2π), which has the effect of changing the

relative sign between the quadratic and quartic operators. This relative sign is determined

by the curvature of the coset manifold, which is positive for SU(2) × SU(2)/SU(2) and

negative for SO(3, 1)/SO(3).

Another interesting limit is that with small cL and cT . In this case the strong coupling

scale of the theory will not be simply M1. In order to estimate it, we need to keep

separate scaling dimensions for energies ω and momenta k. For cT ≪ 1 and cL ≪ 1,

the canonically normalized framon field ~ηc = M1~η has scaling dimensions [k]3/2[ω]−1/2, as

apparent by inspection of the quadratic action. When writing interactions in terms of the

canonically normalized fields, the scale M1 appears at the denominator with appropriate

powers. Therefore, the terms with the lowest strong coupling scale will be those in which

cT and cL appear as small corrections to order one coefficients. For instance, the first term

in the cubic Lagrangian (3.7) violates unitarity at smaller energies than the second term,

in the limit of small propagation speeds. Similarly, terms with a higher number of spatial

derivatives constrain the strong coupling scale more tightly, because ∂t ∼ cL,T · ∂i ≪ ∂i. In

summary, we need to inspect the two (cubic and quartic) operators

Sint =

∫

dt d3x (1− c2T )
[

− 1

M1
~ηc · ∂ηc · ~̇ηc +

1

2M2
1

(ηc · ∂ηc)2
]

. (3.11)

Since ~ηc has dimensions [k]3/2[ω]−1/2, it is easy to show that the dimensions of M1 are

[k]5/2[ω]−3/2. Therefore, if we assume that the two sound speeds are comparable, cL ∼
cT ≪ 1, we conclude purely on dimensional grounds that the energy and momentum

strong coupling scales must be

Estrong ∼ M1 c
5/2
L,T , pstrong ∼ M1 c

3/2
L,T . (3.12)

3.2 Is the framid a solid in disguise?

Type-I framids and solids have the same number of Goldstones, which in both cases form a

triplet under the unbroken rotations. An apparent feature of the framons ~η is the presence

of interaction terms (eqs. (3.7)–(3.8)) with two derivatives, whereas the phonons in a solid
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always carry at least one derivative per field, and so a cubic interaction has three derivatives,

a quartic interaction has four, and so on [3, 26]. This should be enough to conclude that

framids and solids are physically inequivalent systems. However, one might still suspect

that some field redefinition could turn framons into phonons.

In order to make sure that this is not the case, we have calculated the 2 → 2 tree-level

scattering amplitude for framons. The naive expectation based on the simple derivative

counting is correct: amplitudes that would scale as E4 for the phonons in a solid, scale

indeed as E2 in the case of framons, and no magical cancellations happen. This is also

obvious from the previous section where we saw we that can tune the framid into the

relativistic invariant SO(3, 1)/SO(3) σ-model, which is well known to have amplitudes that

scale like E2 at low-energy.

For example, the elastic scattering amplitude for the head-on collision of two longitu-

dinal framons of equal energy E is

iMLL→LL = −2i
E2

c2TM
2
1

× f(θ) (3.13)

where f(θ) is an order-one function of the scattering angle,

f(θ) =
(1+c2L)

2+(c4L−6c2L−3) cos2 θ+4 cos4 θ−2(cT /cL)
2(1−cos2 θ)(c4L+(1−2c2L) cos

2 θ)

1−cos2 θ
.

(3.14)

As evident from the above expression, amplitudes really do scale as E2 at low energies. It

is not possible to make (3.13) vanish for all scattering angles with a specific choice of cL
and cT , so there is no tuning of the Lagrangian coefficients that can turn a framid into a

solid. We also note that, while comparing (3.13) with the general estimate of the strong

coupling scale (3.12), one should keep in mind that the 2 → 2 scattering amplitude scales

as velocity to the third power, [M] = [E/p]3 (see e.g. [32]). This means that (3.13) reaches

the unitary bound when M ∼ c3, i.e., at pstrong ∼ M1c
3/2, Estrong ∼ M1c

5/2, as correctly

estimated in (3.12).

3.3 Coset construction: type-II → type-I

Having built some general intuition about framids, we are now ready for a more systematic

analysis. As discussed in section 2, type-I and type-II framids are characterized by very

different order parameters: a single vector field with a time-like vev for the former, a triplet

of vectors with mutually orthogonal space-like vevs for the latter. This striking difference

hides the fact that the low-energy effective action of type-I framids is just a particular

limit of that of the type-II ones. However, this becomes immediately apparent when such

effective actions are derived using the coset construction [27–30]. In what follows we will

resort to this technique, and while we will try to be as self-contained as possible, the

most “coset-phobic” readers are referred to [33] for a general but concise review of the

coset construction ideology. The most impatient ones can instead skip directly to the final

results: the low-energy effective Lagrangians (3.19) and (3.26), with the relevant quantities

defined in eqs. (3.18). Finally, the simply uninterested ones can safely skip to section 4

without loss of continuity.
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As discussed in section 2, type-II framids are characterized by an internal broken SO(3)

symmetry, which combines with the broken spatial rotations yielding an unbroken diagonal

SO(3). In summary, the symmetry breaking pattern reads

unbroken =











P̄t ≡ Pt time translations

P̄i ≡ Pi spatial translations

J̄i ≡ Ji + Si rotations

broken =

{

Si internal SO(3)

Ki boosts

The starting point of the coset construction is the coset parametrization

Ω(x) = eix
µP̄µeiη

j(x)Kjeiθ
j(x)Sj , (3.15)

which is nothing but a parametrization of the most general symmetry transformation that

is non-linearly realized. As such, it contains the generators of the spontaneously broken

symmetries (Ki and Si) together with their respective Goldstones (ηi and θi), but also

the generators of unbroken translations, which are always non-linearly realized on the

coordinates xµ. The transformation properties of the coordinates and the Goldstone fields

under a generic element g of the symmetry group is determined by the equation:

gΩ(x, η, θ) = Ω(x′, η′, θ′)h(η, θ, g), (3.16)

where h(η, θ, g) is an element of the unbroken subgroup that in general depends on the

Goldstones as well as g. For any given g, the explicit form of Ω(x′, η′, θ′) and h(η, θ, g) can

be calculated explicitly by moving g past Ω(x, η, θ) using the algebra of the Poincaré and

internal SO(3) groups and casting the end result as a product of a non-linearly realized

symmetry transformation and an unbroken one.

In order to construct an effective action that is invariant under broken and unbroken

symmetries alike, one needs to calculate the Maurer-Cartan one-form Ω−1∂µΩ and expand

its coefficients in the basis of generators
{

P̄µ,Ki, Si, J̄i
}

. Once again, such a calculation

can be carried out solely using the symmetry algebra, and the final result can be cast in

the following form:

Ω−1∂µΩ = ieµ
ν
(

P̄ν +Dνη
iKi +Dνθ

iSi +Ai
ν J̄i

)

. (3.17)

With some hindsight, we have denoted the coefficients of such an expansion in a suggestive

way. In fact, the transformation properties of such coefficients follow directly from (3.16)

and are such that

• eµ
ν plays the role of a vierbein, in the sense that it can be used to build a volume

element d4x det(e) that is invariant under all the symmetries.

• Dνη
i and Dνθ

i should be thought of as covariant derivatives of the Goldstone fields.

They are non-linear in the Goldstones and transform linearly under the unbroken

symmetries. Any contraction of Dνη
i and Dνθ

i that is invariant under the unbroken
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symmetries (in this case, the rotations generated by J̄i), yields a quantity that is

actually invariant under all the symmetries. For compactness we are using a Lorentz

covariant-looking notation, but the ν = 0 and ν = i of such covariant derivatives

have to be treated independently.

• Ai
ν acts as a connection, that can be used to define higher covariant derivatives of

the Goldstone fields, as well as covariant derivatives of additional matter fields. In

what follows we will not need this connection, because we will focus on the Goldstone

sector and work at lowest order in the derivative expansion.

We should stress that the explicit form of eµ
ν , Dνη

i, Dνθ
i and Ai

ν crucially depends on how

the coset Ω(x) is parametrized. Different parametrizations are related by a redefinition of

the Goldstone fields. The parametrization that we have chosen in (3.15) is particularly

convenient because in this case eµ
ν is just a Lorentz boost Λµ

ν with rapidity ~η, and thus

its determinant is trivial, det(e) = 1.

An explicit calculation of the Maurer-Cartan form yields the following covariant deriva-

tives:

Dµηi = (Λ−1)µ
ν∂νη

j

{

δji +

[

η − sinh η

η3

]

(ηjηi − δji~η
2)

}

(3.18a)

Dµθi = (Λ−1)µ
ν∂νθ

j

{

δji +

[

1− cos θ

θ2

]

θkǫkji +

[

θ − sin θ

θ3

]

(θjθi − θ2δji)

}

, (3.18b)

where Λ−1 = exp(−i~η · ~K), η ≡
√

~η 2 and θ ≡
√

~θ 2 . Notice that an expansion in powers

of η and θ yields only even powers, and therefore Dµηi and Dµθi are analytic in ~η and ~θ.

These covariant derivatives are the main building blocks one should use to write down the

low-energy effective action. At the 2-derivative level this is:

Ltype II =
1

2

{

M2
1 (D0~η )

2 −M2
2 (Diηj)

2 −M2
3 (Diη

i)2 (3.19)

+M2
4 Diθ

i +M2
5 (D0

~θ )2 −M2
6 (Diθj)

2 −M2
7 (Diθ

i)2 −M2
8 DiθjD

jθi

+2M2
9 D0θiD0η

i − 2M2
10DiθjD

iηj − 2M2
11Diθ

iDjη
j − 2M2

12DiθjD
jηi

}

.

We could have also derived this action in the same way as we did above for type-I

framids, that is, by introducing the Goldstones fields directly at the level of a specific order

parameter (which transforms linearly under all the symmetries),

Aa
µ(x) =

(

ei~η(x)·
~K
)

µ
α
(

ei
~θ(x)·~S

)a
b 〈Ab

α(x)〉 , 〈Ab
α(x)〉 = δbα , (3.20)

and then writing down the most general action for that order parameter. Already at the

two-derivative level there are many invariants, and in this language it less straightforward

to know when all possibilities have been exhausted. This is because one in principle can

have several factors of undifferentiated Aa
µ’s, but upon contracting the indices there can be

dramatic simplifications. For instance, of the two partial contractions

Bab(x) ≡ Aa
µA

µ b , Cµν(x) ≡ Aa
µA

a
ν , (3.21)
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the first is trivial, Bab = δab, while the second is not (it is the projector onto the 3D space

locally spanned by the Aa
µ’s.) In the Goldstone language instead, the Lagrangian terms

cannot be “dressed” by undifferentiated Goldstones, because the Goldstone fields do not

transform covariantly. On the other hand, the equivalence of certain terms up to total

derivatives can be obvious in the order parameter language, like for instance for

∂µA
a
ν ∂

νAµa ↔ (∂µAa
µ)

2 , (3.22)

while being totally obscure in terms of the Goldstones (more below). Notice finally that

here too there is an enhanced symmetry case. If we restrict the Lagrangian to terms in

which derivatives are never contracted with fields,

Lenhanced =
1

2

[

M̃2
1 ∂µA

a
α ∂

µAαa + M̃2
2 A

αaAβ a ∂µA
b
α ∂

µAb
β

]

, (3.23)

we are guaranteed to get Goldstone dynamics that respect a non-linearly realized internal

Lorentz symmetry (α, β indices) as a well a linearly realized spacetime Poincaré symmetry

(µ indices). In this case, spacetime symmetries are unbroken and the spontaneous breaking

pattern for internal symmetries is

SO(3, 1)× SO(3) → SO(3) . (3.24)

Upon imaginary redefinitions of the ~η Goldstone fields, our action is formally equivalent to

the chiral Lagrangian for the coset

SU(2)× SU(2)× SU(2) / SU(2) . (3.25)

The effective Lagrangian for type I-framids — which features no internal SO(3) and

no broken rotations — can be obtained from the action (3.19) simply by setting to zero

all the rotation Goldstones θj . The reason is purely formal, and we don’t see any physical

reason why that should be the case [4]: postulating that rotations are broken and then

ignoring the corresponding Goldstones is not physically equivalent to saying that rotations

are unbroken. However, since all our results follow from the coset parametrization (3.15),

it is clear that setting θj = 0 there is equivalent to never introducing the internal SO(3)

and the associated spontaneous breaking in the first place. In other words, eq. (3.15) with

θj = 0 is the correct coset parametrization for type-I framids. We thus get

Ltype I =
1

2

{

M2
1 (D0~η )

2 −M2
2 DiηjD

iηj −M2
3 (Diη

i)2
}

. (3.26)

The careful reader may have noticed that this Lagrangian does not include a DiηjD
jηi

term. This is because such a contraction is equivalent to (Diη
i)2 up to an integration by

parts, even though this cannot be immediately deduced just by looking at the covariant

derivatives (3.18a). It is easier to prove this by working at the level of the order parameter

Aµ. Gapless fluctuations around its time-like vev can be parametrized using a boost matrix

Λ = ei~η·
~K , as in eq. (3.2). Then, starting from (3.17) it is easy to show that derivatives of

the order parameter are related to the covariant derivative Dµη
i introduced above by

Dµη
i = (Λ−1)µ

ν(Λ−1)iρ ∂νAρ. (3.27)
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Using the properties of Lorentz matrices as well as the fact that AµA
µ = −1, it follows

from (3.27) that

(Diη
i)2 = (∂µA

µ)2 , DiηjD
jηi = ∂µAν ∂

νAµ , (3.28)

and this proves that these two terms are equivalent up to integrations by parts.7 (Analogous

considerations apply to the possible single covariant derivative term Diη
i, which turns out

to be a total derivative: Diη
i = ∂µA

µ.) Similarly, it is easy to show that

(D0~η )
2 = (Aρ∂ρAµ)

2 , (Diηj)
2 − (D0~η )

2 = (∂µAν)
2 , (3.29)

which proves that the couplings M2
i that appear in the Lagrangian (3.26) are indeed the

exact same couplings that appeared in eq. (3.3).

4 Why don’t we see framids in nature?

Framids do not seem to be realized in nature. According to the classification of section 2,

they correspond to legitimate spontanuous breaking patterns of Lorentz symmetry, with

framids of type-I realizing the simplest symmetry breaking pattern of all. Moreover, the

low-energy EFT characterizing the dynamics of their Goldstone excitations seem to make

perfect sense, with no sign of instabilities nor of any other obvious pathologies. Given

nature’s generosity when it comes to condensed matter systems, why doesn’t it give us

framids?

4.1 Where is the stuff

The first, intuitive guess is that condensed matter systems are necessarily made up of

“stuff”, and there must exist collective excitations corresponding to locally displacing this

stuff. In EFT terms, this means that there must exist long-distance fields that serve the

purpose of local position degrees of freedom, like the comoving coordinates φa(x) of solids

and fluids (see section 2). On the other hand, the framid’s Goldstones ~η(x) only parametrize

the local velocity of the medium, and are thus unsuited to describe the excitations of “stuff”.

However appealing, this logic blatantly fails already for superfluids: there, despite

there being some stuff, quantum effects in the form of Bose statistics and Bose-Einstein

condensation are such that standard position degrees of freedom are absent from the low-

energy EFT description. Rather, the low-energy excitations are parameterized by the

fluctuations of a single (scalar) field ψ taking an expectation value in time, 〈ψ〉 = µt (see

section 2). So, the only positional degrees of freedom we can talk about for a superfluid

concern temporal “positions”. Clearly, the “stuff” intuition is not of much help when it

comes to condensed matter systems with important quantum effects.

A more refined argument is attempted in the following subsection. It does not work

either, but looking at the reasons of its failure allows us to draw some interesting and

general conclusions on non-relativistic EFTs.

7Incidentally, this is no longer true on a curved space-time, which is why Einstein-aether theories of

gravity admit four independent parameters at the two-derivative level [15].
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4.2 Small velocities. . .

All condensed matter systems that we create in the lab are extremely non-relativistic, in

the sense that their stresses, pressures, and internal energy densities are much smaller

than their mass densities (in natural units), the propagation speeds of their excitations

are extremely sub-luminal, etc. From the microscopic viewpoint, we understand why this

is the case: condensed matter in the lab is made up of atoms, whose typical binding and

interaction energies are much smaller than the atomic mass.8 Putting together atoms at

low temperatures, we can only create non-relativistic materials.

However, from the low-energy EFT viewpoint, the property of being highly non-

relativistic should be technically natural : an unconventional physicist completely ignorant

about the constituents of matter but well versed in EFT techniques, should not need to

invoke the microscopic argument we just gave to explain why it is perfectly “natural” to

have non-relativistic substances. Given how many such substances there are in nature, if

the naturalness argument were to fail here, we see no reason why we should keep applying

it to particle physics. So, one possibility for why we do not see framids in the lab would

be that it is not technically natural for them to have small sound speeds.

Let us show that this argument does not work, by looking at type-I framids for sim-

plicity. As we remarked, their low-energy effective action is completely determined by

three parameters only: the transverse and longitudinal Goldstone speeds cT and cL, and

the overall scale M1. As pointed out in section 3.1, the interactions become particularly

simple in the limit of small propagation speeds — the only cubic and quartic interactions

that survive are shown in eq. (3.11). We see that the strength of these interactions is of

O(1) in units of M1, which might suggest that the propagation speeds receive O(1) loop

corrections. However, one should take into account that the UV cut-off of the loop integrals

also depends on the propagation speeds — see eq. (3.12). Let us then consider the action

for type-I framids in the non-relativistic limit,

S ≃M2
1

∫

d3xdt

{

1

2
[~̇η 2 − c2L (~∂ · ~ηL)2 − c2T ∂iη

j
T∂iη

j
T ]− ~η · ∂η · ~̇η + 1

2
(~η · ∂η)2

}

, (4.1)

where ~ηL and ~ηT are once again the longitudinal and transverse parts of ~η. Radiative

corrections to the propagation speeds can be derived by considering the 1PI vertex with two

external legs, Γ(2)(E,~k), and isolating the part proportional to the square of the external

3-momentum ~k. At one-loop, Γ(2) receives contributions from diagrams with two different

topologies. If we assume for simplicity that the two propagation speeds are comparable,

i.e. cL ∼ cT ≡ cs (the “speed of sound”), then we can use the strong coupling scales

Estrong = cs pstrong ∼ c
5/2
s M1 derived in section 3.1 to estimate the correction to cs:

∼
∫

dEd3p (M2
1Ep)

2

[

1

M2
1 (E

2 − c2sp
2)

]2

⊃
p3strong
Estrong

k2 ∼M2
1 c

2
sk

2 (4.2)

8Ultimately, this is due to the weakness of electromagnetic interactions, α ≪ 1, and to the smallness of

the electron-to-nucleon mass ratio, me/mp ≪ 1. For ordinary solids, p/ρ is roughly controlled by the ratio

between atomic binding energy and mass, which is of order α2me/mp ∼ 10−7.
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∼
∫

dEd3p(M2
1 p

2)
1

M2
1 (E

2 − c2sp
2)

⊃
p3strong
Estrong

k2 ∼M2
1 c

2
sk

2 , (4.3)

where solid lines can stand for both longitudinal and transverse modes, and we pushed

the UV cutoffs for loop integrals all the way to the energy and momentum strong-coupling

scales. These results show that the tree-level propagation speeds receive at most an order-

one relative correction,

∆c2s ∼ c2s , (4.4)

which means in fact that framids with a small cs are technically natural.

Interestingly, this result is not a peculiarity of the system at hand, but simply follows

from dimensional analysis and perturbativity: small sound speeds are always technically

natural. The more general argument goes as follows. In derivatively coupled theories, the

dimensionless loop expansion parameter controlling the effects of quantum fluctuations at

a momentum scale k is k/Λ, where Λ is the maximal momentum scale at which we can

make sense of our effective field theory. (Above, we were calling this pstrong; for notational

simplicity we will now switch to Λ). Working in units where velocity is dimensionful, by

dimensional analysis we expect quantum corrections from scale k to give

∆c2s = c2sP (k/Λ) (4.5)

where P is a series with coefficients that — if we have properly identified Λ — are at

most O(1). Perturbativity, i.e. k < Λ, then implies ∆c2s . c2s, as in eq. (4.4). Notice

indeed that in deriving eq. (4.4) it was essential to use the explicit value of the cut-off

Λ, which vanishes like c
3/2
s when cs → 0 with all other Lagrangian parameters held fixed.

One may object to the schematic result in eq. (4.5), by noticing there may also appear

positive powers of c′/cs, where c
′ ≫ cs is another velocity. However one is easily convinced

that that is not possible, provided the strong coupling scale Λ has been properly identified.

The reason is that, with all other terms in the Lagrangian kept fixed, 1/cs controls the

strength of the interaction (the strong-coupling scale Λ decreases if cs does): the presence

of positive powers of c′/cs in eq. (4.5), would allow to increase the value of cs substantially,

and thus make the interaction substantially weaker, while remaining in the perturbative

regime k/Λ < 1. But that is a contradiction.

The above argument can be made very concrete by considering for instance the most

general Lagrangian for a non-relativistic scalar endowed with a shift symmetry9

S =

∫

d3xdt

{

1

2

(

φ̇2 − c2s(~∇φ)2
)

+M4F
( φ̇

M2
,
∇φ
M2

,
∂t
M
,
∇
M

)

}

(4.6)

where F is a generalized polynomial, not necessarily with O(1) coefficients: the scale M is

just a dimensionful unit.

9Our framid’s Goldstones, like pions, do not enjoy a shift symmetry. For simplicity we restrict here to

shift-symmetric Lagrangians, but extending our arguments to more general cases is straightforward.
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Now, we can get rid of cs from the quadratic action by defining a rescaled time coor-

dinate t′ = cst. If at the same time we re-normalize the field canonically,
√
csφ = φc, we

simply obtain

S =

∫

d3xdt′
{

1

2

(

φ′c
2 − (~∇φc)2

)

+
M4

cs
F
(√

cs
φ′

M2
,

1√
cs

∇φ
M2

, cs
∂t′

M
,
∇
M

)

}

, (4.7)

where ( )′ ≡ ∂t′ . The numerical coefficients within F and the dependence on cs will now

determine for each interaction term a corresponding energy/momentum strong coupling

scale, ω′ ∼ k ∼ Λ, which we do not need to specify. Regardless of the details of these

interactions, within the perturbative regime, by definition, the kinetic term will receive at

most O(1) corrections. When translating this result back to the original coordinates (x, t),

we get eq. (4.5).

Eq. (4.5) just relies on dimensional analysis, that is the selection rules for independent

dilations of time and space. The usual result on naturalness, or lack thereof, for a relativistic

scalar’s mass can be stated in the same language. Assuming the non-linear symmetry

protecting the mass term is broken by some coupling whose loop counting parameter at

the scale Λ is α, then we expect

∆m2 = Λ2(c1α+ c2α
2 + . . . ) (4.8)

compatibly with dimensional analysis and shift symmetry selection rules.

The general argument below eq. (4.5) implies that a small speed is natural even when

there is a large hierarchy between two propagation speeds in the same system, c− ≪ c+.
10

One quick way to see that is to rescale time using the smaller speed, i.e. t′ = c−t. Notice

that, in these units, the propagation speed of the fast modes formally becomes c′+ =

c+/c− ≫ 1. The previous argument still applies to loop diagrams that involve only the

propagator of the slow field. In other words, diagrams that only involve slow fields will

still give O(1) contributions to the rescaled action, which means that both propagation

speeds will receive O(1) relative corrections, which don’t destabilize the hierarchy. For

instance c+ will receive an O(1) correction via the renormalization of the coefficient of φ̇2+.

Loop diagrams that also involve the fast field will instead give corrections that are even

smaller, being suppressed by at least a factor of (c−/c+)
2 for each fast propagator. In fact,

after rescaling time and canonically normalizing the fields, the propagator of the fast field

evaluated at the strong coupling scale is

1

E′2 − (c+/c−)2 p2

∣

∣

∣

∣

E′∼p∼Λ

∼
(

c−
c+

)2 1

Λ2
. (4.9)

This should be compared with the propagator of the slow field, which instead scales like

1/Λ2 without any additional suppressions.

10This had better be a technically natural situation, for the excitations of condensed matter systems in

the real world are always coupled to the electromagnetic field at some order in perturbation theory (and to

the gravitational one, at some even higher order).
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The argument above can be easily extended to generic systems with an arbitrary num-

ber of fields with different propagation speeds. After rescaling time using the smallest prop-

agation speed and canonically normalizing all fields, one can determine the strong coupling

scale Λ by looking at the smallest scale that suppresses irrelevant operators. The largest

loop corrections to the rescaled action will then come from diagrams that only involve

interactions suppressed by Λ and propagators of the slowest modes, but such corrections

will be at most of O(1): hierarchies in propagation speeds are always technically natural.

4.3 . . . but large stresses

Even though it is perfectly natural for framids to have a small speed of sound, there is

another sense in which they are, after all, intrinsically relativistic systems, and it has to

do with the form of their stress-energy tensor. For type-I framids, we can calculate the

stress-energy tensor as usual by varying the action (3.3) w.r.t. an external gravitational

field. The calculations are somewhat involved, because one needs to take into account

the AµAνgµν = −1 constraint. The reader can find the details in appendix A, and the

final result in eq. (A.12). Note that one could derive the same result from the Gold-

stone Lagrangian (3.26) (or (3.19) in the case of type-II framids), by modifying the coset

construction to include couplings with gravity, as described for instance in [33]. Such a

procedure is unambiguous and perfectly equivalent to the one we have adopted here.

Even without looking at the explicit form of Tµν , it is clear that since each Lagrangian

term in (3.3) involves two derivatives, varying w.r.t an external gravitational field yields a

stress-energy tensor where each term involves two derivatives, as is indeed the case for the

expression (A.12). Then, the only non-vanishing contribution to the stress-energy tensor

at equilibrium is that coming from the cosmological constant,

〈Tµν〉 = Λ ηµν , (4.10)

simply because all other terms contain two derivatives acting on some Aµ and therefore

vanish on the ground state 〈Aµ〉 = δµ0 . Hence, we see that type-I framids at equilibrium

feature a highly relativistic pressure,

p = −ρ = Λ . (4.11)

The same argument and conclusion apply to type-II framids as well. The relativistic nature

of Tµν makes it hard to imagine how framids could be assembled by handling atoms in

a laboratory setting. However, it leaves open the possibility that framids could arise in

intrinsically more relativistic situations, like, for instance, unconventional phases of QCD.

Notice that it is actually quite remarkable that the background value of Tµν for framids

is Lorentz invariant despite Lorentz symmetry’s being spontaneously broken. The same

“accident” happens for the ghost condensate [34], but only for a special value of the con-

densate. Here it is unavoidable, and we believe it deserves further study: apparently there

is no selection rule forbidding Lorentz-violating entries in 〈Tµν〉, yet these vanish. Could

a technically similar mechanism be at work in keeping the cosmological constant small in

the real world?
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4.4 Thermodynamics, or lack thereof

The fact that the pressure and energy density of framids are those of a cosmological con-

stant is deeply related to the peculiar thermodynamics of these systems. To begin with,

having thermodynamic degrees of freedom at all seems a fundamental property of ordinary

condensed matter systems: usually we are able to slightly change their state by exert-

ing pressure or strain on them, by changing their temperature or chemical potential, etc.

Thermodynamic degrees of freedom come in conjugated pairs, like for instance pressure and

volume (p, V ), temperature and entropy (T, S), chemical potential and charge (µ,Q), etc.

The intensive variable in the pair (p, T, µ, . . . ) can be viewed as a thermodynamic control

parameter. The extensive variables V, S,Q, . . . can also be traded for the corresponding

densities: 1 for V , s = S/V , n = Q/V , etc.

In our SSB/EFT language, we can keep track of thermodynamic variables for ordinary

condensed matter systems in two equivalent ways:

1. At the level of the symmetry breaking pattern. When the unbroken translations P̄µ

are non-trivial linear combinations of the Poincarè generators and of internal symme-

tries, thermodynamic control parameters do appear in their definitions. For instance,

for superfluids, the unbroken time translation operator P̄ 0 = P 0 − µQ involves an

arbitrary dimensionful parameter µ that can be interpreted as the chemical poten-

tial.11

2. At the level of the effective theory. Thermodynamic control parameters describe the

“moduli space” of solutions satisfying space-time homogeneity. For instance (see

case 2, section 2.1) a superfluid field theory has the family of solutions ψ(x) = µt,

parametrized by the chemical potential µ. A change in chemical potential corresponds

to exciting a suitable configuration π(x) = δµ · t of the Goldstone boson π describing

small fluctuations of ψ around its vev, ψ(x) = µt+π(x) [7]. Analogous considerations

can be carried out for solids and liquids as well.

Notice that property 2 above is not the usual statement that constant Goldstone field

configurations can make one move from a ground state to an equivalent one, related to

the first by a symmetry transformation. Rather, here there is a continuum of physically

inequivalent solutions — for instance, they have different energy density and pressure —

and the Goldstone configurations that interpolate between them have nontrivial space-time

dependence. Properties 1 and 2 are equivalent, in that one can prove in broad generality

that the moment one has an unbroken combination of a translation operator and of an

internal charge, for instance P̄ 0 = P 0 − µQ, one can explicitly construct a Goldstone

coherent state that shifts the value of µ, thus making P̄ 0 = P 0 − (µ + δµ)Q the new

unbroken combination [7]. This property also connects to the scaling of the scattering

11In the classification of section 2 all such parameters have been omitted to simplify the notation. For

ordinary fluids we have P̄ i = P i − s1/3Qi, where s is the entropy density [24], while for solids we have to

allow for equilibrium shear deformations as well, P̄ i = P i − Ai
aQ

a, where A is a matrix related to the

strain tensor [35].
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amplitudes with energy for such systems: π = δµt is a solution of the equations of motion

provided that the Langrangian only depends on ∂µπ, in which case amplitudes scale like E4.

It is intuitive that thermodynamic control parameters should be associated with a

“moduli space” of inequivalent homogeneous and isotropic solutions. The inequivalence of

the solutions corresponds to the inequivalence of the boundary conditions, and the latter

can be associated with the action of an external control parameter. The inequivalence

of the solutions, in particular their coordinate dependence, also implies a redefinition of

the unbroken translation generators, hence the dependence of the latter on the control

parameters themselves. However we have no general theory for the above. It is just a fact

that holds for ordinary condensed matter systems — all the systems not involving extra

space-time symetries in section 2, apart from framids.

It is also evident that the presence of thermodynamic control parameters is directly

associated with the non-triviality of the energy momentum tensor (Tµν 6∝ ηµν ) over ho-

mogenous configurations. For instance, by considering a general superfluid field theory one

can easily show that over homogeneous configurations one has

p+ ρ = nµ (4.12)

where n = J0 is the charge density. The above equation is nothing but the usual thermo-

dynamic relation (with s and T entropy density and temperature respectively)

p+ ρ = sT + nµ (4.13)

evaluated at zero temperature. Moreover eq. (4.13) does hold in the field theory describing

a relativistic fluid [24]. While for general solids one can easily prove

pij + ρδij ≡ Tij + ρδij = −Ja
i A

a
j (4.14)

where J i
a and A

i
a are respectively the current density and the conjugated control parameter

(associated with the strain).

Let us now focus on framids. Neither property 1 or 2 holds for them. As for prop-

erty 1, it is interesting to note that framids are the only condensed matter systems in

our classification that do not contain continuous adjustable parameters in their symmetry

breaking pattern. Framids of type I do not possess additional internal symmetries at all,

and thus their unbroken translation and rotation generators coincide with the original,

Poincaré ones. Framids of type II possess an internal SO(3) symmetry that mixes with

spatial rotations to generate an unbroken diagonal combination J̄i = Ji + Q̃i. However,

due to the non-Abelian nature of these groups, it is easy to convince oneself that such an

unbroken combination does not allow any adjustable parameter in it.

As for property 2, one can check that framids do not possess a moduli space of in-

equivalent homogeneous and isotropic solutions. That is simply because the Lagrangian

does not depend on just the Goldstone derivatives, but also on the Goldstones themselves.

This is associated with the absence of abelian generators mixing with translations, that is

to say, with the fact that Poincaré translations are unbroken.
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To be more explicit, one can check if considering non-trivial configurations Aµ(x),

could give rise to a homogeneous, stationary energy momentum tensor of the form

Tµν = diag(ρ, p, p, p) , (4.15)

such as what we expect for an isotropic medium at equilibrium. By careful inspection of

the formula for Tµν given in the appendix, (A.12), one can show that this is in fact not

possible. The part of Tµν proportional to c2 can be put in the form (4.15) by choosing

∂µA
µ = const. (e.g., Ai = xi, A0 =

√
1 + xixi). In particular, this part gives again a

contribution analogous to a cosmological constant, with p = −ρ. However, the same choice

for Aµ makes the other terms inhomogeneous.

We thus conclude that framids do not seem to possess thermodynamical properties in

any standard sense, or at least none that is visible at the level of the symmetry breaking

pattern or of the low-energy EFT for the corresponding Goldstones: they seem to pos-

sess only one equilibrium state, and not the continuum associated with more ordinary

thermodynamical systems.12

5 A first look at extra-ordinary stuff

In section 2 we left open the possibility that, for certain condensed matter systems, the

residual homogeneity and isotropy featured at low energies could be due to unbroken com-

binations of Poincaré generators and other spacetime symmetries, that is, symmetries that

do not commute with the Poincaré group itself. These additional spacetime symmetries are

the defining feature of what we will call extra-ordinary (as opposed to ordinary) condensed

matter systems. Extending our classification to all such systems is too daunting a task

to be addressed here in full generality.13 Instead, we will limit ourselves to the study of

those spacetime symmetries that are needed to complete the classification of section 2. We

refer, in particular, to those symmetry breaking patterns, cases 3 and 5, that cannot be

realized by supplementing the Poincaré group with internal symmetries only. For future

reference, let’s remind the reader that case 3 corresponds to having unbroken translations

and rotations of the form

P̄ 0 = P 0 , P̄ i = P i + β Qi , J̄ = J i , (case 3), (5.1)

where the Qi’s are the extra generators we are after. Likewise, for case 5:

P̄ 0 = P 0 + αQ , P̄ i = P i + β Qi , J̄ = J i , (case 5). (5.2)

Notice that, compared to our analysis in section 2, we have now explicitly introduced the

control parameters α and β. In light of our discussion on the thermodynamics of framids,

12The framid equilibrium state can be boosted of course, thus formally yielding a continuum of equilib-

rium states, but these all have the same physical properties, being related to one another by symmetry

transformations.
13For instance, one could embed 4D Poincaré into the isometry groups of higher dimensional spaces, and

start playing with branes shaped in such a way as to preserve the desired unbroken symmetries.
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this suggests that the above scenarios will be endowed with non-trivial thermodynamic

properties. Nevertheless, we will discover other reasons why these two cases are pathological

and cannot describe condensed matter systems that are physically realized in Nature. In

particular, we will find that, at least in their simplest realizations, these scenarios are either

plagued by instabilities, or have non-homogeneous stress-energy tensors. We should stress

however that extra-ordinary systems can appear in any of the eight scenarios discussed in

section 2, and we know for certain that in some of these cases they correspond to physically

sensible systems. We will elaborate further on this point in the final section of this paper,

but we leave for future work a more thorough analysis of extra-ordinary systems.

5.1 Minimal symmetry realization

The unbroken generators P̄ i in eqs. (5.1) and (5.2) have the correct transformation prop-

erties under rotations only if the Qi’s transform like 3-vectors. Then, for consistency these

generators must belong to a multiplet that transforms according to some representation of

the Lorentz group. The most economical possibility is to assume that the generators Q

and Qi make up a Lorentz 4-vector Qµ of generators that satisfy the following algebra:

[Qµ, Qν ] = [Qµ, Pν ] = 0 , [Jαβ , Qγ ] = i(ηγαQβ − ηγβQα) . (5.3)

Then, the scenario 5 in which all original translations are broken can be easily realized

by a vector field Bµ that shifts under the action of the Qµ’s, i.e. Bµ → Bµ + cµ with cµ
constant, and acquires an expectation value

〈Bµ〉 = αt δ0µ + βxi δ
i
µ . (5.4)

Notice that because of the shift symmetry, the Lagrangian will only depend on derivatives

of Bµ, and therefore (5.4) will be a solution for all real values of α and β, as befits their

interpretation as thermodynamic parameters. The scenario 3 in which both P0 and Q0

remain unbroken is considerably more complicated to implement at the level of fields. It

can be realized for instance via a reducible representation of Lorentz, made up of a vector

Cµ and a scalar ϕ that transform under Qµ as

ϕ → ϕ+ 2bµCµ (5.5a)

Cµ → Cµ + bν(∂µCν + ∂νCµ)−
1

2
bν∂ν∂µϕ , (5.5b)

and that acquire the expectation values

〈ϕ〉 = β~x 2, 〈Cµ〉 = βxi δ
i
µ . (5.6)

Writing down the most general low-energy effective action for these order parameters

can be rather cumbersome, especially in the second case where it is not obvious how to

systematically classify invariants under the symmetry transformations (5.5).14 For this

14Notice that the transformations (5.5) act like a translation on the combination ∂µCν + ∂νCµ − ∂µ∂νϕ,

which readers familiar with the Stückelberg formulation of massive gravity will easily recognize [36]. As

such, any Lagrangian that is built out of this combination and is invariant under translations will also

be invariant under the transformations generated by the Qµ’s. However, we don’t have a proof that this

combination is the only one that is allowed to lowest order in the derivative expansion.
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reason, we find it more convenient to study these scenarios using the coset construction

reviewed in section 3.3. Let us start by considering scenario 5, which from the coset

viewpoint is more general. As we will see, scenario 3 can be recovered as a special case.

The starting point is the coset parametrization, which we choose to be

Ω = eix
µP̄µeiξ

µ(x)Qµeiη
i(x)Ki , (5.7)

where ξµ(x) and ηi(x) are the Goldstone fields. Using the Poincaré algebra together with

the commutation relations (5.3), we can calculate the Maurer-Cartan form Ω−1∂µΩ and

cast it in the form

Ω−1∂µΩ = ieµ
ν
(

P̄ν +Dνξ
ρQρ +Dνη

iKi +Ai
ν J̄i

)

. (5.8)

Notice however that these systems can exhibit the inverse Higgs mechanism, which would

make the boost Goldstones ηi redundant. This can be easily deduced by using the same

criterion that we have used throughout the paper, i.e. by noticing that the commutators

between unbroken translations and boosts contain the broken generators Qµ,

[Ki, P̄0] = i[P̄i + (α− β)Qi] (5.9)

[Ki, P̄j ] = iδij [P̄0 + (β − α)Q0] . (5.10)

Within the coset construction, these redundant Goldstone modes can be eliminated by

imposing the inverse-Higgs constraints, i.e. by setting to zero certain covariant derivatives

and solving for the redundant Goldstones in terms of all the other ones. In our case, the

most general inverse Higgs constraint we can impose to lowest order in derivatives is [12]

c1Diξ
0 + c2D0ξ

i = 0. (5.11)

where c1 and c2 are arbitrary coefficients, not necessarily constant, but invariant under

the symmetries (cf. [14]). Notice that these conditions preserve all the symmetries because

Diξ
0 and D0ξ

i transform covariantly.

Different choices for the values of c1 and c2 yield physically equivalent effective La-

grangians for the remaining Goldstones. This can be understood by recalling that for

certain symmetry breaking patterns, the inverse-Higgs constraints can be interpreted as

gauge-fixing conditions for certain gauge-redundancies associated with the Goldstone pa-

rameterization of the order parameter’s fluctuations [11, 14]. This is clearly the case for

the Bµ implementation of our symmetry pattern, eq. (5.4): Bµ only has four independent

components, so their parametrization in terms of seven Goldstone fields must be redun-

dant. Then, different values of c1 and c2 correspond to different gauge choices for the

same physical system — all of which remove the redundant Goldstones in a way that is

consistent with the global symmetries.

Without loss of generality, we can then set D0ξ
i = 0, i.e. c1 = 0.15 Using the fact that

the covariant derivatives of the ξµ’s read

Dµξ
ν = (α− β)[δiµδ

ν
i − (Λ−1)µ

iΛi
µ] + (Λ−1)µ

βΛγ
ν∂βξ

γ , (5.12)

15As a check, we performed the analysis below for generic values of c1 and c2, obtaining the same results

as below. For simplicity, we will not report that general analysis here.
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where Λµ
ν is once again a boost with rapidity ~η(x) and Λ0

i = Λi
0 = ηi+O(~η 3), we obtain

the following relation to linear order in the fields:

ηi ≃ ξ̇i

β − α
. (5.13)

The covariant derivatives Dνη
i ∼ ∂ν ξ̇

i are then of higher order in the derivative expansion

and become negligible at low energies. Following the procedure outlined in section 3.3,

the most general low-energy Lagrangian that is invariant under all the symmetries can be

obtained by including all possible contractions of the covariant derivatives D0ξ
0, Diξ

0 and

Diξ
j that are manifestly invariant under rotations. The only terms that contribute to the

quadratic Lagrangian for the Goldstones are

L ≃ λ1D0ξ
0 + λ2(D0ξ

0)2 + λ3Diξ
i + λ4DiξjD

iξj + λ5DiξjD
jξi + λ6(Diξ

0)2 , (5.14)

where, after plugging the result (5.13) in the covariant derivatives (5.12) and performing

the rescaling ξµ → (β − α)ξµ, we have

D0ξ
0 = ξ̇0 − ξ̇j∂jξ

0 +O(ξ3), (5.15a)

Djξ
0 = ∂jξ

0 + ξ̇j + ξ̇i∂iξj + ∂jξ
iξ̇i +O(ξ3), (5.15b)

Djξ
i = ∂jξ

i + ξ̇i∂jξ
0 +O(ξ3) . (5.15c)

It is now easy to see that the kinetic term for ξi and the gradient term for ξ0 both

come from the last term in the Lagrangian (5.14). Therefore they always have the same

sign, which means that if require that the ξi fields are not ghost-like, we inevitably end up

with gradient instabilities for the ξ0 field, and viceversa. We conclude that this minimal

realization of scenario 5 is inconsistent.16

A similar conclusion applies to scenario 3 as well. Formally, we can derive the corre-

sponding effective Lagrangian for this scenario by setting α = ξ0 = 0 and neglecting all the

covariant derivatives of the ξ0 Goldstone, because in this case the corresponding charge

Q0 is unbroken. The covariant derivative Djξ
i is the only “building block” available to

lowest order in derivatives, because the D0ξ
i have been set to zero by the inverse Higgs

constraints. A quick glance at eq. (5.15c) is then sufficient to reveal the problem: it is

impossible to write a kinetic term for the ξi fields at lowest order in derivatives, because

Djξ
i does not contain a quadratic piece of the form ξ̇j ξ̇

i. The dynamics is then controlled

by higher time-derivative terms such as (D0η
i)2 ∼ (ξ̈i) which inevitably lead to ghost

instabilities. Thus, this minimal approach to scenario 3 is also inconsistent.

It is worth pointing out that, if it weren’t for the instabilities, the two models above

could correspond to fairly standard condensed matter systems: they have a stress-energy

tensor that (1) is homogeneous on the background, (2) has ρ+ p 6= 0, and (3) depends on

some thermodynamical control parameters (α and β) that can be varied continuously by

16In principle one may wonder whether the mixing terms could affect this conclusion. However, a straight-

forward Hamiltonian analysis is sufficient to establish once and for all that such terms are not able to restore

positivity.
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exciting suitable configurations of the Goldstone fields. These properties can be deduced

more easily using the order parameters. For instance, the low-energy effective action for the

order parameter Bµ of case 5 contains all Lorentz invariant combinations of first derivatives

∂µBν , whose expectation value on the background (5.4) is constant and breaks Lorentz,

i.e. 〈∂µBν〉 = αδ0µδ
0
ν + βδiµδ

i
ν . This means that the stress-energy tensor is homogeneous on

the background, and that in general ρ and p are different. Finally, it is easy to see that a

Goldstone configuration such as ξµ = δα tδ0µ+δβ xiδ
i
µ effectively corresponds to a change in

the parameters α and β, which therefore can be varied continuously. Similar considerations

apply to the stress-energy tensor of the realization (5.6) of case 3.

5.2 Minimal particle-content realization: the galileids

We will now show that the instabilities encountered above can be circumvented by adding

a single generator to the algebra, but the price to pay is that the expectation value of

the stress energy tensor is no longer homogeneous on the background. More precisely,

we will now modify the algebra (5.3) by adding a generator D that satisfies the following

commutation relations:

[D,Qµ] = [D,Pµ] = [D, Jµν ] = 0 , [Qµ, Pν ] = 2iηµν D . (5.16)

The algebra above defines the symmetries of galileon theories [5]. These involve a

scalar field φ enjoying a generalized shift symmetry of the form

φ(x) → φ(x) + c+ bµx
µ , (5.17)

where c and bµ are constant. To make contact with the generators above, the shift by c

is generated by D, the shift by bµx
µ is generated by Qµ. One can check straightforwardly

that the algebra is precisely the one in eq. (5.16).

Interestingly, the galileon symmetry can be seen as a contraction of the conformal

group [37], the generators Qµ being the “contracted version” of special conformal trans-

formations Bµ. For our purposes, this contraction is crucial to define effective translations

that commute with each other. In fact, if we used directly the generators Bµ — and the en-

tire conformal symmetry — to define some unbroken translations P̄µ = Pµ+Bµ, we would

get that [P̄µ, P̄ ν ] = −4iJµν 6= 0 because of the commutator [Bµ, Pν ] = 2i(ηµνD − Jµν),.

We note also that the present realization of the galileon group, as a non trivial extension of

Poincaré, does not contradict the Coleman-Mandula theorem [38], because the additional

symmetry generators are non-linearly realized.

Let us start by considering how case 3 can be implemented in the context of the

galileon algebra. Interestingly, it is possible to show that the algebra (5.16) is actually

the only possible extension of the algebra (5.3) that is compatible with case 3 — see

appendix B for more details. As to the SSB pattern that we are after, in order to preserve

‘unprocessed’ rotations and time-translations according to (5.1), we need to consider a

background solution for φ(x) of the form

〈φ(x)〉 = f(|~x|2) . (5.18)
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Then, in order to preserve a linear combination of P i and Qi, we need

〈φ(x)〉 = 1

2
β|~x|2 , (5.19)

with constant β, in which case the unbroken combination is P̄ i = P i + β Qi: a translation

can be compensated by a galilean shift, thus yielding a new form of homogeneity.

Is this a solution of the field equations? Because of the symmetries, the field equations

involve at least two derivatives on each φ. This means that a quadratic configuration of

the form above, once plugged into the field equations will yield an algebraic equation for β,

which is in fact a polynomial of at most third order [5]. For generic (if not for all) choices of

the Lagrangian coefficients such an equation will have a real solution, which then identifies

a background with the right symmetries.

We call this system a type-I galileid. Clearly, since the original Lagrangian involves a

single scalar degree of freedom, the system features a single Goldstone excitation π(x),

φ(x) =
1

2
β|~x|2 + π(x) , (5.20)

which can be thought of as that associated with the shift generator D. This is consistent

with the existence of six inverse-Higgs constraints, which can eliminate the Goldstones of

Ki and of Qi in favor of π and its derivatives, as allowed by the commutation relations

[P̄ 0,Ki] = P̄ i − βQi , [Qj , P̄ i] = 2iD δij . (5.21)

The generalization to case 5 is straightforward. The configuration

φ(x) =
1

2

(

β|~x|2 − αt2
)

(5.22)

preserves

P̄ 0 = P 0 + αQ0 , P̄ i = P i + βQi , J̄ = J i , (5.23)

which have the right algebra for space-time translations and spatial rotations, thus realizing

the desired symmetry breaking pattern. Once plugged into the galileon’s field equation,

the configuration above yields a single polynomial equation for two variables — α and β.

So, at least in some finite range of real values for β, we expect a continuum of real solutions

with α = α(β). Like for case 3 above, there is here a single Goldstone excitation,

φ(x) =
1

2

(

β|~x|2 − α(β)t2
)

+ π(x) , (5.24)

in agreement with the existence of seven possible inverse Higgs constraints associated with

the commutation relations

[P̄ 0,Ki] = P̄ i + (α− β)Qi , [Qν , P̄µ] = 2iD ηµν . (5.25)

We call such a system type-II galileid. Notice that there is an interesting limit of the type-II

galileid in which boosts are not broken. It corresponds to a configuration of the form above

with β = α,

φ(x) =
1

2
αxµx

µ + π(x) , (5.26)
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which is a solution provided the Lagrangian coefficients obey certain inequalities, and

describe the sub-horizon geometry of deSitter-like solutions in modified-gravity theories [5].

The Lagrangian terms for the galileon that are most relevant at low-energies have the

schematic form [5]

Ln ∼ ∂φ ∂φ (∂∂φ)n−2 , (5.27)

and are invariant under galilean shifts only up to a total derivative. Notice in particular

that L2 is a standard kinetic term for the field φ. In the absence of this term, the dynamics

would be controlled by the exactly invariant quadratic term (∂∂φ)2 which would lead to

ghost-like instabilities. Thus, galileids can be ghost-free because an ordinary kinetic term

is invariant under all the symmetries, although only up to a total derivative.17

Once expanded about the backgrounds above, the terms (5.27) yield interactions for

the Goldstone excitations that are much “softer” (at low energies) that those of more

standard condensed matter systems (solids, etc.), since they involve on average more than

one derivative per field. In particular, the 2 → 2 scattering amplitude scales like E6 rather

than E4. We remind the reader that for framids the low-energy scaling is E2. Galileids

are thus “on the other side” of conventional condensed matter compared to framids, both

in terms of the complexity of the associated symmetry breaking patterns, and in terms of

the low-energy scaling of scattering amplitudes.

We can use the galileon algebra to implement other cases of our classification of sec-

tion 2 as well, replacing some of the internal generators with Galilean shifts. We go through

a number of examples along these lines in appendix C. We should also mention that it is

possible in principle to generalize the galileon shifts (5.17) to involve higher powers of xµ

as well. For instance:

φ(x) → φ(x) + c+ bµx
µ + dµνx

µxν . (5.28)

These generalizations have been recently studied in some detail in ref. [39]. The problem

with these higher order symmetries is that the equations of motion — in order to be

invariant — need to involve more than two derivatives per field, and this generically leads

to ghosts (i.e., negative energy states). The only case that has a chance of being physically

well-behaved is one where there are never more than two time-derivatives on any field.

Ref. [39] has analyzed this possibility for Lorentz-breaking systems. It would be interesting

to extend the analysis to our framework as well, where Lorentz invariance is broken only

spontaneously. Can one have a system in which the higher order time-derivatives always

act on the background configuration and never on the Goldstone excitations? We leave

this technical question for future work, and move on to ponder whether galileids can be

realized in Nature.

17The coset constructions used in the previous sections yield terms that are invariant under all the

symmetries exactly, and not just up to a total derivative. Thus, one may wonder whether terms in the

latter class — which are known as Wess-Zumino terms — could also be used to eliminate ghosts in the

realizations studied in section 5.1. We have explored this possibility but concluded that there are no

Wess-Zumino terms that can provide a healthy kinetic term for those systems.
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5.3 Do Galileids exist?

Galileids are based on the galileon effective theory, which is notoriously a dubious theory.

Its most worrisome theoretical peculiarities — if not necessarily pathologies — are the

existence of superluminal excitations about certain backgrounds, and the unusual softness

of scattering amplitudes at low energies, M2→2 ∼ E6 [40]. Despite not being inconsis-

tencies of the low-energy effective theory itself, the former obstructs the embedding of the

effective theory into a UV-complete theory obeying the standard causal structure of lo-

cal relativistic QFTs,18 while the latter violates standard dispersion rules following from

Lorentz-invariance and S-matrix analyticity extrapolated to arbitrarily high energies.

Notice however that both of these objections could be irrelevant for galileids. The

reason is that galileids are formally derived from the galileon effective theory expanded

about certain Lorentz-violating solutions, but there is no guarantee that the same effective

theory that describes the physics of galileids can be extrapolated to very different back-

grounds, for instance the Poincaré-invariant one with φ = 0. This is completely analogous

to what happens for other condensed matter systems, say a superfluid, where the effective

theory for the phonon field π is conveniently parameterized in terms of the Lorentz scalar

ψ(x) = µt+ π(x), but clearly in general cannot be extrapolated to the Poincaré-invariant

phase with vanishing chemical potential, 〈ψ〉 = 0, where the superfluid is gone! Then,

the use of the galileon EFT for galileids should conservatively be thought of as just an

analogous technical shortcut, to encode the spacetime symmetries acting on the galileid’s

Goldstone excitations in a simple fashion. In this case, it is entirely possible that the

galileon backgrounds formally featuring superluminal excitations are far (in field space)

from the galileid background, and thus lie outside the regime of validity of the galileid’s

Goldstone effective theory. Similarly, one cannot apply relativistic dispersion relations

directly to scattering processes involving the galileid’s Goldstones, which propagate on a

Lorentz-violating background. One could apply them to scattering processes about the

Poincaré invariant background, 〈φ〉 = 0, but that background might not be covered by the

galileid’s effective theory.

There are however other peculiarities that make galileids stand out compared to other

condensed matter systems. Consider the galileon’s stress energy tensor. In terms of fields

and derivatives, it has the same schematic form as the Lagrangian terms it comes from,

eq. (5.17):

Tµν ∼ ∂φ ∂φ (∂∂φ)n−2 . (5.29)

When evaluated on a galileid background — which is quadratic in coordinates, φ ∼ x2 —

it reduces to

〈Tµν(x)〉galileid ∼ x2 , (5.30)

that is, is not translationally invariant! The reason is that the galileid background is in-

variant only under the combined action of translations and galilean shifts. A generic local

operator that — like Tµν(x) — is not invariant under galilean shifts, will not have an ex-

18See however [37, 41] for recent twists in this story.
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pectation value that is invariant under space-time translations.19 Notice that a Lagrangian

with exact Galilean symmetry would be a function of ∂∂φ and would consequently have a

homogeneous stress-energy tensor on our background. However, such a Lagrangian would

be obviously plagued by ghosts. This connection between ghosts and homogeneity of the

energy-momentum tensor, which we have already encountered in section 5.1, seems to be

a recurrent theme for systems in classes 3 and 5.

A related problem concerns the coupling of the galileon to gravity. The galileon shift

φ(x) → φ(x) + bµx
µ (5.31)

cannot be straightforwardly extended to curved space-time, because there xµ is not a

covariant object anymore. One could try to bypass this by imposing a constant shift

symmetry on the derivative of φ,

∂µφ→ ∂µφ+ bµ , (5.32)

but the only meaningful notion of constant bµ in curved space-time is that of vanishing

covariant derivatives, ∇µbν(x) = 0, and a generic space-time does not admit any such

covariantly constant vector fields.20 So, straightforwardly coupling the galileon to gravity

breaks the galileon symmetry.

Given these difficulties, it is somewhat ironic that the galileon has emerged as part

of gravity itself in theories that modify general relativity in the infrared: in the DGP

model [44] as a 4D brane-bending mode of 5D gravity [45, 46], and in massive gravity [47]

as the helicity-zero component of a massive graviton [36, 48]. There, the gravitational

couplings of the galileon are certainly not that of a scalar, simply because in these theories

there is no scalar degree of freedom to begin with: only in the high-energy regime — at

distances much shorter than the IR modification scale — is there an approximately scalar

degree of freedom, in analogy with the equivalence theorem for massive gauge bosons. The

couplings of this degree of freedom to the other components of the gravitational field vanish

in this high-energy regime (the so-called decoupling limit), and there is no regime in which

one has a gravitationally coupled scalar.

Given all of the above, it is thus conceivable that galileids could show up as peculiar

cosmological solutions in modified-gravity theories. We already know that the Lorentz-

invariant galileid (5.26) provides the correct short-distance description of self-accelerating

deSitter solutions in DGP [46] and massive gravity [49]. It would be interesting to embed

the other galileids in modified-gravity theories as well. In particular, it would be interesting

to see whether the multi-galileid with internal SO(3) symmetry discussed in appendix C

corresponds to certain cosmological solution in the multi-graviton theory of [50].

19This is to be contrasted with what happens with other condensed matter systems that break transla-

tions, like solids for instance. There, the background is invariant under a combination of translations and

internal shifts. However, the stress-energy tensor operator is manifestly invariant under internal shifts, and

so its expectation value on the background is invariant under translations.
20If such a bµ(x) exists, it must be a Killing vector: ∇µbν+∇νbµ = 0. Hence, a generic space-time with no

isometries cannot support any covariantly constant bµ. On the other hand, one can successfully generalize

the galileon symmetry to maximally symmetric spacetimes [42, 43], but of course maximal symmetry is

gone as soon as gravitational perturbations are taken into account.
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We close this section by noticing that, even without invoking modified gravity, there

is a general prescription for how to couple the Goldstones of spacetime symmetries to

gravity [33] in a way that respects all the symmetries. It involves introducing gauge fields

for all the non-linearly realized spacetime symmetries. In the galileon case, this would

mean introducing a gauge field for the Qµ’s as well. Then, like in more standard cases, it

is conceivable that one could reduce the number of independent gauge fields by imposing

certain covariant constraints, like the torsion-free one for instance. This procedure would

provide another way to couple our galileids to gravity — or better, to an extension of

gravity with more degrees of freedom. In fact, it is entirely possible that this way one

would be able to reconstruct certain general features of modified-gravity theories from the

bottom-up — perhaps the first non-trivial corrections beyond the decoupling limit.

5.4 Other extra-ordinary stuff

Despite the difficulties encountered in realizing symmetry breaking patterns 3 and 5, we

should make clear that these problems do not affect all extra-ordinary systems — i.e., all

those systems whose additional symmetries do not commute with Poincaré. As a simple

counterexample, we can consider a system with an order parameter made up of three

U(1) gauge fields AI
µ with a global SO(3) symmetry that rotates them into each other.

(This U(1)3 vs. SO(3) mismatch is consistent as long as the Aµ’s don’t couple to matter).

Now, let’s imagine that the order parameter acquires an expectation value of the form

〈AI
µ〉 = α δ0µx

I .21 This quantity is invariant under a combination of internal shifts and

translations, as well as internal and spatial rotations. Such a system — which for lack of a

better name we will dub gaugid — belongs to the same class as ordinary solids (class 7), but

entails an infinite number of generators that do not commute with Poincaré. Its effective

Lagrangian is an arbitrary function of all Lorentz- and SO(3)-invariant contractions of

the field strength F I
µν = ∂µA

I
ν − ∂νA

I
µ. Consequently, its stress-energy tensor depends on

first derivatives of AI
µ and is generically such that ρ + p 6= 0 for the background above;

furthermore, ρ and p both depend on the thermodynamic control parameter α that appears

in the vev of AI
µ. Finally, the purely free case where L = −1

4F
I
µνF

µν
I is clearly free of

instabilities, and sufficiently small corrections to this Lagrangian will preserve this state of

affairs. Thus, as far as we understand, gaugids seem to have all the necessary prerequisites

to behave like condensed matter systems. Do they actually exist?

We would also like to mention the intriguing possibility of extra-ordinary systems

whose additional spacetime symmetries include supersymmetry (SUSY). More specifically,

one could envision a static, homogeneous and isotropic systems that spontaneously break

SUSY and some of Poincaré generators down to some diagonal linear combinations. We

should stress that this SUSY could be completely independent from any SUSY that may or

may not play a role in our description of elementary particles. Instead, it should be treated

conservatively as a convenient technical device with a limited regime of applicability, exactly

like the galileon symmetry studied in section 5, or perhaps like the internal symmetries of

21This corresponds to having three “electric” fields perpendicular to each other. One could also consider

the “magnetic” version, in which case the expectation value would be 〈AI
µ〉 = ǫIJKδµJxK .
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solids and fluids (more in the next section). The first thing to notice is that the minimal

N = 1 case would not be sufficient to carry out this program. In fact, in order to use

the SUSY generators to define some effective unbroken generators P̄0, P̄i and J̄i, we would

need to build linear combinations of the supersymmetric charges Qα and their complex

conjugates that transform as “singlets” and “triplets” under the rotations generated by

some suitably defined J̄ ’s. Basic group-theory considerations are sufficient to realize that

this cannot be done for N = 1 SUSY, because the Q’s transform only under the Lorentz

group and they are already in an irreducible spin-1/2 representation. This ceases to be

an obstacle already for N = 2, in which case the Lorentz and R-symmetry indices of Qa
α

can be contracted to yield a complex singlet, δαaQα
a, and a complex triplet, (σi)a

αQα
a,

under a combination of spatial rotations and R-symmetry transformations. The major

obstacle to carrying out this program is that the thermodynamic parameters would need

to be Grassmann variables in order for the unbroken generators to have definite Grassmann

parity. The physical interpretation of such thermodynamic parameters would be far from

clear, and at least for the moment this discourages us from further exploring this possibility.

6 Summary and discussion

In this paper we have taken the spontaneous breaking of Lorentz boosts as the defining

property of condensed matter. For a field like condensed matter physics, which has wit-

nessed such exquisitely concrete experimental and theoretical breakthroughs, our abstract

approach based purely on symmetry arguments might appear both temerarious and naive.

At the same time, the generality of this approach has led us to interesting results, which

we summarize in the following points and interleave with comments and open questions.

(1) Relativistic (Poincaré-invariant) field theories, possibly supplemented with additional

symmetries, admit eight inequivalent ways in which Lorentz boosts can be broken by

states that preserve homogeneity and isotropy (section 2). Each of these states can

be seen as the ground state of a distinct condensed matter system.

Although our focus here is on condensed matter, the spontaneous breaking of boosts also

occurs in cosmology, where the very presence of the cosmic microwave background gives

rise to a preferred frame. We expect therefore that some of our symmetry breaking patterns

might find interesting applications there too.22

(2) The role of the additional symmetries is to combine with the Poincaré generators

to yield new unbroken translations (P̄ i, P̄ 0) or rotations (J̄ i). Six out of our eight

scenarios can be realized by supplementing the Poincaré group with purely internal

symmetries. The remaining two need instead additional symmetries that do not

commute with Poincaré (see table 1).

22Fluids of course have been used to model the matter content of the universe since the early days of

cosmology — see for instance [51] for a recent discussion from a EFT perspective. However, other matter

states in our classification have been used too — see e.g. [15, 34, 52] and [26, 53–55] for cosmological

applications of type I framids, superfluids and solids respectively.
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What is the physical meaning of such additional symmetries? In the case of superfluids,

they can be traced to the microscopic theory. For type-I superfluids, the internal U(1)

symmetry is associated with the conservation of some “particle number”, be it baryon

number for superfluid phases of QCD, or helium-atom number for superfluid helium-4.

For superfluid helium-3 (the most concrete realization of a type-II superfluid), there is a

similar story, whereby on top of the U(1) symmetry generated by Q there is a spin SO(3)

symmetry, which in the approximation of vanishing spin-orbit couplings can be taken as

independent from the orbital one, and can thus be thought of as “internal”.

However, the case of ordinary solids and fluids is much less clear. There seems to be no

trace of their internal symmetries in the microscopic theory. These are internal 3D shifts

and rotations for isotropic solids, and internal 3D volume-preserving diffeomorphisms for

fluids. Clearly, these symmetries are just not there in particle physics, even approximately.

Nor would we content ourselves with their appearing as approximate symmetries only: in

the low-energy EFT, they are supposed to be valid to all orders in the derivative expansion

— they are supposed to be exact symmetries. Given that these symmetries seem neither

fundamental nor accidental, it appears that the only remaining option is to interpret them

as gauge redundancies. For that option to make sense we should be able to describe the

dynamics of these systems by purely using invariant (but possibly non-local) operators.

One can check that this is indeed the case. For instance, in the case of fluids, that simply

amounts to working with Eulerian coordinates. In the quantum description of the fluid field

theory the gauging of the internal volume preserving diffs also eliminates a virtually infinite

degeneracy of each energy level [56]. However it is not very clear to us how to trace the

origin of this redundancy. Should it be associated with the quantum indistinguishability of

the atoms that make up such systems? But if that is the case, why don’t we have a more

extended permutation symmetry in the case of the solids? This question is certainly not

settled, and we think it deserves further study.

(3) Only four out of our eight scenarios are experimentally known so far. In this paper, we

set out to study the remaining four. In order to discuss their most robust and model

independent features, we have restricted our attention to their Goldstone sector.

Why doesn’t our classification exhaust all known existing condensed matter systems? By

focusing on the Goldstone bosons from the start, we have given up recovering fermionic

excitations, even the gapless ones. However, systems like Fermi liquids [57] evade our

general classification also as far as their gapless bosonic excitations — zero sound and spin

waves — are concerned. Given that we do not fully understand the physical origin of

the solid and fluid internal symmetries, it is conceivable that new symmetries are needed

to recover the gapless excitations of Fermi liquids. In fact, an intriguing possibility is

that gapless fermionic excitations emerge as goldstinos, that is, as Goldstone excitations

associated with the spontaneous breaking of a fictitious SUSY, along the lines discussed in

section 5.4.

(4) The simplest possible scenario — the one that does not involve any additional sym-

metry — yields a perfectly sensible effective theory for the three Goldstone modes
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associated with the broken boosts (section 3). This system, which we dubbed type-I

framid, does not have some of the usual properties of condensed matter. For instance,

its ground state features an ultra-relativistic stress-energy tensor with ρ + p = 0.

Moreover, there are no thermodynamic control parameters that can continuously

vary its energy density and pressure (section 4).

These arguments provide empirical reasons for the non-existence of framids: such systems

just happen to behave very differently than all the objects around us. The deeper question

remains, however, of why the symmetry breaking pattern of framids is not realized in the

real world, or, equivalently, why the Goldstones of Lorentz boosts never seem to appear in

nature. We will reiterate on this question at the end of this section.

(5) A close relative of the type-I framid, sharing all its basic properties, is the type-

II framid. Its low energy theory also contains the three Goldstones for the broken

boosts (this is the defining property of “framids” in our notation), but also three

more Goldstones for the broken rotations (section 3).

Even though some features of the framids are not welcome from a condensed matter per-

spective, they can be appealing in a cosmological context. For instance, like the ghost

condensate [34], framids have an equilibrium stress-energy tensor that is on the verge of vi-

olating the null energy condition (NEC). At the same time, they spontaneously break some

Poincaré symmetries, which implies that fluctuations in the stress-energy tensor start at

linear order in the Goldstone fields, that is, they have no definite sign. Therefore, roughly

speaking, framids violate the NEC 50% of the time23 — and they do so while featuring

a perfectly well-behaved (stable, sub-luminal) spectrum of excitations.24 More in general,

we believe that our framework provides an ideal starting point to extend the results of [3]

on possible NEC violations by physically well-behaved systems.

(6) The scenarios corresponding to cases 3 and 5 of table 1 necessarily require additional

spacetime symmetries. In section 5 we have studied their simplest realizations: with

the smallest number of symmetry generators (four), or the smallest number of Gold-

stones (one). We have found that these systems cannot be sensible condensed matter

systems, because either they are plagued by instabilities, or the expectation value of

their stress-energy tensor is not homogeneous.

It remains unclear whether these pathologies affect all the systems in these two classes,

or only the ones we have considered. For sure, these problems do not affect all extra-

ordinary systems — i.e., all those systems whose additional symmetries do not commute

with Poincaré. As a simple counterexample, we have mentioned the “gaugids” in sec-

tion 5.4.

Finally, after all the emphasis that we have been giving to the breaking of Lorentz

boosts as the defining property of the objects around us, quite ironically, we are left with

23Indeed, some of our colleagues may consider this to be the reason why framids do not seem to be

realized in nature.
24The NEC violation for the particular case of spherically symmetric backgrounds was already discussed

in [58].
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the puzzle of why the corresponding Goldstone fields (the “framons”) never appear to be

there. The inverse Higgs mechanism (section 2) gets rid of the framons in all four scenarios

realized in nature. However, in order for the inverse Higgs mechanism to apply, we need to

be in the presence of suitable (broken) symmetries. In all existing systems there seems to

be enough additional symmetries for this to happen, although we do not always understand

their micro-physical origin. Why is this such a widespread feature of condensed matter?

Why is nature never showing the Goldstones of the Lorentz boosts?
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A Energy-momentum tensor of type-I framids

In order to compute the energy-momentum tensor of type-I framids we resort to their most

straightforward realization: a vector field Aµ(x) with unit norm that acquires a time-like

expectation value. At second order in derivatives, the action S =
∫

d4x
√−gL can only

contain the following terms

S =

∫

d4x
√−g

[

c1∇µAν∇µAν + c2(∇µA
µ)2 + c3∇µAν∇νAµ + c4ȦµȦ

µ
]

, (A.1)

where we indicate with a nabla covariant derivation, and with a dot derivation along the

Aµ direction, say, ḟ ≡ Aν∇νf . Incidentally, as already noted, the above action is nothing

but that of an Einstein-aether theory [15], once the unit-norm condition for Aµ is suitably

imposed. Notice that in flat space the c2 and c3 terms are equivalent (upon integration by

parts), because there we can commute derivatives. Once that is taken into account, the

mapping of the ci’s to the M2
i coefficients of section 3 is obvious,

c1 → −1

2
M2

2 , c2 + c3 → −1

2
M2

3 , c4 → −1

2
(M2

2 −M2
1 ) . (A.2)

The results that we present for the energy momentum tensor are consistent with those

already found for Einstein-aether theories (e.g. [59, 60]). However, in our derivation the

constraint AµA
µ = −1 is not imposed by the method of Lagrange multipliers, but by using

the vierbein formalism. In the presence of a vierbein e a
µ , where latin indices a, b, c . . . are
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Lorentz indices, we can write a unitary vector field as the action of a boost transformation

on the vierbein itself,

Aµ(x) = e a
µ (x)Aa(x) = e a

µ (x) Λa
0(x) , (A.3)

where we used that, by definition, a generic configuration for Aa(x) in the presence of

nontrivial Goldstone fields, is just a boosted version of its vacuum expectation value:

Aa(x) = Λa
b(x) 〈Ab〉 , 〈Ab〉 = δ0b . (A.4)

In order to derive the equations of motion, when taking the variation of the action

with respect to Aµ, what we really want to be freely varying is the boost matrix Λ 0
a (x).

The latter has only three degrees of freedom — e.g., the three goldstones ηi that we used

to parameterize the boost coset in section 3. Straightforward manipulations give

δS =

∫

d4x
δS

δAµ(x)
e a
µ (x)δΛ 0

a (x) (A.5)

=

∫

d4x
δS

δAµ(x)
e a
µ (x)Λ c

a (x)Λ
b
c(x)δΛ

0
b (x) (A.6)

=

∫

d4x
δS

δAµ(x)
e a
µ (x)

[

δba − Λ 0
a (x)Λb

0(x)
]

δΛ 0
b (x) (A.7)

=

∫

d4x
δS

δAµ(x)

[

δνµ +AµA
ν
]

e a
ν (x)δΛ 0

a (x) . (A.8)

Since the term in square brackets is a projector, we obtain that the equations of motions in

the presence of the constraint are just the projection of those obtained by freely varying Aµ,

(

δνµ +AµA
ν
) δS

δAµ
= 0 . (A.9)

Analogously, when computing the energy momentum tensor, we cannot vary the metric

gµν independently of Aµ, or we would fail to satisfy the constraint AµAνg
µν = −1. Again,

it suffices to write Aµ as in (A.3) and simply calculate the overall variation of the action

with respect to the vierbein while keeping Aa(x) constant,

δS =

∫

d4x
√−g Uµ

a(x) δe
a
µ (x) . (A.10)

The object with mixed indices Uµ
a(x), which is related to the energy momentum tensor

simply by Tµν = eνa Uµ
a (see e.g. [61]) , receives the usual contribution from the metric

gµν = e a
µ eνa and the contribution from Aµ, because of (A.3). In summary, we get

Tµν =
1√−g

(

2
δS

δgµν
+

δS

δAµ
Aν

)

. (A.11)

Upon using the equations of motion (A.9), it is easy to show that Tµν is symmetric and

equivalent to that obtained in [59, 60] with the method of Lagrange multipliers. Note that
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the energy momentum tensor defined in this way contains the same number of fields Aν as

the Lagrangian. In particular, we get

Tµν = L gµν (A.12)

+ 2c1

[

∇ρA
(µ∇ν)Aρ−∇ρA

ρ∇(µAν)−∇(µAρ∇ν)Aρ+A
(µ∇ρ∇µ)Aρ−Aρ∇ρ∇(µAν)

]

+ 2c2

[

−gµν(∇ρA
ρ)2−gµνAρ∇ρ∇σA

σ+A(µ∇ν)∇ρA
ρ
]

+ 2c3

[

∇ρA
(µ∇ρAν)−∇ρA

ρ∇(µAν)−∇(µAρ∇ρA
ν)+A(µ�Aµ)−Aρ∇ρ∇(µAν)

]

+ 2c4

[

Ȧρ∇ρA
(µAν)−ȦρA(µ∇ν)Aρ−ȦµȦν−∇ρA

ρA(µȦν)+AµAν∇ρA
σ∇σA

ρ

+AµAνAρ∇σ∇ρA
σ−AρAσ∇ρ∇σA

(µAν)
]

As a non-trivial check of the above expression, we can make sure that it is conserved on

the equations of motion, at least in the flat space limit, where the possibility of commuting

partial derivatives simplifies to some extent the cumbersome calculation. Indeed, one can

show that

∂ρT
ρν =

[

∂µA
ν − 2∂νAµ +Aν∂µ − δνµ(∂σA

σ +Aσ∂σ)
]

(δµσ +AµAσ)
δS

δAσ
, (A.13)

which vanishes on the equations of motion (A.9).

B Minimal realizations of cases 3 and 5

In this appendix we try to identify the minimal set of symmetries and Goldstones compat-

ible with the homogeinity and isotropy requirements of case 3 (see section 2),

P̄0 = P0, P̄i = Pi +Qi, J̄i = Ji . (B.1)

It is immediately clear that the commutation relations (2.6) require

[Ji, Qj ] = iǫijkQ
k , (B.2)

and this implies that the Qi’s cannot generate an internal symmetry. Then, for consistency,

these generators must belong to a multiplet that transforms according to some represen-

tation of the Lorentz group. The simplest possibility is the fundamental representation, in

which case there must be another symmetry generator Q0 such that the Qµ’s make up a

Lorentz 4-vector. Then we must have

[Qµ, Qν ] = 0 , [Qµ, Pν ] = iηµνY, (B.3)

where Y is a central charge — that is, a generator that commutes with all the others —

as we now prove.

Because [P̄i, P̄j ] = 0 and because of isotropy, we must have

[Qi, Qj ] = −2iǫijkX
k, [Qi, Pj ] = iǫijkX

k + iδijY + iZij , (B.4)
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where Y,Xk and Zij are some unspecified symmetry generators, and Zij is symmetric and

traceless. The forth generator Q0 completing the multiplet must be such that

[Ki, Qj ] = iδijQ0 , [Ki, Q0] = iQi , (B.5)

just because Qµ must behave like a 4-vector. If we now apply the Jacobi identity to the

generators P0,Ki and Qj , and use these commutators together with [P0, Qi] = 0 (which

follows from [P̄0, P̄i] = 0) we find that Xk = Zij = 0 and [Q0, P0] = −iY . Similarly, if we

apply the Jacobi identity to Qi,Kj and Qk, we find that [Qi, Q0] = 0. This concludes the

derivation of the commutation relations (B.3).

Let us now prove that Y must be a central charge. It is easy to realize that Y must

be a Lorentz scalar, and thus it must commute with Ki and Ji. Then, by using the Jacobi

identity for Qµ, Qν , Pλ and Qµ, Pν , Pλ one shows that [Qµ, Y ] = 0 and [Pµ, Y ] = 0. This

concludes the proof that Y is a central charge.

Thus, the smallest symmetry group necessary to implement this scenario is obtained

by setting Y to zero and is generated by the four Qµ’s. If Q0 remains unbroken, the

low-energy effective theory will contain the three Goldstone excitations associated with

broken Qi.
25 This is however not the most minimal particle spectrum we can have. In

fact, in the presence of a broken central charge Y , we can realize this scenario with only

one Goldstone boson. This is because, by virtue of the commutators (B.3), one can impose

some inverse Higgs constraints and express the Goldstone fields associated with Qi and

(possibly) Q0 in terms of the Goldstone of Y . This scenario — that we have dubbed type-I

galileid — is realised for instance when a galileon field takes an expectation value of the

form φ(x) = A |~x|2, as discussed in section 5.

The analysis of case 5 (see sect 2),

P̄0 = P0 +Q, P̄i = Pi +Qi, J̄i = Ji . (B.6)

proceeds along the same lines. Once again, the Qk’s must transform like a 3-vector under

rotations, as encoded in eq. (B.2). The most economical option is to assume that Q and

Qi transform like the components of a 4-vector Qµ under Lorentz transformations. Then,

because of Lorentz covariance the Qµ’s must obey the following commutation relations:

[Qµ, Qν ] = −2iXµν , [Qµ, Pν ] = iXµν + iηµνY, (B.7)

where Xµν is an antisymmetric rank-2 tensor of generators. We can strike the best compro-

mise between having fewer Goldstones and adding fewer symmetries by setting Xµν = 0

and assuming that Y is broken. This pattern of symmetry breaking requires only one

Goldstone and is once again realized by a galileon field, this time with expectation value

φ(x) = A |~x|2 +Bt2. This defines what we called a type-II galileid.

25The Goldstone of the broken Ki can be eliminated by imposing an inverse Higgs constraint, because

[Ki, P̄0] = i(P̄i −Qi).
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C Generalizations of galileids

For the classification of section 2, can we replace some of the internal generators Q studied

there with galileon-type generators Bµ?

The simplest example along these lines is that of a superfluid-like symmetry breaking

pattern,

P̄ 0 = P 0 +Q , P̄ i = P i , J̄ = J i , (case 2), (C.1)

which we can achieve through a type-II galileid by choosing α = 0, and the corresponding

solution for β:

φ(x) =
1

2
βt2 . (C.2)

The unbroken time-translations are generated by P̄ 0 = P 0+βB0, and — given the different

algebra — the low-energy dynamics for the Goldstone mode will be quite different from

those of a standard superfluid’s phonon. In particular, interactions will be substantially

softer at low energies, with 2 → 2 scattering amplitudes scaling as E6 rather than E4.

Similar considerations apply for a solid-like symmetry breaking pattern,

P̄ 0 = P 0 , P̄ i = P i +Qi , J̄ i = J i + Q̃i , (case 7). (C.3)

For this, we need an extension of the galileon algebra with a multiplet of D’s and B’s

transforming non trivially under an internal SO(3) symmetry (generated by the Q̃’s),

[Pµ, Bν
A] = ηµνDA , [Bµ

A, B
ν
B] = 0 , etc., (C.4)

where A is an index running over the components of such a representation. The simplest

possibility would be the vector representation Da, B
µ
a (a = 1, 2, 3). However there is no

linear combination of Bµ
a ’s that transforms as the vector representation of J̄ i = J i + Q̃i,

thus making it impossible to mix P i and Bµ
a to define unbroken spatial translations with

the right algebra with the unbroken rotations. The next possibility is the spin-2 (i.e.,

symmetric and traceless tensor) representation Dab, B
µ
ab. In that case one could have

unbroken combinations of the form

P̄ 0 = P 0 , P̄ i = P i + T ij
abB

j
ab , J̄ i = J i + Q̃i , (C.5)

where the tensor T is defined as

T ij
ab =

1

2
(δiaδ

j
b + δjaδ

i
b)−

1

3
δabδ

ij , (C.6)

and makes Qi ≡ T ij
abK

j
ab transform precisely in the vector representation of J̄ i = J i + Q̃i:

[J i + Q̃i, Qj ] = iǫijkQk . (C.7)

Then these unbroken combinations have the right algebra for space-time translations and

spatial rotations.
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These symmetries define a multi-galileon theory [62, 63], with a multiplet of scalars

φab(x) transforming as a spin-2 representation of the internal SO(3) symmetry, and as

φab(x) → φab(x) + cab + babµ xµ , caa = baaµ = 0 , (C.8)

under the D’s and B’s. The configuration

φab(x) =
1

2
α

(

xaxb − 1

3
|~x|2 δab

)

(C.9)

breaks the Poincaré group and the internal SO(3) down to translations and rotations gen-

erated by the combinations

P̄ 0 = P 0 , P̄ i = P i + αT ij
abB

j
ab , J̄ i = J i + Q̃i , (C.10)

as desired. Like for the single galileon case, such a configuration will generically be a

solution to the field equations only for discrete choices of the parameter α. This system

features a total of five gapless Goldstone excitations πab(x) ≡ δφab(x) — the five indepen-

dent components of a spin-2 representation of SO(3) —, which are the minimum number

compatible with this symmetry breaking pattern. Out of the 26 broken generators (3 boosts

Ki, 5 shifts Dab, 15 galilean shifts Bi
ab, and 3 internal rotations Q̃i), only the 5 shifts Dab

necessarily come with independent Goldstone modes. The others can be non-linearly real-

ized on the same Goldstone fields, thanks to inverse Higgs constraints associated with the

commutation relations

[P̄ 0,Ki] = P̄ i − αT ij
abB

j
ab , [P̄ i, Q̃k] = iǫjkl(Bj

li + δjiB
m
lm) , [P̄ i, Bj

ab] = δijDab .

(C.11)

We can also combine these two systems into a supersolid-like system (case 8), by consid-

ering a reducible representation of the internal SO(3) symmetry — spin-zero and spin-two

— both for the D and K generators and for the φ fields. Then the backgrounds (C.2)

and (C.9) preserve unbroken translations and rotations of the form

P̄ 0 = P 0 + βK0 , P̄ i = P i +
1

2
αT ij

abK
j
ab , J̄ i = J i + Q̃i . (C.12)

Unlike for the type-II framid, the solutions to the field equations with these unbroken

symmetries do not form a continuum: α and β are uniquely determined up to a finite

number of discrete choices, since we have two field equations — one for φ and one for φab

— yielding two polynomial equations for α and β.

Alternatively, notice that we can also achieve a supersolid-like symmetry breaking

pattern through a spin-one representation Da, B
µ
a of an internal SO(3):

P̄ 0 = P 0 + αBi
i , P̄ i = P i − αB0

i , J̄ i = J i + Q̃i . (C.13)

These have the right algebra for space-time translations and spatial rotations, and are the

symmetries preserved by an SO(3)-triplet galileon field on the background

φa(x) = α t xa , (C.14)
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with α being once again a root of the polynomial associated with the field equations. We

have a total of three Goldstone excitations — the independent fluctuations of φa. Not only

are these considerably fewer than the six associated with the breaking pattern (C.12). They

are also fewer than the four associated with a standard supersolid (case 8 in section 2).

D Build your own condensed matter octahedral dice

Cut along the perimeter and bend along. . . you will figure it out:

Supersolid

P̄0 P̄i J̄i

S
o
lid

P
0

¯P
i

¯J
i

Type I Galileid

P0 P̄i Ji

T
y
p
e
II
G
al
il
ei
d

P̄
0

P̄
i
J
i

Type I Superfluid

P̄0 Pi Ji

TypeIISuperfluid

P̄0PiJ̄i

T
y
p
e
II
F
ra
m
id

P
0

P
i

¯ J
i

T
y
p
e
I
F
ram

id
P
0

P
i

J
i

The dice has some curious properties:

• Contiguity. Adjacent faces are algebraically close, in the sense that they differ by

the breaking of a single symmetry, be it time translations, spatial translations, or

rotations.

• Complementarity. Opposite faces are algebraically complementary, in the sense that

what is broken for one is unbroken for the other.

However, we see no obvious physical counterparts for these properties. For instance,

the supersolid and the type-II galileids are contiguous, but their dynamics are clearly

very different.
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