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Abstract—Vehicular networks consist of highly mobile vehicles 
communications, where connectivity is intermittent. Due to the 
distributed and highly dynamic nature of vehicular network, to 
minimize the end-to-end delay and the network traffic at the 
same time in data forwarding is very hard. Heuristic algorithms 
utilizing either contact-level or social-level scale of vehicular 
mobility have only one-sided view of the network and therefore 
are not optimal. In this paper, by analyzing three large sets of 
Global Positioning System (GPS) trace of more than ten 
thousand public vehicles, we find that pairwise contacts have 
strong temporal correlation. Furthermore, the contact graph of 
vehicles presents complex structure when aggregating the 
underlying contacts. In understanding the impact of both levels 
of mobility to the data forwarding, we propose an innovative 
scheme, named ZOOM, for fast opportunistic forwarding in 
vehicular networks, which automatically choose the most 
appropriate mobility information when deciding next data-relays 
in order to minimize the end-to-end delay while reducing the 
network traffic. Extensive trace-driven simulations demonstrate 
the efficacy of ZOOM design. On average, ZOOM can improve 
30% performance gain comparing to the state-of-art algorithms. 
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I.  INTRODUCTION 
Vehicular networks are emerging as a new landscape of 

mobile ad hoc networks, aiming to provide a wide spectrum of 
safety and comfort applications to drivers and passengers. In 
vehicular networks, vehicles equipped with wireless 
communication devices can transfer data with each other 
(inter-vehicle communications) as well as with the roadside 
infrastructure (vehicle-to-roadside communications). In order 
to successfully transfer data from a vehicle to another, the 
vehicle has to first wait until it geographically “meets” other 
vehicles (contact happens) for data-relay. Data 
communication, therefore, constantly experiences large delays. 
Fast data forwarding which refers to minimizing the end-to-
end delay and network traffic at the same time in vehicular 
networks is the cornerstone of a wide variety of applications. 
For example, real-time road traffic information can be 
obtained by exchanging local traffic observations among 
vehicles. 

Provisioning fast data forwarding in vehicular networks, 
however, is quite challenging due to three reasons. First, due to 

the dynamic characteristics of the network, it is very hard to 
know future contacts between vehicles. With no such 
information, routing decision made based on past contact 
statistics can hardly achieve the optimal. To make things 
worse, even all future contacts are known, finding the fastest 
path for a given data traffic load is NP-hard [3]. Second, with 
the distributed nature of the network, a vehicle can only have 
partial information of the network, which make a globally 
optimal solution is very hard, if not impossible. Last, data 
communications are via wireless channels and therefore the 
network resource is restrained, which makes solutions like 
epidemic routing [2] [3] infeasible since they introduce 
prohibitive network traffic. 

In the literature, opportunistic message forwarding 
protocols in intermittently connected mobile ad hoc networks 
(MANETs) and delay tolerant networks (DTNs) have been 
proposed. Most existing opportunistic data forwarding 
algorithms focus on the contact-level mobility of nodes. By 
collecting and analyzing contacts between two vehicles, such 
algorithms try to find predictive statistics about this pair of 
vehicles, such as the frequency and the spatial-temporal 
distributions of contacts and inter-contact times (ICTs) and 
then use such information to guide data forwarding. Recently, 
social network analysis has been proposed as a general and 
powerful tool to forward data in DTNs. By aggregating past 
observed pair wise contacts into a social graph, data 
forwarding algorithms focusing on social-level mobility study 
the network structure, which push packets towards nodes with 
more important network positions. In general, contact-based 
algorithms can be very efficient when forwarding packets 
between regularly encountered nodes but less effective when 
no prior contact knowledge is available. In contrast, social-
based algorithms leverage the knowledge of network structures 
to route packets. The rationale of algorithms in this category is 
based on the “small world” phenomenon [14] in social 
networks. However, short chains of acquaintances do not mean 
that the delay for delivering messages between a pair of nodes 
is necessarily short. Furthermore, it is less efficient when 
forwarding data between regularly-met vehicles. As a result, 
there is no existing successful opportunistic data forwarding 
solution, to the best of our knowledge, for the fast data 
forwarding problem in vehicular networks. 



 

 

In this paper, we propose an innovative opportunistic data 
forwarding scheme, named ZOOM, which elegantly integrates 
both contact-level and social-level mobility for fast routing. 
The design of ZOOM is based on two key observations found 
by analyzing three traces of over ten thousand vehicles. First, 
we find that consecutive ICTs have strong temporal 
correlations, which can be utilized to predict future contacts. 
Second, we also find that contact graphs established by 
aggregating pairwise contacts represent clear social structures. 
Inspired by these observations, we first train Markov chains to 
capture the temporal correlations of pairwise contacts, based 
on which we infer future contact opportunities. We then use 
centrality to measure the importance of a vehicle in the contact 
graph. With mobility information in both levels, when two 
vehicles encounter, the vehicle with shorter expected ICT with 
the destination will be chosen as the next relay of a packet. If 
no such information available, the vehicle which has larger 
network centrality will act as the next data relay. We conduct 
extensive trace-driven simulation on all three data sets and the 
results demonstrate the efficacy of ZOOM design. On average, 
ZOOM can improve 30% performance gain comparing to the 
state-of-art algorithms. 

We highlight our main contributions in this paper as 
follows: 

• By intensive trace analysis, we find that pairwise 
contacts have strong temporal correlations and train k-
th order Markov chains to predict future contacts 
between a pair of vehicles. 

• We also find clear social structures existing in the 
contact graph established by aggregating contacts, 
which implies that social level mobility may be used 
to facilitate data forwarding in vehicular networks. 

• We organically integrate vehicular mobility 
characteristics of both contact- and social-level into 
solving the fast data forwarding problem and achieve 
great improvement in terms of minimizing end-to-end 
delay and the network traffic as well. 

The remainder of this paper is organized as follows. 
Section II presents the related work. In Section III, we describe 
the characteristics of the GPS trace data. Section IV analyzes 
the impact of different mobility scales to the data forwarding 
performance. We elaborate the design of ZOOM in Section V. 
Section VI describes the methodology to evaluate the 
performance of our message forwarding algorithm and 
presents the results. Finally, we give concluding remarks and 
outline the directions for future work in Section VII. 

II. RELATED WORK 
In intermittently connected networks, data communications 

are opportunistic. The mobility characteristics of objects are 
central to data forwarding performance. Based on granularity 
at which the underlying node mobility is exploited, we divide 
existing opportunistic forwarding schemes into following three 
categories: 

 Random methods: Without requiring any information, 
random walks [1] can be used for data-relay. For a random 

walk, a node randomly selects a neighbor as the next hop to 
carry a message. Using random walks generates moderate 
network traffic but tends to have very large end-to-end delay. 
An extreme case is epidemic routing [2] [3], where a message 
is flooded in the network. Using epidemic routing can achieve 
the minimum end-to-end delay and maximum delivery ratio 
but generates unacceptable network overhead at the same time. 

 Utilizing contact-level mobility: Algorithms residing in 
this category extensively investigate microscopic mobility 
properties and their characteristics of nodes to facility data 
forwarding. For example, in MaxProp [4], likelihood 
(probability) that a node will encounter the destination of a 
packet is estimated and used as the forwarding utility. A 
recursive process has been deployed in [5] to calculate the 
minimum end-to-end delivery delay, assuming that the tail 
distribution of ICTs is exponential and ICTs are independent. 
S. C. Nelson et al. have proposed an encounter-based routing 
scheme [6] using the rate of encounter of a node as message 
relay utility. Observing that successive ICTs have strong 
temporal correlations, Markov chains [7] [8] have been used to 
predict future contacts. In this category, a utility function is 
defined and measured for every other node in the network. If 
the current message carrier meets a node with a higher utility, 
the message is forwarded to this node. Algorithms in this 
category would be very effective when delivering packets to 
those nodes with which a node has prior contact knowledge. 

Utilizing social-level mobility: In this category, 
macroscopic structures of node mobility are characterized by 
data forwarding algorithms. Pairwise contacts are aggregated 
to social graphs that reflect the regular social relationships 
between nodes. For example, E. M. Daly et al. 0 have 
proposed a social based routing scheme called SimBet, which 
assesses similarity and betweenness centrality Packets are 
routed to most central nodes until a node with higher similarity 
is met. Then the packet is routing within the community until 
the destination is reached. P. Hui et al. [10] have proposed a 
similar social based data forwarding scheme called Bubble 
Rap, where betweenness centrality is also used to find bridging 
nodes and communities are explicitly identified by a 
distributed community detection algorithm. J. Pujol et al. [11] 
have proposed a forwarding algorithm called FairRoute 
leveraging two social processes called perceived interaction 
strength and assortativity to distribute load more evenly among 
nodes in the network. Recognizing the importance of capturing 
real social relationships to the performance of data forwarding, 
T. Hossmann et al. [12] have proposed an online algorithm to 
infer the optimal aggregation density. In this paper, we propose 
ZOOM which elegantly manages to capture both contact-level 
and social-level mobility of vehicles in an integrated approach.  

III. EMPIRICAL MOBILITY ANALYSIS 

A. Collecting Urban Vehicular Trace Data 

In order to understand vehicular mobility and conduct 
informed design of message forwarding algorithms between 
vehicles, it is of great importance to study the empirical data in 
terms of frequency, duration and temporal distribution of 



 

 

contacts among them. For this purpose, we use three datasets 
consisting of traces from two metropolises in China and two 
types of vehicles, i.e., buses and taxies. Key statistics of the 
traces are listed in Table I. 

Shanghai Buses: The trace consists of GPS reports sent 
from 2,501 buses which serve on 100 routes and cover the 
whole downtown area in Shanghai between Feb. 19 and Mar. 
5, 2007. A commuting bus periodically sends GPS reports 
back to a backend data center via GPRS channel. The specific 
information contained in such a report includes: ID, the 
longitude and latitude coordinates of the current location, 
timestamp, moving speed, and heading direction. In addition, 
other status information, such as whether the bus is arriving at 
a stop or a terminal is also sent. Due to the GPRS 
communication cost for data transmission, reports are sent at a 
granularity of around one minute. 

Shanghai Taxies: We also collected the GPS trace of 
taxies in Shanghai collected between Feb. 1 and Mar. 3, 2007. 
We chose 2,109 taxies in the datasets which have consecutive 
GPS reports on each day during the 31 days. The information 
contained in a taxi GPS report is similar to that of bus except 
that taxies also report whether passengers are onboard. The 
granularity of reports is one minute for taxies with passengers 
and about 15 seconds for vacant ones. 

Shenzhen Taxies: The trace collection of taxies in 
Shenzhen is similar to Shanghai taxi trace. We use the whole 
month trace in October, 2009. We chose 8,291 taxies which 
continuously send GPS reports during the whole period. 
Taxies in Shenzhen always send GPS reports on every one 
minute. 

We choose taxies and buses for the study for two reasons. 
First, taxies and buses shows two distinct mobility patterns, 
namely, rather random and well scheduled, respectively. 
Second, the privacy problem is less concerned since they are 
public vehicles.  

B. Microscope Mobility of Pairwise Contacts 

With short-range wireless communication, potential 
communication opportunities occur only when two vehicles 
geographically encounter each other. Therefore, contacts are 
the smallest scale reflecting the mobility of vehicles with 
regard to data forwarding. In this subsection, we first study the 
vehicular mobility at contact level. 

1) Extracting Pairwise Contacts and Inter-Contact Times 

We assume that two vehicles would have a connection 
opportunity (called a contact) if they report their locations 
within certain period of time and the distance between the 
reported locations are within the communication range.  We 
use a sliding time window to check contacts between a pair of 
taxies1. Note that, despite the inaccuracy may be introduced by 
this assumption and the contact extraction algorithm, the 
essential vehicular mobility characteristics are preserved and 
therefore the results are very valuable for study.  

We refer to an ICT as the time elapsed between two 
successive contacts of the same vehicles [7] [13]. Specifically, 
the inter-contact time is computed at the end of each contact, 
as the time period between the end of this contact and the start 
of the next contact between the same two vehicles2. The key 
characteristics of contacts and ICTs of all traces are shown in 
Table I. 

2) Mining Temporal Correlations of Successive ICTs 

We examine whether the pairwise ICTs emerge under 
certain pattern in the time dimension. We examine the 
correlation between ICTs by computing the marginal and 
conditional entropy known the last ICT.  

Let X be the random variable representing the ICTs 
between a pair of vehicles. If we have observed N ICTs, these 
ICTs can be presented by a vector 𝑇 = (𝑡0, 𝑡1,⋯ , 𝑡𝑁−1) where 
𝑡𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1denotes the ith ICT. The probability of the 
ICT being j can be computed as 𝑥𝑗 𝑁⁄ , where 𝑥𝑗 represents the 
number of ICT being j. Therefore, the entropy of 𝑇 is: 

 𝐻(𝑋) = ∑ (𝑥𝑗/𝑁) log2
1

𝑥𝑗/𝑁
∞
𝑗=0  . (1) 

Let X′ be the random variable for the last ICT between this 
pair of vehicles given the ICT  𝑋 . 𝑋′  and  𝑋  have the same 
distribution when  𝑁 is large enough. The vector  𝑇 can be 
written as 𝑄 = {(𝑡𝑖, 𝑡𝑖+1): 0 ≤ 𝑖 ≤ 𝑁 − 2}. Therefore, the joint 
entropy of 𝑋′and 𝑋 can be computed as: 

 𝐻(𝑋′,𝑋) = ∑ 𝑃(𝑥′, 𝑥) log2
1

𝑃(𝑥′,𝑥)(𝑥′,𝑥)∈𝑄  , (2) 

where 𝑃(𝑥′, 𝑥)is the number of times  (𝑥′, 𝑥)appearing in 𝑄 
divided by the total number of elements in 𝑄. With 𝐻(𝑋) and 
𝐻(𝑋′,𝑋), the conditional entropy of 𝑋 given 𝑋′ is: 

𝐻(𝑋|𝑋′) = 𝐻(𝑋′,𝑋) − 𝐻(𝑋′) = 𝐻(𝑋′,𝑋) − 𝐻(𝑋) .  (3) 

The cumulative distribution functions (CDF) of the mean 
entropy and the mean conditional entropy over each pair of 
vehicles in all datasets are shown in Fig. 1. It can be seen that 
the conditional entropy is much smaller than the marginal 
entropy for all types of vehicles. This implies that the 
uncertainty about the ICT decreases when knowing the last 
ICT between the same pair of taxies3. We conclude that 
pairwise ICTs have strong temporal correlation. 

1Short disconnections less than one minute are removed. The detailed 
contact extraction algorithm can be found in [7]. 

2We do not take into consideration the inter-contact time starting after 
the last contacts. 

TABLE I.  COMPARISON OF THERE DATA SETS 

Data Set Shanghai  Bus Shanghai Taxi Shenzhen  Taxi 
Number of  vehicles 2,501 2,109 8,291 

From date Feb. 19, 2007 Feb. 1, 2007 Oct. 1, 2009 
Duration (day) 15 31 31 

Granularity (second) 60 15*, 60** 60 
Number of contacts 1,229,380 22,053,178 23,968,860 
Mean ICT (minute) 31.8 47.6 30.5 

#Communities 29 56 43 
Q 0.8733 0.8471 0.6230 

*vacant, **passengers onboard 

 



 

 

C. Macroscope Mobility of Social Relationship 

Contacts of vehicles actually reflect the complicated social 
activities of human beings, the characteristic macroscopic 
structures of human relationships may create complex patterns 
of contacts, which cannot easily be observed or well 
understood by only analyzing individual pairwise contacts. For 
example, people meet “strangers” by chance, “friends” by 
intention or “familiar strangers” because of their similarity of 
mobility patterns. In this subsection, we examine the vehicular 
mobility from a more macroscope perspective. 

1) Establishing Contact Graph 

We establish a static and weighted contact graph 𝔾(𝑁,𝐸) 
for each trace by aggregating the entire sequence of contacts 
between a pair of vehicles. Each vehicle 𝑖  is a node of the 
graph, 𝑛𝑖𝜖𝑁, and the edge 𝑒𝑖𝑗 ∈ 𝐸 represents node 𝑖 and 𝑗 have 
certain acquaintance between them. The key to establishing a 
meaningful contact graph is the metric used to aggregate 
contacts, which determines whether two nodes share a link and 
the strength of this connection if exists. Various metrics, such 
as the number of total contacts observed [10], the age of last 
contact [15], and the contact frequency and total duration [10], 
have been used to derive edge strengths. In our study, we use a 
sliding window to consecutively check the ratio of time with 
contacts observed to the total period of a trace, called contact 
ratio. There is an edge between two nodes in the contact graph 
if the contact ratio is higher than a threshold and the weight on 
this edge takes the contact frequency value. The main reason 
that we use this metric to aggregate contacts is to reduce the 
influence of random (unexpected) contacts in vehicular 
networks and comprise as many “regular” relationships as 
possible. Fig. 2 illustrates the contact graph established on 
Shanghai taxi trace with sliding window size of one day and 
contact ratio equal to 60%. 

2) Revealing Social Structures 

We study the social properties of the contact graph of each 
trace and examine the degree distributions. The degree of a 
node in the contact graph is the number of edges incident on 

this node. We define 𝑝𝑘 to be the fraction of nodes in the 
contact graph that have degree 𝑘 and plot the complementary 
cumulative distribution function (CCDF) 𝑃𝑘 = ∑ 𝑝𝑘′

∞
𝑘′=𝑘 . Fig. 

3 shows the CCDF of vehicle degree on all traces under semi-
logarithmic scale. It is clear to see that all degree distributions 
have exponential tails, 

 𝑃𝑘 = ∑ 𝑝𝑘′
∞
𝑘′=𝑘 ~∑ 𝑒−

𝑘′
𝛼∞

𝑘′=𝑘 ~𝑒−
𝑘
𝛼. (4) 

Similar degree distributions have been seen with different 
networks such as the power grid and railway networks [18]. In 
contrast, random graphs, where each edge is present or absent 
with equal probability, have binomial (Poisson in the limit of 
large graph size) degree distributions. 

We further check whether there are communities embedded 
in a contact graph. A community is defined as a subset of 
nodes with stronger connections between them than towards 
other nodes, which generally implies a social group. The 
modularity [19] can be used to evaluate the partition of nodes 
to communities, which is defined as 

 𝑄 = 1
2𝑚

∑ ∑ �𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

� 𝑆𝑖𝑟𝑆𝑗𝑟𝑟𝑖𝑗 , (5) 

where 𝑚 is the total number of edges, 𝐴𝑖𝑗 is the element of the 
adjacency matrix (if there is an edge between node 𝑖 
and 𝑗, 𝐴𝑖𝑗 = 1; otherwise, 𝐴𝑖𝑗 = 0), 𝑘𝑖 and 𝑘𝑗 are the degree of 
node 𝑖  and  𝑗 ,respectively, and  𝑆𝑖𝑟 = 1  if node  𝑖  belongs to 
group 𝑟 and zero otherwise. Finding the optimal community 
structure for a contact graph in terms of maximal modularity is 
an NP-complete problem. We use the Louvain algorithm [20] 
which iteratively moves each node to an existing community 
and merges two communities if doing so can maximize the 
modularity. We choose this algorithm because it has been 
reported to be fast and has good or better community partition 
comparing with other algorithms on a different number of 
graphs [20].  

The modularity and the number of found communities for 
all traces are listed in Table I. From the list, we have the 
following observations: (1) the modularity values vary in 
traces but overall are quite high. This implies that urban 
vehicular networks are highly structured rather than randomly 
connected (𝑄 = 0). High modularity (𝑄 > 0.3) can also be 
seen in other social and biological networks [19]. (2) Buses 
have higher modularity than taxies. This is easy to understand 

 

Figure 1. CDF of marginal and conditional entropy of pairwise ICTs between 
each pair of vehicles in all traces. 

 

Figure 2. Contact Graph of Shanghai Taxi Trace containing 1,226 nodes, 
which is highly structured with 56 communities. 

3Conditional entropy of ICT keeps decreasing as more previous ICTs are 
known, especially for vehicles constantly meeting with each other. Due to the 
page limitation, we only show the results when only last ICT is known. 



 

 

since buses have dedicated routes and schedules, which makes 
contacts constant and stable. 

IV. IMPACT OF MOBILITY ON ROUTING ALGORITHMS 
In the store-carry-and-forward scenario, the performance of 

a particular opportunistic forwarding algorithm heavily relies 
on its capability to accurately capture the underlying mobility 
of vehicles. In this section, we discuss the impact of different 
mobility scales to the performance of routing algorithms. 

A. Algorithms Utilizing Contact-Level Mobility 

By collecting and analyzing contacts between two vehicles, 
it is possible to obtain detailed knowledge about this pair of 
vehicles such as the contact frequency [4] and the expected 
delay [7] [8]. Such local knowledge can be used to determine 
data-relays for a routing algorithm.  

To illustrate the performance of algorithms utilizing 
contact-level mobility of vehicles, we examine a greedy 
algorithm, called Future, in which all future contacts between 
vehicles are known. In Future, a vehicle with messages always 
chooses a neighboring vehicle which has the shortest delay 
with the destination. We randomly select 1,000 pair of vehicles 
as the source and destination of 1,000 messages, using 
Shanghai taxi trace. Fig. 4 shows the CDF of end-to-end delay 
over all messages using Future and Epidemic routing [3] [4], 
where a vehicle always forwards its messages to any vehicle it 
meets. It can be seen that Future performs well but 
experiences larger end-to-end delay comparing to Epidemic 
routing. For example, above 90% messages can be delivered 
within six hours using Epidemic routing whereas Future can 
only reach about 60%. 

The main reason for Future being sub-optimal is that, 
without global contact information of other vehicles, Future 
may only find local optimal routing path. Moreover, most 
vehicles, due to limited mobility, only have contacts with a 
small portion of other vehicles. For example, Fig. 5 plots the 
CDF of the ratio of the number of vehicles met by a vehicle to 
the total number of vehicles in all traces. It can be seen that 
most Shanghai taxies can only “see” 10% of all taxies. For 
Shanghai buses, the proportion reduces to about 5% due to the 
limitation of fixed itineraries and schedules of buses. 

Comparing to Shanghai taxies, Shenzhen taxies have higher 
proportion of encountered taxies. The reason seems to be that 
Shanghai City has larger area than Shenzhen City (three times 
bigger). Given the same mobility of a taxi, Shenzhen taxies 
have more opportunities to meet other taxies. Nevertheless, the 
proportion is still low (e.g., 80% taxies only “see” 20% other 
taxies).  

The consequence of limited view about the whole network 
is that when a vehicle v1 is requested to deliver a message to 
vehicle vd, it is very likely that v1 has no knowledge about vd. 
To make things worse, when v1 encounters another vehicle v2, 
very likely, v2 has no information about vd either. In that case, 
v1 has to carry the message until it meets vd or another vehicle 
which knows vd. This will increases the end-to-end delay. 

In summary, data forwarding algorithms based on contact-
level mobility are effective when delivering packets among 
“familiar” vehicles with prior contact knowledge but less 
efficient for “stranger” vehicles. 

B. Algorithms Utilizing Social-Level Mobility 

With contact graph and the social structure observed in the 
contact graph as described in Subsection III C, a data 
forwarding algorithm can utilize the social features of nodes or 
the network to facilitate data forwarding. For example, a 
greedy hill-climbing procedure is conducted in the network, 
seeking for more “central” or “popular” nodes in the graph 
using social network analysis metrics (e.g., centrality and 
similarity) as data carriers 0 [10]. The rationale of such data 
forwarding algorithms is based on the “small world” 
phenomenon in social networks which comes from the 
observation that individuals are often linked by a short chain of 
acquaintances (e.g., “six degrees of separation” [14]). 

In vehicular network scenario, however, the process of 
seeking for central nodes as data-relays does not match the 
goal of the fast opportunistic forwarding problem. A hop in the 
short paths in social networks may actually undergo a 
tremendous delay, which is prohibitive for fast data forwarding. 
In the extreme case, a vehicle can hold a message until it 
finally meets the destination of the message, which is optimal 
in terms of the number of hops required to forward the 
message but definitely not the optimal for minimizing the end-
to-end delay. In order to verify our argument, we also conduct 

 

Figure 3. The CCDF of the vehicle degree on all 
traces under semi-logarithmic scale. 

 

Figure 4. The CDF of end-to-end delay over 1,000 
random generated messages using different algorithms. 

 

Figure 5. The CDF of the number of encountered 
vehicles on all datasets. 
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an experiment using the same setting as the one described in 
the above subsection. We evaluate the SimBet algorithm 0 
with each node knowing its global social betweenness and 
similarity values in the contact graph established from 
Shanghai taxi trace. In SimBet algorithm, a neighboring 
vehicle is selected as the next relay if a weighted betweenness 
and similarity utility regard to the destination increases. The 
CDF of end-to-end delay is shown in Fig. 4. We find that the 
overall end-to-end delay is quite large. For example, it requires 
almost three days for 90% messages to be delivered. 

The main reason for algorithms utilizing social-level 
mobility characteristics experiencing large delay is that the 
social features of vehicles and the network is based on long-
term statistics of contacts, which discards the short-term 
dynamics happening between each pair of vehicles. 
Specifically, due to the high mobility of vehicles, contacts 
between two vehicles evolve fast which makes the contact 
aggregation hard to be accurate. For example, we divide a day 
into four time slots of six hours and distribute all contacts into 
respective time slots according to the time when a contact 
happened. Let X be the random variable that represents the 
number of contacts exists in a time slot. We then plot the 
CCDF of the ratio of the standard deviation 𝜎(𝑋) to the mean 
value 𝐸(𝑋) for all pairs of vehicles in each trace in Fig. 6. It 
can be seen that contacts occur quite uneven during a day. For 
example, for Shenzhen taxies, the probability that the number 
of contacts between a pair of vehicles can vary 60% comparing 
to their average number of contacts in a day is above 80%.  

Furthermore, without specific contact-level mobility 
characteristics, social-based algorithms perform less efficient 
when routing messages among vehicles with acquaintances. 

For example in Fig. 7, suppose that v1 has a packet for vd and 
encounters v2 and v3 at the same time. If v3 is more “central” 
than v2 in the network, v1 will forward the packet to v3 even if 
v2 will meet vd sooner than v3 (i.e., t1 < t2). 

In summary, algorithms based on social-level mobility are 
effective especially when delivering packets to those “stranger” 
vehicles but less effective due to the lack of detailed contact-
level mobility information. 

V. DESIGN OF ZOOM 

A. Design Overview 

From the analysis above, an ideal opportunistic forwarding 
algorithm should take both contact-level and social-level 
mobility into account. To this end, we design an innovative 
opportunistic data forwarding algorithm, ZOOM, which 
elegantly manages to capture two levels of vehicular mobility 
in an integrated approach. The core idea of ZOOM is for each 
vehicle to locally maintain a list of recent contacts with each 
other encountered vehicle. With the list of past contacts, a 
vehicle first trains a k-order Markov chain for each other 
vehicle which can be used to predict the next contact with that 
vehicle. In addition, it also assesses its position in the network 
using ego betweenness centrality based on its ego contact 
graph aggregated from all its contact lists. With the knowledge 
of the predicted future contact and the ego betweenness, when 
two vehicles meet, a vehicle carrying a packet first compares 
its predicted contact delay with the destination of the packet 
with that of the other vehicle. The vehicle with shorter contact 
delay estimation will act as the next data-relay. If both vehicles 
have no contact predictions with the destination, the vehicle 
having more important position in the network is chosen to 
carry the packet. 

In the following subsections, we first describe our method 
to capture the contact-level mobility using k-order Markov 
models to predict future contacts. Then we present the 
techniques to establish social-level mobility by aggregating 
fast evolving contacts and calculating the network position of 
vehicles using ego betweenness.  Finally, we describe the 
opportunistic forwarding strategy of ZOOM. 

B. Predicting Contact-Level Mobility  

With the strong temporal correlations of successive ICTs 
embedded in vehicular mobility as described in Section III, we 
predict ICTs using Markov chains of k-th order [7].  

More specifically, let {𝑥𝑖}𝑖=1𝑛 be an observed sequence of 
ICTs between this pair of vehicles. The k-order state transition 
probabilities of the Markov chain can be estimated for all 
𝑎 ∈ 𝒮  and𝑏 ∈ 𝒮𝑘 , 𝑏 = (𝑏1, 𝑏2,⋯ , 𝑏𝑘)as follows.  Let 𝑛𝑏𝑎be 
the number of times that state 𝑏 is followed by value 𝑎 in the 
sample sequence. Let 𝑛𝑏be the number of times that state 𝑏 is 
seen and let 𝑝𝑏;𝑎denote the estimation of the state transition 
probability from state 𝑏 to state (𝑏2,⋯ , 𝑏𝑘 , 𝑎). The maximum 

 

Figure 6. The CCDF of the ratio of standard deviation to the average 
of contact distribution in a discrete time slot. 

 

Figure 7. Opportunistic data forwarding scenario, where dashed arrow lines 
denote the trajectories of vehicles and the disk shades denote the wireless 

communication range. 
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likelihood estimators of the state transition probabilities of the 
k-th order Markov chain are 

 𝑝𝑏;𝑎 = �
𝑛𝑏𝑎 𝑛𝑏⁄ ,   𝑖𝑓 𝑛𝑏 > 0

   0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
�. (6) 

C. Establishing Social-level Mobility 

To utilize social-level mobility to facilitate opportunistic 
data forwarding in vehicle networks, ZOOM has to deal with 
two challenges. One is to accurately aggregate high-dynamic 
contacts so that the real social-level mobility can be reflected 
in the contact graph. The other one is to accurately assess the 
importance of an individual vehicle in the network without the 
global information. 

1) Aggregating Evolving Contacts 

We use the aggregation method introduced in Subsection 
III C. We use six hours as the best sliding time window for 
contact aggregation as it is reported in [7] that the redundancy 
of ICTs reaches the minimum when the time difference 
between two small sets of consecutive ICTs equals to six hours. 
This also implies that the maximum mobility diversity can be 
observed within six hours. Increasing the size of the sliding 
window will reduce the mobility diversity which degrades the 
accuracy of contact aggregation. It is important to note that 
different and more sophisticated aggregation schemes are 
possible, such as online algorithms [12]. Our goal here is to 
demonstrate that capturing social-level mobility as a 
complementary counterpart of contact-level priors can 
significantly improve the performance of opportunistic data 
forwarding.  

2) Calculating Centrality with Local Information 

Centrality in graph theory and network analysis is a 
quantification of the relative importance of a vertex in the 
graph. It is a nature measure of the structural importance of a 
node in the network.  

In ZOOM, we use betweenness [16] to measure the 
centrality of vehicles, which refers to the extent to which a 
vehicle lies on the social paths linking other vehicles. 
Therefore, a vehicle with a high betweenness has a capability 
to facilitate interactions between the vehicles it links. With 
only local information, we adopt the algorithm [17] to 
calculate the betweenness in ego networks, which refers to a 
network consisting of a single vehicle (ego) together with the 
vehicles (alters) the ego is connected to and all the links among 
those vehicles.  Although the betweenness in ego networks 
does not correspond perfectly to the global betweenness, the 
ranking of vehicles are identical in the network. 
Mathematically, we present the relationships between an ego 
vehicle vi and its neighbors in the ego network by a  𝑚 ×
𝑚 symmetric matrix A,  

 𝐴𝑖𝑗 = �
𝜃𝑖,𝑗 ,       𝑖𝑓 𝜃𝑖,𝑗 > 0

    0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
�. (7) 

where m is the number of neighbors and 𝜃𝑖,𝑗 is the regularity 
ratio between vi and vj. The ego betweenness of vi can be 
calculated as the sum of the reciprocals of the entries of 

𝐴2[1 − 𝐴]𝑖,𝑗  [17].  The ego betweenness of a vehicle is 
updated upon each contact with other vehicles. Specifically, 
when vehicle v1 meets v2, v2 sends a list of neighbors in its ego 
network to v1. Upon receiving the neighbor list, v1 checks each 
neighbor in the list, 𝑣𝑖 , 𝑖 ∈ [1,2,⋯ , 𝑙], if vi is also a neighbor of 
v1, then elements 𝐴2,𝑖 and 𝐴𝑖,2are set to 𝜃2,𝑖 . If v2 is a newly 
encountered vehicle, v1 will first enlarge  𝐴𝑚×𝑚  to 
𝐴(𝑚+1)×(𝑚+1) by inserting a new row and a new column for v2. 
Then it performs the ego betweenness calculation accordingly. 
Vehicle v2 conducts the same operations as v1 at the same time. 

D. Opportunistic Forwarding Strategy 

In ZOOM, when vehicle v1 encounters v2, v2 will send a list 
of all its neighbors and a list of destinations of packets it is 
currently carrying to v1. Vehicle v1 then update the Markov 
chain and calculates its ego betweenness. For the destination vd 
of a packet of v2, let 𝑏𝑣1,𝑣𝑑denote the current state in the k-th 
order Markov chain between v1 and vd. The estimated delay of 
the next contact between v1 and vd, ℰ𝑑𝑒𝑙𝑎𝑦

𝑣1,𝑣𝑑 can be calculated as, 

 ℰ𝑑𝑒𝑙𝑎𝑦
𝑣1,𝑣𝑑 = ∑ 𝑝𝑏𝑣1,𝑣𝑑;𝑎 ∙ 𝑎

⌊𝕋 𝜆⁄ ⌋
𝑎=0 . (8) 

Vehicle v1 will act as the next relay for this packet if one of 
the three following cases happens: 1) v1 is the destination of 
this packet, i.e., v1 = vd; 2) v1 has a shorter estimated delay of 
the next contact between v1 and vd than that between v2 and vd, 
i.e., ℰ𝑑𝑒𝑙𝑎𝑦

𝑣1,𝑣𝑑 < ℰ𝑑𝑒𝑙𝑎𝑦
𝑣2,𝑣𝑑  and 3) both v1 and v2 have no prior about 

vd and v1 has a larger betweenness value than v2. After 
transmitting the packet to v1, v2 removes this message from its 
buffer. Similarly, v2 conducts the same operations accordingly. 

VI. PERFORMANCE EVALUATION 

A. Methodology 

In this section, we compare our opportunistic forwarding 
algorithm with several alternative schemes: 
• Epidemic. In this scheme [2] [3], vehicles exchange every 

packet whenever they experience a contact. If vehicles 
have infinite buffer size, using epidemic routing will find 
the shortest path between the source and destination 
vehicles and therefore has the shortest end-to-end delay. 
On the other hand, since there is no control on data 
forwarding, it also generates a tremendously large volume 
of network traffic, overwhelming limited wireless 
bandwidth.  

• Markov. This scheme [7] establishes a kth order Markov 
chain to predict the time when the next contact may occur 
between a pair of vehicles, utilizing the temporal 
correlations of consecutive ICTs. A greedy strategy is 
taken in making routing decisions where the neighboring 
vehicle with the least estimated meeting time with the 
destination will be chosen as the next data relay. 

• SimBet. This scheme 0 assesses similarity between nodes 
in a social graph to detect nodes residing in the same 
community, and betweenness centrality to identify 



 

 

bridging nodes which could carry a packet from one 
community to another. Packets are routed to the most 
central nodes until a node with higher similarity with the 
destination is met. Then the packet is forwarded within the 
community until the destination is reached. 

•  Bubble Rap. This scheme [10] uses a similar approach as 
SimBet except that communities here are explicitly 
identified by a detection algorithm. 

We consider four important metrics to evaluate the 
performance of ZOOM and the above schemes:  

1) Delivery ratio. It refers to the ratio of successfully 
delivered packets to the total number of packets at the end of 
an experiment.  

2) End-to-end delay. It refers to the delay for a packet to 
be received at its destination. We only calculate end-to-end 
delay for successfully delivered packets. 

3) Network traffic per packet. It refers to the average 
network cost per packet, calculated by dividing the total 
number of data forwarding hops by the total number of 
packets. 

4) Packet utility. It refers to the average benefit in 
reducing the delivery delay by each forwarding hop, calculated 
by dividing the total amount of time saved (i.e., the time period 
starting since a packet is delivered and ending when the 
experiment ends) for all packets to the total number of data 
forwarding hops. 

In the following simulations, we evaluate the above metrics 
of ZOOM, using real trace data of Shanghai buses for 
demonstration. We randomly choose 1,000 buses, and use the 
contact records of three weeks from Feb. 19 to Feb. 28, 2007 
for the initialization of all alternative schemes and use contact 
records of four and a half days from 8am on Mar. 1 to Mar. 5, 
2007 for data forwarding experiments (the reason that we set 
the experiment to start from 8am in the morning is because 
most buses are not in service at night.). At the beginning of 
each experiment, we inject 100 packets using a Poisson packet 
generator with a mean interval of ten seconds. For each packet, 
the source and destination are randomly chosen among all 
buses in the data set. Here we make a general assumption that 
two vehicles can always successfully conduct all data 
transmission when they have a contact. We run each 
experiment 50 times and get the average. 

B. Performance Comparison 

In this simulation scenario, we compare ZOOM with all 
other alternative forwarding algorithms. For the sake of 
fairness, we adjust the contact aggregation scale for the best 
delivery performance for SimBet and Bubble Rap. In this 
simulation setting, the optimal number of contacts for a pair of 
vehicles to have a link in the contact graph is twenty.  

 Fig. 8 plots the average delivery ratio as a function of 
experiment time. It can be seen that ZOOM outperforms other 
algorithms except the epidemic routing. As epidemic routing 
can always find the shortest path by aggressively spreading a 
packet over the whole network, it also causes unacceptable 
network traffic. It can be seen that ZOOM is capable of 
obtaining great delivery ratio gain in a very short period of 
time. For instance, ZOOM can successfully deliver over 60% 
packets within 24 hours while the ratio for Markov, SimBet 
and Bubble Rap is 35%, 37% and 24%, respectively. In 
addition, it is very interesting to see that, for all schemes, the 
delivery ratio stabilizes and stops to increase when it is night, 
for example, during the first night from the 14th hour (i.e., 
10pm on Mar. 1) to the 22th hour (i.e., 6am on Mar. 2), and the 
second night from the 38th hour (i.e., 10pm on Mar. 2) to the 
46th hour (i.e., 6am on Mar. 3). The reason is that the data 
forwarding process would suspend during the night as most 
buses are not in service at night and would continue in daytime 
when buses are on duty. 

Fig. 9 and Fig. 10 plots the average end-to-end delay and 
network traffic as a function of experiment time for all 
successfully delivered packets, respectively. Note that, for 
comparison fairness, we only take into account those packets 
that can be successfully delivered by all schemes. It is clear to 
see that, in general, algorithms utilizing contact-level mobility 
can achieve very small delivery delay comparing with social-
level-mobility-based routing algorithms. Moreover, ZOOM 
can achieve the minimum end-to-end delay (excluding the 
epidemic routing). It can be seen that Markov generates the 
least network traffic and ZOOM introduces slightly more 
traffic than Markov. Combining both the end-to-end delivery 
delay and the network traffic, we argue that ZOOM can 
actively spend few more hops to achieve far more gain in end-
to-end delivery delay. In contrast, schemes based on social-
level mobility spend more hops but result in larger delays and, 
therefore, have less network-cost-efficiency. 

 

Figure 9. The average delivery delay vs. the 
experiment time. 

 
Figure 8. The average delivery ratio vs. the 

experiment time. 

 

Figure 10. The network traffic vs. the experiment 
time. 



 

 

In general, routing algorithms try to trade off between 
delivery delay and network traffic cost. Short delivery delays 
usually imply large network traffic. To better measure how 
efficient a routing algorithm can be, we evaluate all schemes 
with the packet utility metric. Fig. 11 plots the average packet 
utility as a function of experiment time. It is clear that ZOOM 
has the highest packet utility among all schemes. In summary, 
ZOOM is a very fast and cost-efficient opportunistic routing 
scheme under urban VANET settings. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed an opportunistic 

forwarding algorithm ZOOM which captures both lower level 
mobility at pairwise contact scale and upper level mobility 
from the VANET perspective. Our algorithm uses locally 
collected contacts to predict the future contact opportunities 
between vehicles. Moreover, the capability to predict contacts 
is then utilized to reflect the social relation ties between 
vehicles. We have demonstrated the efficacy of our algorithm 
through extensive trace-driven simulations. For our future 
work, we intend to look into various traces, as well as the 
realistic vehicular mobility, in order to better understand the 
underlying structure and similarity of vehicles. Furthermore, 
we will explore more sophisticated mappings such as 
appropriate weighted graphs. In addition, we will also 
investigate more accurate calculation method for the packet 
utility metric. 
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