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Zooming-in on a Lévy process:
failure to observe threshold exceedance over a dense

grid
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Abstract

For a Lévy process X on a finite time interval consider the probability that it exceeds
some fixed threshold x > 0 while staying below x at the points of a regular grid. We
establish exact asymptotic behavior of this probability as the number of grid points
tends to infinity. We assume that X has a zooming-in limit, which necessarily is
1/α-self-similar Lévy process with α ∈ (0, 2], and restrict to α > 1. Moreover, the
moments of the difference of the supremum and the maximum over the grid points are
analyzed and their asymptotic behavior is derived. It is also shown that the zooming-in
assumption implies certain regularity properties of the ladder process, and the decay
rate of the left tail of the supremum distribution is determined.
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1 Introduction

Consider a Lévy process X = (Xt, t ≥ 0) on the real line and let

M = sup{Xt : t ∈ [0, 1]}, τ = inf{t ≥ 0 : Xt ∨Xt− = M}

be the supremum and its time, respectively, for the time interval [0, 1]. For any n ∈ N+

consider also the maximum of X over the regular grid with step size 1/n:

M (n) = max{Xi/n : i = 0, . . . , n}.

In this paper we derive exact asymptotic behavior of

∆n(x) = P(M > x,M (n) ≤ x) = P(M > x)− P(M (n) > x) (1.1)
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Zooming-in on a Lévy process

as n→∞ for any fixed x > 0, which is the probability of failure in detecting threshold
exceedance when restricting to the grid time-points. On the way towards this goal, we
also provide asymptotics of the moments E(M −M (n))p of the discretization error in the
approximation of the supremum, markedly improving on the bounds in [33] and other
works.

The motivation comes from various applications, where it is vital to understand if the
process X has exceeded a fixed threshold x > 0 or not. Application areas include, among
others, insurance and mathematical finance (pricing of barrier options), energy science
(electric load), environmental science (pollution levels and exposure) and computer
reliability. Normally, we observe the process of interest over a dense regular grid without
having full knowledge about the continuous-time trajectory. It is then natural to base
our judgment on M (n) instead of M . Thus ∆n(x) is the probability of making an error:
the process exceeds x but not over the grid points. Furthermore, our limit result can be
used to provide a correction to P(M > x) when approximating it by P(M (n) > x) derived
from Monte Carlo simulation. Or vice versa, it can provide a correction to P(M (n) > x)

in cases when the formula for P(M > x) is available, see e.g. [14]. It is noted that M (n)

always underestimates M , and so one can also consider more accurate estimators (but
also more complicated, since these are potentially based on all the available information),
which we leave for future work.

Our main vehicle is the zooming-in limit theory of [34], where it is shown under a
weak regularity assumption, see (2.6) below, that(

V (n) | τ ∈ (0, 1)
)

d→ V̂ , with V (n) := bn(M −M (n)) (1.2)

for some specific sequence bn > 0 and a random variable V̂ . More precisely, V̂ is defined
in terms of the law of a self-similar Lévy process X̂ (the limit under zooming-in), see (4.1),

and bn is chosen such that bnX1/n
d→ X̂1.

The convergence in (1.2) readily suggests that E(M −M (n))p is of order b−pn and
supplements it with exact asymptotics, but only when the underlying sequence of random
variables (V (n))p is uniformly integrable. Establishing the latter, however, is far from
trivial and we could only do that thanks to [8] providing a representation of the pre- and
post-supremum process using juxtaposition of the excursions in half-lines. Interestingly,
the scaled moments would explode in some cases if we considered grid points to the
right (or to the left) of τ only. Furthermore, certain conditions must be fulfilled, and the
decay of the moments can never be faster than 1/n if X has jumps of both signs.

The intuition behind the asymptotics of the detection error probability ∆n(x) is given
by the following:

bn∆n(x) = bnP(x < M ≤ x+ b−1
n V (n))

≈
∫ ∞

0

bnP(x < M ≤ x+ b−1
n y)P(V (n) ∈ dy)

→ fM (x)EV̂ ,

where fM is a density of M ; we also show that EV̂ has a simple explicit formula
in terms of the basic parameters. The second line is suggested by the asymptotic
independence of V (n) and M (the convergence in (1.2) is Rényi-mixing). Note also
that uniform integrability of V (n) is needed in the last step, which forces us to assume
that X has unbounded variation on compacts; we assume that α ∈ (1, 2], see (2.5).
Making ≈ precise turns out to be a major undertaking. In fact, asymptotic independence
between M and V (n) is not enough – one can construct counterexamples resembling
those in [5, Theorem 2.4(ii)]. In addition to exact asymptotics, we also provide bounds
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Zooming-in on a Lévy process

on both the moments and the error probability ∆n(x) in the cases when the zooming-in
assumption (2.6) is not satisfied.

Paper structure: In Section 2 we set up the notation and provide a thorough dis-
cussion of the basic zooming-in assumption (2.6) including some important classes of
examples. Section 3 explores some immediate implications of assumption (2.6), including
an invariance principle for the ladder process and regular variation of the associated
bivariate exponents and Lévy measures. This is then used to establish the rates of
decay of P(M ≤ ε) and P(τ ≤ ε) as ε ↓ 0. It is noted that the material in the other
sections is largely independent of Section 3. In Section 4 we show uniform integrability
of V (n) for α > 1 and provide moment asymptotics of E(M −M (n))p for α > p under the
zooming-in assumption (2.6); we show a logarithmically tight upper bound otherwise.
Section 5 establishes exact asymptotics of the error probability ∆n(x). The proofs of
many preparatory and auxiliary results are deferred to Appendix A, while Appendix B
provides a correction to the main proof in [34] which is crucial for the developments in
this work.

Literature overview: The fundamental work in this area is [3], where the limit
theorem for M − M (n) was established in the case of a linear Brownian motion X.
This sparkled research in various application areas including mathematical finance,
see [15] for approximations of option prices in discrete-time models using continuous-
time counterparts. Various expansions and bounds on the expected error E(M −M (n))

were derived in [21, 33, 35] among others. The error probability ∆n(x) asymptotics was
identified in [14] in the case of a linear Brownian motion and later extended in [23] to
Brownian motion perturbed by an independent compound Poisson process. An interested
reader may consult [24] for an overview of the literature regarding discretization of
Brownian motion, see also [12] for non-uniform grids. Furthermore, there is a large
body of literature in risk theory concerned with stochastic observation times, such as
the epochs of an independent Poisson process, see [1] providing a link between various
exit problems for Poissonian and continuous observations.

There is also a large body of literature concerned with the supremum of a Lévy
process, see [16, 17, 38] among many others, and with the small-time behavior of Lévy
processes, see [7, 22, 29, 32] and references therein.

2 Preliminaries and examples

To set up the notation, recall the Lévy-Khintchine formula

EeθXt = eψ(θ)t, ψ(θ) = γθ +
σ2

2
θ2 +

∫
R

(
eθx − 1− θx1{|x|<1}

)
Π(dx)

with θ ∈ iR and parameters γ ∈ R, σ ≥ 0,Π(dx) where the latter is a Lévy measure
satisfying

∫
R

(x2 ∧ 1)Π(dx) < ∞. In the case of
∫ 1

−1
|x|Π(dx) < ∞ we have a simplified

expression

ψ(θ) = γ′θ +
σ2

2
θ2 +

∫
R

(
eθx − 1

)
Π(dx) (2.1)

with γ′ ∈ R being called the linear drift. We write ub.v. and b.v. for processes of
unbounded and bounded variation on compacts, respectively. Recall that b.v. case
corresponds to σ = 0 and

∫ 1

−1
|x|Π(dx) <∞, so that (2.1) can be used. Furthermore, we

let
Xt = {Xs : s ∈ [0, t]}, Xt = inf{Xs : s ∈ [0, t]}

be the running supremum and infimum of X, respectively, so that M = X1. This notation
will be needed in a few places below, where different time horizons and Lévy processes
are used.
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Zooming-in on a Lévy process

Let us introduce some notation for the tails of Π:

Π+(x) = Π(x,∞), Π−(x) = Π(−∞,−x), Π(x) = Π+(x) + Π−(x) (2.2)

with x > 0. We also define the truncated mean and variance functions for x ∈ (0, 1):

m(x) = γ −
∫
x<|y|<1

yΠ(dx), v(x) = σ2 +

∫
|y|<x

y2Π(dx), (2.3)

which play a fundamental role in the study of small time behavior of X. Finally, we write
f ∈ RVα to say that f is a function regularly varying at 0 with index α, see [11].

2.1 Important indices

Define the following indices:

β0 := inf
{
β ≥ 0 :

∫
|x|<1

|x|βΠ(dx) <∞
}
,

β∞ := sup
{
β ≥ 0 :

∫
|x|>1

|x|βΠ(dx) <∞
}
.

(2.4)

The index β0 ∈ [0, 2] provides some basic information about the intensity of small jumps
and is often called Blumenthal-Getoor index, whereas β∞ ∈ [0,∞] is about integrability
of big jumps. Moreover, let

α =


2, σ 6= 0

1, b.v. with γ′ 6= 0

β0, otherwise

(2.5)

and note that necessarily α ≥ β0.

2.2 Attraction to self-similar processes under zooming in

Throughout most of this work we assume that

Xε/aε
d→ X̂1, as ε ↓ 0 (2.6)

for some function aε > 0 and a random variable X̂1, not identically 0. Then necessar-
ily [36, Thm. 15.12(ii)] X̂1 is infinitely divisible, and the above weak convergence extends
to the convergence of the respective processes (in Skorokhod J1 topology):

(Xεt/aε)t≥0
d→ (X̂t)t≥0.

Furthermore, the Lévy process X̂ must be self-similar with Hurst parameter 1/α for
some α ∈ (0, 2], implying that it is either

(i) a (driftless) Brownian motion, and then α = 2,

(ii) a linear drift, and then α = 1,

(iii) a strictly α-stable Lévy process, and then α ∈ (0, 2).

Note that α = 1 corresponds to two different classes: drift process and strictly 1-stable
process also known as a Cauchy process (symmetric and drifted), and this suggests that
α = 1 is often an intricate case. Moreover, aε ∈ RV1/α, that is, the scaling function is
regularly varying at 0 with index 1/α. The respective domains of attraction are completely
characterized in terms of Lévy triplets in [34], which also provides a comprehensive
overview of the related literature (the domains of attraction to the Brownian motion and
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Figure 1: Self-similar Lévy processes with parameters (α, ρ)

linear drift have been characterized in [26] before). We emphasize that the parameter α
is necessarily of the form (2.5), see [34, Cor. 1]. Moreover, the limit X̂ is unique up to
scaling by a positive constant and aε is unique up to asymptotic proportionality: aε ∼ ca′ε.

In the following we will make extensive use of the positivity parameter of the attractor:

ρ = P(X̂1 > 0),

which can be easily derived from the Lévy triplet of X̂ using formulas in [45]. It is
well known that the pair (α, ρ) specifies the self-similar process X̂ up to scaling by a
positive constant. This is sufficient for our purpose since we may always choose an
appropriate scaling sequence aε. For α ∈ (1, 2] the range of ρ is given by ρ ∈ [1−1/α, 1/α]

with the left and right boundary values corresponding to the spectrally-positive and
spectrally-negative processes, respectively, see Figure 1. For α ∈ (0, 1] we have ρ ∈
[0, 1] with boundary values corresponding to a decreasing and increasing processes,
respectively. Finally, α = 1, ρ ∈ (0, 1) specifies the class of drifted Cauchy processes,
whereas α = 1, ρ = ±1 corresponds to linear drifts with signs ±. We often write

X ∈ Dα,ρ

to say that (2.6) holds with 1/α-self-similar process X̂ having positivity parameter ρ.
Note that X ∈ Dα,ρ implies that P(Xε > 0)→ ρ as ε ↓ 0, which follows from the fact that

P(X̂1 = 0) = 0.

2.3 Examples

The trivial examples satisfying (2.6) are (i) σ > 0 and arbitrary γ,Π(dx) and (ii) b.v.
process with γ′ 6= 0 and otherwise arbitrary Π(dx). In case (i) X̂ is a Brownian motion
and aε is asymptotically proportional to ε1/2, and in case (ii) X̂ is a linear drift (having
the same sign as γ′) and aε is asymptotically proportional to ε.

Let us stress that (2.6) is a weak regularity assumption satisfied for almost every Lévy
process of practical interest. The most notable exceptions are the driftless compound
Poisson process and its neighbors: driftless gamma and variance gamma processes,
both of which satisfy σ = γ′ = 0,Π(x) ∈ RV0 as x ↓ 0. In other words, small jump
activity is too weak to have a non-trivial limit. In the following we briefly consider some
important classes of Lévy processes and establish their zooming-in limits (such examples
are missing in [34]).
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2.3.1 Tempered stable processes (also known as CGMY)

A rather general class of Lévy processes is obtained by considering the Lévy measure
Π(dx) of the form

Π(dx) = c+x
−1−α+e−λ+x1{x>0}dx+ c−|x|−1−α−eλ−x1{x<0}dx,

where c±, λ± ≥ 0, α± < 2 and α± > 0 if λ± = 0. Particular examples are stable, gamma,
inverse Gaussian and variance gamma processes. When c± = 0 we put α± = 0. We
assume that there is no Gaussian part (σ = 0) since otherwise X̂ is a Brownian motion,
and that in b.v. case (α+, α− < 1) there is no linear drift (γ′ = 0) since otherwise X̂ is a
linear drift process.

We have the following cases according to [34, Thm. 2] (for clarity we avoid specifying
ρ in some cases):

• if α∓ ≤ α± ∈ (0, 1) ∪ (1, 2) then X̂ is a strictly α±-stable process; in the case of a
strict inequality X̂ has one-sided jumps of sign ±.

• if α∓ < α± = 1 or α+ = α− = 1 with c∓ < c± then X̂ is a linear drift process of
sign ∓ (the sign might look counterintuitive at first, see Remark 2.4).

• if α+ = α− = 1 and c+ = c− then X̂ is a Cauchy process.

• if α+, α− ≤ 0 then such a process does not have a non-trivial limit under zooming-in;
the intensity of jumps is too small.

In particular, the gamma process has no limit, and the same is true for variance gamma
processes with 0 mean (in these cases we have α± = 0).

2.3.2 Generalized hyperbolic processes

Another important family of Lévy processes is a 5-parameter class of generalized hyper-
bolic Lévy motions introduced by Barndorff-Nielsen [6] and advocated for financial use
in [30]. Note that this class includes normal inverse Gaussian processes. Generalized
hyperbolic processes have no Gaussian component and their Lévy measure possesses a
density behaving as C/x2 +O(1/|x|) at 0 for some constant C > 0, see [41, Prop. 2.18].
Thus such processes are ub.v. and satisfy Π± ∈ RV−1 with Π+(x)/Π−(x) → 1 as x ↓ 0.
We also see that xΠ+(x) → C and with a little more work we find that

∫
x≤|y|<1

yΠ(dy)

has a finite limit. Hence according to [34, Thm. 2] every generalized hyperbolic motion
is attracted to a Cauchy process.

2.3.3 Subordination

Another popular way to construct a Lévy process is by considering Xt = YSt , where Y and
S are two independent Lévy processes and the latter is non-decreasing (a subordinator).
In this case, it is sufficient to check (2.6) for the underlying processes:

Lemma 2.1. Suppose that Yε/yε
d→ Ŷ1, Sε/sε

d→ Ŝ1 as ε ↓ 0 with yt, st > 0 and non-trivial
limits. Then (2.6) is satisfied with X̂1 = ŶŜ1

and aε = ysε .

Proof. With obvious notation we have for any θ ∈ iR that ψY (θ/yε)ε → ψŶ (θ) and a
similar statement is true for S. Now compute

ψ(θ/aε)ε = ψS(ψY (θ/ysε))ε = ψS(ψŶ (θ)/s′ε)ε→ ψŜ(ψŶ (θ)),

where s′ε ∼ sε and such a change is irrelevant for the limit.
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Letting αY , αS ∈ (0, 1] be the corresponding indices, see (2.5), we find that α = αY αS;
one can see this by recalling that a ∈ RV1/α. Note also that ρ = ρŶ . Thus subordination
allows for a direct description of the limiting process without the need to identify the
Lévy triplet of X. For example, the normal inverse Gaussian must belong to D1,1/2. That
is, the limit is a Brownian motion subordinated by the 1/2-stable subordinator and this
yields a Cauchy process as already observed in §2.3.2.

2.3.4 Change of measure

Another important tool is the exponential change of measure, also known as the Esscher
transform. It turns out that (2.6) is invariant under an arbitrary measure change. In this
regard we consider an absolutely continuous measure Q� P with respect to the sigma
algebra F1 = σ(Xt, t ∈ [0, 1]).

Lemma 2.2. Assume (2.6) and consider Q � P on F1. Then Xε/aε under Q weakly
converges to X̂1 as ε ↓ 0.

Proof. It is sufficient to show that the convergence in (2.6) is Rényi-mixing:

E(f(Xε/aε)L)→ Ef(X̂1)EL

for an arbitrary integrable random variable L and a bounded continuous function f , since
then we take L to be the respective Radon-Nikodym derivative and note that EL = 1.
According to [2, Prop. 2(D”)] it is sufficient to establish the joint convergence

(Xε/aε, Xt1 , . . . , Xtn)
d→ (X̂1, Xt1 , . . . , Xtn) ε ↓ 0,

where X̂1 is independent of X. This statement follows easily by writing Xti = (Xti −
Xε) +Xε on the left hand side and using the independence of increments.

2.3.5 A sufficient condition

The following result provides an easy-to-check condition which implies (2.6). It does not
allow, however, to check attraction to Cauchy processes. Note that one may also check
the following condition for −X instead of X.

Proposition 2.3. Assume that σ = 0, γ′ = 0 in b.v. case, and Π+ ∈ RV−α with α ∈ (0, 2].
Then (2.6) holds true in the following cases:

• α = 2 and lim infx↓0 Π+(x)/Π−(x) > 0,

• α = 1 and lim infx↓0 Π+(x)/Π−(x) > 1

(positive/negative linear drift limit according to b.v./ub.v.),

• α ∈ (0, 1) ∪ (1, 2) and limx↓0 Π+(x)/Π−(x) ∈ (0,∞].

Proof. See Appendix A.1 for the proof.

Remark 2.4. In the case α = 1 in Proposition 2.3 we assume that the positive jumps
are dominant and show that X̂ is then a linear drift. One expects that this drift is
positive, which is indeed true when X is b.v. If, however, X is ub.v. then the limiting
drift process has a negative slope, which on an intuitive level can be explained by the
standard construction of X as the limit of compensated compound Poisson processes. It
turns out that the compensating drift ‘wins’ – it determines the sign.
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Let us stress that the case α = 1 with Π+(x) ∼ Π−(x) ∈ RV−1 does not guarantee (2.6).
In this case, according to [34, Thm. 2], we need to check that m(x)/(xΠ(x)) has a limit
in [−∞,∞] with m(x) defined in (2.3); finite limits correspond to X̂ being Cauchy. In the
following, we provide an example where the latter does not hold true and thus (2.6) is
not satisfied.

We consider an ub.v. Lévy process with

σ = γ = 0, and Π+(x) = (1 + u(x))/x, Π−(x) = 1/x

for small enough x, where u(x) = sin(log(− log x))/ log x → 0. One can verify that
(1 + u(x))/x is decreasing for small enough x and so we have legal Π±(x) functions,
which are asymptotically equivalent and RV−1. Now compute

m(x) = c+

∫ h

x

yd
u(y)

y
= c′ − u(x)−

∫ h

x

y−1u(y)dy,

where h > 0 is some small number and c, c′ are constants. The latter integral evaluates
to cos(log(− log x)) − c′′ which is an oscillating function as x ↓ 0 and the same is true
about m(x). Finally, xΠ(x)→ 2 and we see that m(x)/(xΠ(x)) oscillates as well, which
shows that (2.6) does not hold.

3 First implications of the attraction assumption

Various properties of a process X are inherited by the attractor X̂; we assume (2.6)
throughout this section. There are, however, numerous exceptions which may look
surprising at first. For example, if X does not hit (0,∞) immediately (point 0 is irregular
for (0,∞) for the process X) then also X̂ does not hit (0,∞) immediately, implying that
X̂ is decreasing, i.e., ρ = 0. It is not true in general, however, that if X hits (0,∞)

immediately then so does X̂, nor it is true that b.v. (ub.v.) process is attracted to b.v.
(ub.v.) process; some counterexamples are given in [34, Section 4.2].

Recall that X creeps upward if P(Xτx = x) > 0 for some x > 0 (and then for all).
Let us note that a self-similar Lévy process creeps upward if and only if it is spectrally-
negative αρ = 1, which can be readily verified from [9, Thm. VI.19(ii)]. Importantly,
the creeping property is preserved when taking the zooming-in limit, see Corollary 3.3
below.

Finally, let us note that the material of this section is not required for Section 4 and
Section 5, apart from a simple bound in Lemma 5.7. Nevertheless, the results of this
section, apart from being of independent interest, may be used to gain further insight
into the main quantities, see, e.g. the discussion at the beginning of Section 4.1.1

3.1 Convergence of ladder processes

Let (L−1
t , Ht) be the ascending ladder process with the Laplace exponent κ(a, b):

E exp(−aL−1
t − bHt) = exp(−κ(a, b)t) and the local time Lt is normalized so that κ(1, 0) =

1. This is always possible, even when X is a decreasing process in which case k(a, b) = 1

(the ladder process stays at (0, 0) before it is killed at rate 1). We use the obvious notation
qL−1 , γ′L−1 and ΠL−1(dx) to denote the killing rate, drift and Lévy measure of the ladder
time process; similar notation is used with respect to the ladder height process H. We
write (L̂−1

t , Ĥt) and κ̂(a, b) for the ascending ladder process corresponding to X̂ and
its Laplace exponent, respectively. Furthermore, we consider Itô measure n(·) of the
excursions from the supremum, i.e., of the process Xt −Xt, and let n(·) be the analogue
for −X process (excursions from infimum for the original process). It is tacitly assumed
that Xt ∈ dy under n(·) and n(·) implies t < ζ, where ζ is the lifetime of an excursion. We
refer the reader to [9] for the construction and basic properties of these objects.
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Let us explicitly state a simple consequence of (2.6) observed in [19] and [34]. We
note that when X does not hit (0,∞) immediately the ladder process is a bi-variate
compound Poisson, and the following result would be useless.

Proposition 3.1. IfX hits (0,∞) immediately and satisfies (2.6) then with cε = 1/κ(1/ε, 0)

we have (
L−1
tcε

ε
,
Htcε

aε

)
t≥0

d→ (L̂−1
t , Ĥt)t≥0 as ε ↓ 0,

and in terms of Laplace exponents:

κ(a/ε, b/aε)

κ(1/ε, 0)
→ κ̂(a, b).

In particular, (L−1, H) has a zooming-in limit (L̂−1, Ĥ) with a pair of scaling functions
(c−1
ε , ac−1

ε
), where c−1

ε is the inverse of cε.

Proof. The local time of Xtε/aε is given by Ltε/cε, and the corresponding scaling require-
ment then reads: κ(1/ε, 0)cε = 1 yielding cε = 1/κ(1/ε, 0). Thus the inverse local time
and the ladder height processes are given by

L−1
tcε/ε, XL−1

tcε
/aε = Htcε/aε.

Finally, the weak convergence is stated in e.g. [34, Appendix C].

Various interesting results follow immediately from the convergence in Proposi-
tion 3.1, and the following expressions for the 1/α-self-similar Lévy process X̂ with
positivity parameter ρ:

κ̂(a, 0) = aρ, κ̂(0, b) = κ̂(0, 1)bαρ, (3.1)

see e.g. [9, §VIII.1]. This, in particular, means that L̂−1 and Ĥ are ρ- and αρ-self-similar,
respectively, when ρ 6= 0. The case ρ = 0 corresponds to a process staying at 0 before
getting killed, that is, the limit is trivial.

Corollary 3.2. If X ∈ Dα,ρ then κ(1/ε, 0) ∈ RV−ρ and κ(0, 1/ε) ∈ RV−αρ.

Proof. We only show the second claim. For any b > 0

κ(0, 1/(baε))

κ(0, 1/aε)
→ κ̂(0, 1/b)

κ̂(0, 1)
= b−αρ,

which is also true for ρ = 0.

Corollary 3.3. If X ∈ Dα,ρ creeps upwards then necessarily αρ = 1, i.e., X̂ is spectrally
negative.

Proof. According to [9, Thm. VI.19(ii)], X creeps upward if and only if γ′H > 0, but then
κ(0, 1/ε) ∼ γ′Hε−1 which is RV−1. Corollary 3.2 shows that necessarily αρ = 1.

It is noted that one can give an alternative proof based on the characterization of
creeping processes in terms of their Lévy triplets, see [44], or [29, Sec. 6.4], but such a
proof is much longer.

Similarly, L−1 has a positive drift component if and only if X does not hit (−∞, 0)

immediately, in which case ρ = 1 implying that X̂ is a subordinator. This is equivalent to
X not hitting (−∞, 0) immediately, which can also be derived more directly.
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Zooming-in on a Lévy process

Corollary 3.4. Assume that X ∈ Dα,ρ is not a decreasing process. Then

ΠL−1(ε) ∈ RV−ρ,

except when X does not hit (−∞, 0) immediately (ρ = 1). Moreover,

ΠH(ε) ∈ RV−αρ,

except when X creeps upward (αρ = 1).

Proof. Corollary 3.2 tells us that

κ(1/ε, 0)− qL−1 =

∫ ∞
0

(1− e−x/ε)ΠL−1(dx) = ε−1

∫ ∞
0

e−x/εΠL−1(x)dx

is RV−ρ. Tauberian theorem [11, Thm. 1.7.1, Thm. 1.7.2] implies that ΠL−1 ∈ RV−ρ when
ρ 6= 1. The case ρ = 1 follows from Proposition 3.1 and the specification of the domains
of attraction in [34, Thm. 2(iii)] together with Lemma A.2; recall we have excluded the
case where L−1 has a linear drift. The same arguments can be used to prove the second
statement.

Next, we discuss the behavior of the entrance law at small times, which will come in
use in Section 5.

Proposition 3.5. Assume that X ∈ Dα,ρ is not monotone and it hits (−∞, 0) immediately.
Then

n(ε < ζ) ∈ RV−ρ

and for any fixed δ > 0 there exist f, g ∈ RVρ such that

f(ε) ≤ n(Xε > δ) ≤ g(ε)

where the lower bound additionally requires that X has large enough positive jumps.

Proof. It is known that n(ε < ζ) = qL−1 + ΠL−1(ε), where ζ is the lifetime of the generic
excursion. Thus the first result follows immediately from Corollary 3.4. The bounds on
n(Xε > δ) are derived in Appendix A.2.

Finally, we remark that one can proceed further from here to study, e.g., convergence
of Itô excursions and meanders among other things. It is noted that in [27] the authors
considered a Lévy process with a zooming-out limit (classical regime) and proved various
local limit results.

3.2 On the left tail of supremum

First, we consider the supremum over infinite time horizon X∞, which in the case of
a killed process corresponds to the time horizon which is independent and exponentially
distributed. We introduce the potential measure of the ladder height process:

UH [0, x] = E

∫ ∞
0

1{Ht≤x}dt,

where by convention the indicator is 0 when t exceeds the killing time of H.

Proposition 3.6. If X ∈ Dα,ρ then UH [0, x] ∈ RVαρ, where X may be a killed process. If
X is either killed or drifts to −∞ then

P(X∞ ≤ x) ∈ RVαρ as x ↓ 0.
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Proof. From Corollary 3.1 we know that the Laplace exponent of the ladder height
process is regularly varying at∞ with index αρ, killing adds a constant to it and so it is
still RVαρ. Note that the potential measure UH(dx) satisfies

∫∞
0
e−θxUH(dx) = 1/κ(0, θ),

and hence by Tauberian theorem [11, Thm. 1.7.1] UH [0, x] ∈ RVαρ and the first statement
is proven. But then

P(H∞ ≤ x) = qHUH [0, x] ∈ RVαρ,

where qH > 0 is the respective killing rate. The second result now follows.

In the case of a deterministic time interval [0, 1] we only have the sandwich bounds:

Proposition 3.7. Assume that X ∈ Dα,ρ. If X is not a subordinator then there exist
f, g ∈ RVαρ such that

f(x) ≤ P(X1 ≤ x) ≤ g(x),

and otherwise P(X1 ≤ x) decreases faster than any power as x ↓ 0.

Proof. For the upper bound, observe that

P(Xe1 ≤ x) =

∫ ∞
0

e−tP(Xt ≤ x)dt ≥
∫ 1

0

e−tP(X1 ≤ x)dt = cP(X1 ≤ x),

but the left hand side is RVαρ by Proposition 3.6. The lower bound is based on the
bounds from [38] and requires at present a number of tricks. We, therefore, present
the proof of the lower bound in Appendix A.2. Note that taking a subordinator with
a positive drift gives an example with P(X1 ≤ x) = 0 for small enough x which is not
regularly varying; other subordinators are discussed in Appendix A.2.

It would be interesting to understand if P(X1 ≤ ·) ∈ RVαρ as is the case for a strictly
stable process. For the latter process, even the density of X1 is regularly varying at 0,
see [28]. The time of supremum τ on the interval [0, 1] has indeed regularly varying tails:

Proposition 3.8. Assume that X ∈ Dα,ρ is not monotone. Then for the time interval
[0, 1] we have

P(τ ≤ ε) ∈ RVρ, P(τ ≥ 1− ε) ∈ RV1−ρ .

Proof. We only prove the first statement since the second is analogous by time reversal,
say. We may assume that X hits (0,∞) immediately, because otherwise the statement is
immediate. [17, Thm. 6] provides us with the formula

P(τ ≤ ε) =

∫ ε

0

n(s < ζ)(n(1− s < ζ) + γ′L−1)ds.

Note that the second term under the integral has a positive limit as s ↓ 0, and the first
term is RV−(1−ρ) according to the first result of Proposition 3.5. Thus the integrand is
RV−(1−ρ) and hence P(τ ≤ ε) ∈ RVρ.

4 Moments of the discretization error

Consider the error M −M (n) of approximating the supremum of a Lévy process over
the interval [0, 1] by the maximum over the uniform grid with step size 1/n. Our first
result provides an upper bound on the moments of this discretization error for a general
process X, not necessarily satisfying the zooming-in assumption (2.6).

Theorem 4.1. For any p > 0 satisfying
∫
|x|>1

|x|pΠ(dx) <∞ and any ε > 0 we have

E(M −M (n))p =

{
O(n−p/α+ε), p ≤ α,
O(n−1), p > α

as n→∞.
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Moreover, the bound can be strengthened to O(n−p/α) in the boundary cases: (i)
p ≤ α = 2 and (ii) p ≤ α = 1 and X is b.v.

For p = 1 the result in Theorem 4.1 is close to [21, Theorem 5.2.1]; in the case of b.v.
process X our bound O(n−1) is slightly sharper. Importantly, the result [21] cannot be
generalized in a straightforward fashion to p 6= 1, since it crucially relies on Spitzer’s
identity. Nevertheless, [33] provides some bounds for p 6= 1 in the particular case when
σ = 0, γ′ = 0 and Π(dx) has a density sandwiched between c1|x|−1−α and c2|x|−1−α for
small |x|. These bounds, however, have suboptimal rates (in the logarithmic sense)
unless p > 2α or X is spectrally negative.

Our main goal, however, is to provide exact moment asymptotics, which is possible
under the regularity assumption (2.6). In the following, V (n) := bn(M −M (n)), as defined
in (1.2) and bn = 1/a1/n.

Theorem 4.2. Assume thatX ∈ Dα,ρ. Then for any p ∈ (0, α) satisfying
∫
|x|>1

|x|pΠ(dx) <

∞ the sequence E
(
V (n)

)p
is bounded.

For completeness let us recall from [34] that

V̂ = min{−ξ̂U+Z}, (4.1)

where (ξ̂t, t ∈ R) is the limit of X̂ over [0, T ] as seen from its supremum point as T →∞,
and U is an independent uniform random variable. The weak convergence in (1.2)
and Theorem 4.2 immediately yield the uniform integrability of certain powers of V (n).
Combining this result with the limiting expression for EV̂ (n) in [4, Prop. 2], we obtain
the following result (recall the definition of β∞ in (2.4)).

Corollary 4.3. Let X ∈ Dα,ρ. Then for any positive p < α ∧ β∞ we have

E
(
V (n)

)p
→ EV̂ pP(τ /∈ {0, 1}) ∈ (0,∞) as n→∞.

In particular, for α > 1 and β∞ > 1:

EV (n) → EV̂ = −ζ
(
α− 1

α

)
EX̂+

1 as n→∞,

where ζ is the Riemann zeta function.

It is noted that EX̂+
1 has an explicit expression, see [45, Thm. 3] or [4].

Proof. Note that if τ ∈ {0, 1} with positive probability then (V (n) | τ ∈ {0, 1}) = 0

a.s., because of the nature of discretization. Now the first result follows from the
weak convergence in (1.2) and uniform integrability of (V (n))p, where the latter is a
consequence of Theorem 4.2 applied with a slightly larger p.

Next, we note that α ∈ (1, 2] implies that X is ub.v. process and, in particular,
P(τ ∈ (0, 1)) = 1. Moreover, EV̂ (n) → EV̂ , where V̂ (n) corresponds to the discretization
of X̂ which is in its own domain of attraction. The limit of EV̂ (n) was obtained in [4, Prop.
2] using self-similarity and Spitzer’s identity, see also [3].

4.1 Comments and extensions

Note that Theorem 4.1 is weaker than Corollary 4.3 (when the conditions of the latter
are satisfied) providing the exact asymptotics of E(M −M (n))p. In particular, we see that
E(M −M (n))p is a sequence regularly varying at ∞ with index −p/α, which is clearly
upper-bounded by n−p/α+ε for large n.

Remark 4.4. Assuming that X has jumps of both signs, it is not hard to see that we may
choose c, h > 0 such that P(M −M (n) > h) ≥ cn−1. Hence for any p > 0 we must have
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E(M −M (n))p ≥ c′n−1, see also Lemma 5.8 for a somewhat related problem. Note that
this complements the case p > α in Theorem 4.1 with a lower bound of the same order.
Furthermore, when X ∈ Dα,ρ and p > α, we get that E

(
V (n)

)p ≥ bpnc′n−1 →∞, because
bpn is regularly varying at∞ with index p/α > 1.

This question is more delicate for one-sided processes, and we have no complete
answer here. In the case of no jumps (X is a Brownian motion with drift) boundedness
of exponential moments was established in [3]. Furthermore, if X is a b.v. spectrally-
negative (-positive) process, then the error M −M (n) is bounded from above by |γ′|n−1,
showing that E(M −M (n))p = O(n−p), see also [33].

Remark 4.5. Letting V (n)
s be the analogue of V (n) but for a shifted grid (i+ s)/n with

i ∈ Z and all points in [0, 1], we note that also {E
(
V

(n)
s

)p
: n ≥ 1, s ∈ [0, 1)} is bounded

under the assumptions of Thm. 4.2; the proof does not need any modifications. This
readily implies (by letting s ↑ 1, s ↓ 0) that we may also exclude the endpoints from the
standard grid without affecting the result of Thm. 4.2.

4.1.1 Dealing with big jumps

If
∫∞

1
xΠ(dx) =

∫ −1

−∞ |x|Π(dx) = ∞ then necessarily EV (n) = ∞ for all n ≥ 1, and the
analogous statement is true for all p > 0. When only the positive jumps, say, are non-
integrable we may still arrive to an unbounded sequence of EV (n). The problem is that
the discretization error obtained by looking to the right of the supremum time exclusively
may not be bounded in expectation, even when jumps exceeding 1 in absolute value are
discarded (this can be shown using the lower bound on the entrance law in Prop. 3.5).

Importantly, we may remove the condition β∞ > 1 on the absence of big jumps if we
restrict to the event that no two big jumps are close to each other or to the endpoints of
the interval, say. For this, let T1 < T2 < . . . be the times of jumps exceeding 1 in absolute
value and let N be their number in the interval (0, 1); we also put T0 = 0 and TN+1 = 1.
Finally, define the event to be excluded:

A(n) = {∃i ∈ {0, . . . , N} : Ti+1 − Ti < 1/n}. (4.2)

It is well-known that P(A(n)) = O(1/n) as n → ∞, which is also easy to see using
Slivnyak’s formula from Palm theory; this observation will be used in the proof of
Prop. 5.6.

Proposition 4.6. Let X ∈ Dα,ρ with α > 1. Then the family Ṽ (n) = V (n)1A(n)c is

uniformly integrable, and EṼ (n) → EV̂ .

Proof. The proof is given in Appendix A.3.

4.1.2 Conjecture for processes of bounded variation

Consider a b.v. process X with
∫
|x|>1

|x|Π(dx) <∞. Recall that we have an upper bound

on E(M −M (n)) of order n−1, see Theorem 4.1, and a lower bound of the same order
when X has jumps of both signs, see Remark 4.4. It is thus natural to ask if nE(M−M (n))

has a finite positive limit as n→∞. We conjecture the following:

nE(M −M (n))→ 1
2 |γ
′| · P(τ ∈ (0, 1)) + 1

2I, (4.3)

where

I =:

∫ 1

0

∫∫
x,y,u,v≥0

((x− u) ∧ (y − v))+Π(dx)Π(−dy)P(−Xt ∈ du)P(X1−t ∈ dv)dt.
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Here the first term is suggested by the small-time behavior, and the second comes
from the possibility of having a jump up (of size x) before τ and a jump down (of
size −y) after τ , and no observations in-between. This result should not rely on the
zooming-in assumption (2.6), and may require quite a different set of tools for its proof.
Proposition A.5 in Appendix A.3 demonstrates (4.3) in the simple case of a compound
Poisson process with drift. Note also that I = 0 in the case of one-sided jumps, and
otherwise we can not expect n(M −M (n)) to be uniformly integrable.

4.2 Proofs

The main idea is to consider a certain upper bound on V (n) given in terms of fluctu-
ation of the zoomed-in process X(n)

t = Xt/n/a1/n, t ∈ [0, n] around its supremum time.
Importantly, this upper bound is stochastically dominated by the diameter of the range of
X(n) on the unit interval, and the latter can be analyzed using standard techniques. This
crucial domination result relies on Bertoin’s representation of pre- and post-supremum
processes in [9] and it is given by Lemma 4.7 below.

Recall that we write XT and τ(T ) for the supremum and its time over the interval
[0, T ] where T > 0.

Lemma 4.7. Consider X on the interval [0, T ] for any fixed T ≥ 1 and let

ZT = sup
t∈[0,1]

{(XT −Xτ(T )−t) ∧ (XT −Xτ(T )+1−t)}

with convention that Xs = −∞ if s /∈ [0, T ]. Then ZT is first-order stochastically
dominated by Z1 and hence by X1 −X1.

Proof. According to Bertoin’s [8] representation of the joint law of post- and pre-

supremum processes on the interval [0, T ] we have ZT
d
= Z ′T , where

Z ′T := sup
t∈[0,1]

{X⇑t ∧ −(X⇓1−t)}, (4.4)

where X⇑t = Y +

a+t
and X⇓t = Y −

a−t
for some processes Y ± (which do not depend on the

choice of T ) and a+
t , a

−
t being the right-continuous inverses of A+

t :=
∫ t

0
1{Xs>0}ds and

A−t :=
∫ t

0
1{Xs≤0}ds, respectively. In particular, X⇑ and X⇓ jump into cemetery state at

the times A+
T and A−T , respectively, which is the only dependence on the time horizon T .

We use the convention that the cemetery state in the above minimum is ignored so that
minimum yields the other quantity. Thus for increasing T , the deaths of processes X⇑

and X⇓ can occur only later and hence X⇑t ∧−(X⇓1−t) may only become smaller for each t,
and so Z ′1 ≥ Z ′T a.s. Thus ZT is stochastically dominated by Z1, but from a simple sample
path consideration we have Z1 = X1 −X1 a.s. concluding the proof.

In the above Lemma it is crucial to consider pre- and post-supremum processes
together, since any of them can die arbitrarily early whereas the sum of lifetimes
is exactly T . In particular, we can not conclude that supt∈[0,1],t≤τ{XT − Xτ(T )−t} is
dominated by the analogous quantity for T = 1. In fact, the opposite is true. Furthermore,
the results of this Section are false if we look only to the left (or to the right) of the time
of supremum. This should not be confused with the removal of the observations at the
endpoints as discussed in Remark 4.5.

In the following we consider a family of Lévy processes

X
(n)
t = bnXt/n (4.5)
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with bn = 1/a1/n whenever (2.6) holds. Let (σ(n), γ(n),Π(n)) be the corresponding Lévy
triplets. It is noted that Π(n)(dx) = Π(b−1

n dx)/n,

γ(n) =
bn
n

(
γ −

∫
b−1
n ≤|x|<1

xΠ(dx)
)

and σ(n) = σbn/
√
n. (4.6)

Lemma 4.8. Let X ∈ Dα,ρ. Then γ(n), σ(n),
∫
|x|≤1

x2Π(n)(dx) have finite limits as n→∞.

Moreover, for any p < α such that
∫∞

1
xpΠ(dx) <∞ we have∫ ∞

1

xpΠ(n)(dx)→
∫ ∞

1

xpΠ̂(dx) <∞.

Proof. The first part is a direct consequence of [34, Eq. (19)–(21)], see also [36, Thm.
15.14]. The second part relies on regular variation and conditions for the domains of
attraction, and is given in Appendix A.3.

Lemma 4.9. If γ
(n)
+ , σ(n),

∫
|x|≤1

x2Π(n)(dx),
∫∞

1
xpΠ(n)(dx) are bounded then so is

E(X
(n)

1 )p.

Proof. The following arguments seem to be rather standard. Let Z(n)
t be the process

X
(n)
t , when the jumps exceeding 1 in absolute value are discarded and then the mean

is subtracted; in other words we temporarily assume that Π(n)(−∞,−1) = Π(n)(1,∞) =

γ(n) = 0. Assume for the moment that p > 1 and note that xp ≤ aex for some a > 0 and
all x ≥ 0. Hence

E

∣∣∣Z(n)
1

∣∣∣p /a ≤ E exp
(∣∣∣Z(n)

1

∣∣∣) ≤ E exp
(
Z

(n)
1

)
+ E exp

(
−Z(n)

1

)
showing that ‖Z(n)

1 ‖p is bounded if so are ψZ(n)(±1), but the latter follows from the
Lévy-Khintchine formula and boundedness of σ(n),

∫
|x|≤1

x2Π(n)(dx). The process Z(n) is
a martingale, and by Doob’s martingale inequality we have

‖Z(n)

1 ‖p ≤
p

p− 1
‖Z(n)

1 ‖p.

For p ∈ (0, 1] we simply use the inequality xp < 1 + x2 for all x > 0, and so E(Z
(n)

1 )p is
bounded for all n ≥ 1.

Note that

X
(n)

1 ≤ Z(n)

1 + γ
(n)
+ + P

(n)
1 ,

where P
(n)
1 is an independent compound Poisson process with Lévy measure

Π(n)(dx)1{x≥1}. But for any p > 0 we have the inequality (x+ y)p ≤ (1 ∨ 2p−1)(xp + yp)

for all x, y > 0. Thus it is left to show that E(P
(n)
1 )p is bounded. By Minkowski inequality

we find for p ≥ 1 that

‖P (n)
1 ‖pp ≤ ‖N (n)‖pp‖∆(n)‖pp ≤ E(N (n))dpe

∫ ∞
1

xpΠ(n)(dx)/λ(n) (4.7)

where N (n) is Poisson with intensity λ(n) = Π(n)(1,∞), and the generic jump ∆(n) is
distributed according to 1{x>1}Π

(n)(dx)/λ(n). But the moments of Poisson distribution
are polynomial functions (with 0 free term) of its intensity. This shows that the right
hand side of (4.7) is indeed bounded, because so are Π(n)(1,∞) ≤

∫∞
1
xpΠ(n)(dx). For

p ∈ (0, 1) we use the simple bound: (x+ y)p ≤ xp + yp for all x, y > 0.
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Proof of Theorem 4.2. Observe that V (n) is the error made by considering the maximum
of X(n)

t at the times 0, 1, . . . , n as compared to its supremum on [0, n]. According to

Lemma 4.7 we find that V (n) is first-order stochastically dominated by X
(n)

1 −X(n)
1 ; it is

sufficient to look at the discretization epochs right next to the time of supremum. But
from Lemma 4.8 and Lemma 4.9 (applied to X and −X) we readily see that the sequence

E(X
(n)

1 −X(n)
1 )p, n ≥ 1 is bounded given that p < α and

∫
|x|>1

|x|pΠ(dx) <∞.

Proof of Theorem 4.1. Define a family of Lévy processes X(n)
t as in (4.5) with bn = n1/α+

where α+ > α ≥ p. Using Lemma 4.7 we obtain

E(M −M (n))p = n−p/α+E(bn(M −M (n)))p ≤ n−p/α+E
(
X

(n)

1 −X(n)
1

)p
.

Furthermore, we may apply Lemma 4.9 because according to Lemma A.3 in Appendix A.3,
all the relevant quantities have 0 limits. The proof is now complete for p ≤ α. In the
cases (i) p ≤ α = 2 and (ii) p ≤ α = 1 with X b.v. we use Lemma A.4 instead.

When p > α we simply take α+ = p so that bn = n1/p. Note that∫ ∞
1

xpΠ(n)(dx) =

∫ ∞
b−1
n

xpΠ(dx),

which is bounded since p > α ≥ β0. The above reasoning now applies and we get the
upper bound of order n−1.

5 Asymptotic probability of error in threshold exceedance

Consider the error probability P(M > x,M (n) ≤ x) in detection of threshold ex-
ceedance. The main aim of this section is to prove the following theorem.

Theorem 5.1. Assume that X ∈ Dα,ρ with α > 1. Then M has a continuous density, say
fM (x), and for any x > 0

bnP(M > x,M (n) ≤ x)→ fM (x)EV̂

as n→∞, where bn = 1/a1/n and EV̂ is given in Corollary 4.3.

The intuition behind this result is explained in Section 1. It is also noted that
Theorem 5.1 has been established for a linear Brownian motion in [14], and later
extended to an independent sum of a linear Brownian motion and a compound Poisson
process in [23].

Remark 5.2. The result of Theorem 5.1 is also true for a shifted grid (i+ s)/n with all
points in [0, 1]. Furthermore, with some additional effort one can show that the limit in
Theorem 5.1 holds uniformly in all positive levels x away from 0 and all shifts s ∈ [0, 1).

5.1 Preparatory results

We start by recalling a basic result concerning convergence of integrals. It follows
immediately from the generalized continuous mapping theorem [36, Thm. 4.27] and
convergence of means [36, Lem. 4.11].

Lemma 5.3 (Convergence of integrals). Consider a sequence of probability measures µn
on a metric space S with a weak limit µ, and a sequence of measurable functions hn on S
such that hn(xn)→ h(x) whenever xn → x ∈ C ⊂ S such that µ(C) = 1. If, moreover, the
random variables hn(µn), corresponding to the push-forward measures, are uniformly
integrable then ∫

hn(x)µn(dx)→
∫
h(x)µ(dx).
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Zooming-in on a Lévy process

Throughout this section we assume that

X ∈ Dα,ρ with α > 1, (5.1)

which implies the Orey’s condition:

lim inf
ε↓0

εγ−2

(
σ2 +

∫ ε

−ε
x2Π(dx)

)
> 0 (5.2)

for some γ ∈ (1, 2], since the function in brackets must be RV2−α according to [34] and
then one can take γ ∈ (1, α); γ = 2 is possible only when σ2 > 0. Therefore, Xt has a
smooth bounded density, say p(t, x), for each t > 0, see [42, Prop. 28.3] and [40, Thm.
3.1]. Moreover, p(t, x) is continuous and strictly positive on (0,∞) × R, see [43]. The
following Lemma 5.4 shows that p(t, x) must be bounded on any set away from the origin.
We could not locate such a result in the literature, but see [39, Prop. III.6] and [31, Prop.
6.3] for some related results.

Lemma 5.4. Assume that (5.2) holds with γ > 1. Then for any δ > 0 the function p(t, x)

is upper bounded for all t > 0, x ∈ R such that t > δ or |x| > δ. The conclusion may fail
for any γ < 1.

Proof. See Appendix A.4.

It is noted that the proof of Lemma 5.4 also shows that p(0+, x) = 0 for any x 6= 0,
when γ > 1 and that for γ < 1 this does not need to be the case. In the following we
write Pz for the law of the shifted Lévy process X with X0 = z.

Lemma 5.5. Assume that (5.2) holds with γ > 1. Then, for any t > 0 the measure
Pz(Xt ∈ dx,Xt > 0) has a continuous density fz,t(x) which is bounded and jointly
continuous on {(x, z) : x > δ, z > 0} for any δ > 0.

Proof. We start as in the proof of [28, Lemma 8]. By the strong Markov property applied
at τ0 = inf{t ≥ 0 : Xt < 0}, the first time the process becomes negative, we find that

Pz(Xt ∈ dx,Xt ≤ 0)/dx =

∫
s∈(0,t),y≥0

Pz(τ0 ∈ ds,−Xs ∈ dy)p(t− s, x+ y),

where we use Pz(Xt = 0) = 0 and Pz(τ0 = t) = 0. Note that it is enough to establish that
the right hand side is jointly continuous for x > δ, z > 0, because then

fz,t(x) = p(t, x− z)−
∫
s∈(0,t),y≥0

Pz(τ0 ∈ ds,−Xs ∈ dy)p(t− s, x+ y)

must be bounded and jointly continuous.
For any zn → z > 0, xn → x > δ we need to show that∫

s∈(0,t),y≥0

Pzn(τ0 ∈ ds,−Xs ∈ dy)p(t− s, xn + y)

has the corresponding limit. This readily follows from Lemma 5.3, joint continuity of
p(t, x) and the fact that it is bounded for all t > 0 and x away from 0, see Lemma 5.4.

5.2 Proofs

Our proof of Theorem 5.1 essentially consists of two parts. First, we analyze a
restricted problem when τ is away from 0 in Proposition 5.6, which turns out to be much
simpler than the original problem. The main idea here is to split the path at some small
δ and to time-reverse the first piece, in order to sandwich the probability of interest
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Zooming-in on a Lévy process

between the integrals converging to the right quantity. The original problem is then
tackled by showing that the contribution arising from τ < δ can be neglected as δ ↓ 0,
which requires various further ideas.

Proposition 5.6. Assume (5.1) and choose δ ∈ (0, 1). Then P(M ∈ dx, τ ≥ δ) has a
continuous density, say fM (x; δ), and

bnP(M > x,M (n) < x, τ ≥ δ)→ fM (x; δ)EV̂

as n→∞ for any x > 0.

Proof. The upper bound on P(M > x,M (n) < x, τ ≥ δ) is obtained by restricting the
discretization grid to the times exceeding δ, see Figure 2. Considering the post-δ process

δ 1

z

y

Figure 2: Schematic sample path and the reversal

Xt+δ −Xδ, t ≥ 0 (independent of Xt, t ≤ δ and having the same law) and its functionals

M[δ,1] := sup
t∈[δ,1]

Xt −Xδ, V
(n)
[δ,1]/bn := sup

t∈[δ,1]

Xt − max
i/n∈[δ,1]

Xi/n

we have the upper bound:∫
z>0,y>0

P(M[δ,1] ∈ dz, V
(n)
[δ,1]/bn ∈ dy)P(x ∨Xδ < Xδ + z < x+ y)

=

∫
z>0,y>0

P(M[δ,1] ∈ dz, V
(n)
[δ,1] ∈ dy)Pz(Xδ ∈ (x, x+ y/bn], Xδ > 0) (5.3)

where in the second line we have used the time and space reversal (yielding a process
with the same law) at the time δ, see the dashed axes in Figure 2. The lower bound
is obtained by restricting to the event when the supremum over [0, δ) is smaller than
the discretized maximum over [δ, 1], implying that discretization epochs before δ do not
matter. Thus the lower bound is given by (5.3) with a single change, where Xδ > 0 is
replaced by Xδ > y/bn.

According to [34] the measure P(M[δ,1] ∈ dz, V
(n)
[δ,1] ∈ dy) has the weak limit P(M[δ,1] ∈

dz) × P(V̂ ∈ dy), because we are discretizing the process with the same law and the
limit does not depend on the time horizon neither on the grid shift. Moreover, for any
positive (yn, zn)→ (y, z) with z, y > 0 the mean value theorem and Lemma 5.5 show that

bnPzn(Xδ ∈ (x, x+ yn/bn], Xδ > 0) = fzn,δ(xn)yn → yfz,δ(x),

where xn ∈ (x, x+ yn/bn). Moreover, the same limit holds true for

bnPzn(Xδ ∈ (x, x+ yn/bn], Xδ > yn/bn) = bnPzn−yn/bn(Xδ ∈ (x− yn/bn, x], Xδ > 0)
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appearing in the lower bound. Assume β∞ > 1, see (2.4). Now Lemma 5.3 applies,
because the uniform integrability of the corresponding family of measures follows from
that of V (n)

[δ,1] and the boundedness of fz,δ(x). Hence the limit of interest is∫
yfz,δ(x)P(M[δ,1] ∈ dz)× P(V̂ ∈ dy) = fM (x; δ)EV̂ ,

where the continuity of
∫
fz,δ(x)P(M[δ,1] ∈ dz) = fM (x; δ) follows from the boundedness

of fz,δ(x) and the dominated convergence theorem.
For β∞ ≤ 1 note that bnP(A(n)) = bnO(1/n) → 0, where the event A(n) is defined

in (4.2). Thus we may work on the event A(n)c for the post-δ process, and apply Proposi-
tion 4.6 to get uniform integrability.

The following result, in particular, establishes continuity of the supremum density,
see also [20].

Lemma 5.7. Assume (5.1). Then fM (x) := limδ↓0 fM (x; δ) is a density of M continuous
for x > 0.

Proof. According to [17],

fM (x; δ) =

∫
s∈(δ,1),y>0

n(Xs/2 ∈ dy)fy,s/2(x)n(1− s < ζ)ds,

which is also true for δ = 0 yielding fM (x); here ζ denotes the lifetime.
It is left to show that fM (x) is continuous, for which it is sufficient to establish that∫

s∈(0,δ),y>0

n(Xs ∈ dy)fy,s(x)n(1− 2s < ζ)ds→ 0

as δ ↓ 0 uniformly in x ≥ x0 > 0, because fM (x; δ) is continuous according to Proposi-
tion 5.6. Recall from the proof of Lemma 5.5 that fy,s(x) ≤ p(s, x− y) and the latter is
bounded when x− y is away from 0, see Lemma 5.4. Hence it is sufficient to show that∫ δ

0

n(Xs > x0/2) sup
x
p(s, x)ds→ 0,

where supx p(s, x) = O(s−1/γ) with γ ∈ (1, α) according to [40, Thm. 3.1]. But n(Xs >

x0/2) is upper bounded by a function in RVρ as s ↓ 0 according to Proposition 3.5,
implying that it is bounded for small s (converges to 0) since necessarily ρ > 0. The proof
is now complete.

Proof of Theorem 5.1. We need to show that

lim sup
n→∞

bnP(M > x,M (n) < x, τ < δ) < Cx(δ), (5.4)

where Cx(δ) ↓ 0 as δ ↓ 0, because then Proposition 5.6 shows that

fM (x; δ)EV̂ ≤ lim inf bnP(M > x,M (n) < x) ≤ lim sup bnP(M > x,M (n) < x)

≤ fM (x; δ)EV̂ + Cx(δ)

implying the result with the help of Lemma 5.7.
We assume that β∞ > 1, see (2.4), since the other case can be handled in exactly the

same way as in Proposition 5.6. In order to remove the effect of shifting the grid (needed
later) we observe that

P(M > x,M (n) < x, τ < δ) ≤ P(M > x,M (n) < x, τ < δ),
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where

M (n) = inf
t∈[0,1/n]

{Xτ−t ∨Xτ−t+1/n} ≤M (n)

with the convention that Xt = −∞ if t /∈ [0, 1]. Recall from the proof of Theorem 4.2 that
bn(M −M (n)) is uniformly integrable, see also Lemma 4.7. Moreover, it can be shown
that bn(M −M (n)) has a weak (Rényi) limit, call it V̂ , which corresponds to taking the
same map of the limiting process seen from the supremum, see [34]; the limiting process
is composed of two independent pieces neither of which can jump at a fixed time.

Consider a stopping time τ̂ = inf{t ≥ 1/2 : Xt = 0} and note that p = P(τ̂ < 3/4∧τx) >

0, because an ub.v. process hits 0 immediately [13, 37]. For δ ≤ 1/4 we establish that

pP(M > x,M (n) < x, τ < δ) ≤ P(M > x,M (n) < x, τ ≥ 1/2, Dδ > x) (5.5)

Dδ = supt∈(0,δ],t≤τ−1/2{M −Xτ−t}. The left hand side (by the strong Markov property)
is the probability that our process hits 0 in the interval [1/2, 3/4) (it has not yet crossed
x) and in the following unit of time it achieves its supremum exceeding x within δ time
units, while the corresponding M (n) is below x, see Figure 3. It is not hard to see that
this event implies the event on the right hand side (M (n) may become larger by means of
the time interval [0, 1/2] but it must still be below x), and thus the inequality follows. It
is crucial here that the quantities do not depend on the grid shifting due to the random
time τ̂ .

1
2

3
4

1τ̂

x

1

δ

Figure 3: Schematic sample path explaining the bound in (5.5)

The same arguments as in Proposition 5.6 show that

bnP(M > x,M (n) < x, τ ≥ 1/2, Dδ > x)→ EV̂

∫
fz,1/2(x)µδ,x(dz),

where µδ,x(dz) = P(M ∈ dz, supt∈(0,δ],t≤τ{M −Xτ−t} > x). It is noted that now we are
splitting the process at 1/2, and the upper bound would be enough for what follows.
Note also that restriction of M (n) to the times larger than 1/2 makes it only smaller due
to the inner maximum in its definition.

Finally, since fz,1/2(x) is bounded for all z > 0 according to Lemma 5.5, we find that

lim sup
n→∞

bnP(M > x,M (n) < x, τ < δ) < CxP( sup
t∈(0,δ],t≤τ

{M −Xτ−t} > x)

for some constant Cx not depending on δ. Moreover, the probability on the right hand
side must decay to 0 as δ ↓ 0, because an ub.v. process does not jump at τ . The bound
in (5.4) is now established and the proof is thus complete.
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5.3 Further bounds and comments

It is noted that the above arguments may also be used to provide an asymptotic
upper bound on the detection error in the case when (2.6) is not satisfied. Assuming
that a non-monotone X has a jointly continuous density p(t, x) bounded for |x| > δ, t > 0

(e.g. (5.2) holds with γ > 1), we find with the help of Theorem 4.1 that for any α+ > α∨ 1

and δ ∈ (0, 1):

P(M > x,M (n) ≤ x, τ ≥ δ) = O(n−1/α+) as n→∞.

Furthermore, we may strengthen this bound to O(n−1/2) when α = 2, and to O(n−1)

when X is b.v. process, see Theorem 4.1.

Moreover, we may also take δ = 0 apart from b.v. case when (i) γ′ = 0 or (ii) point 0 is
not in the support of Π(dx), because in these cases the trick in the proof of Theorem 5.1
does not apply; there may be other ways to establish such bounds for these processes,
however.

There is also an asymptotic lower bound of order n−1 on the detection error under
some minor conditions. We omit the analysis of one-sided processes and state the
following:

Lemma 5.8. Assume that X has jumps of both signs. Then

lim inf
n→∞

nP(M > x,M (n) ≤ x) > 0.

Proof. Let δ > 0 be a point of continuity of Π−(x) such that Π−(δ) > 0. Then P(Xt <

−δ)/t→ Π−(δ) > 0 as t ↓ 0, see e.g. [32]. Now consider a lower bound

P(M > x,M (n) ≤ x) ≥ P(τx < 1, Xτx − x < δ/2, {τxn} < 1/2, sup
t∈[τx+1/(2n),1]

Xt < x)

≥ P(τx < 1, Xτx − x < δ/2, {τxn} < 1/2)P(X1/(2n) < −δ)P(M < δ/2).

Hence it is left to show that

lim inf
n→∞

P(τx < 1, Xτx − x < δ/2, {τxn} < 1/2) > 0. (5.6)

The compensation formula applied to the Poisson point process of jumps with intensity
dt×Π(dy), see also [25], yields

P(τx ∈ A,Xτx ∈ (x, x+ δ/2)) =

∫
A

∫ ∞
0

P(Xt ≤ x,Xt + y ∈ (x, x+ δ/2))Π(dy)dt (5.7)

showing that the corresponding measure is absolutely continuous. Hence {τxn} con-
verges weakly to a uniform random variable on the event τx < 1, Xτx ∈ (x, x+ δ/2); here
we ignore the possibility of creeping over x. Hence (5.6) is lower bounded by

P(τx < 1, Xτx ∈ (x, x+ δ/2))/2,

and it is left to show that this quantity is non-zero. Assume that 0 belongs to the support
of Π. Then using the ideas from [42, §24] we find that the support of P(Xt ≤ x,Xt ∈ dx)

is given by (−∞, x], and the positivity easily follows from (5.7). The case when 0 is not
in the support of Π(dx) and there is no Brownian component corresponds to a possibly
drifted compound Poisson. In view of Theorem 5.1 it is left to consider the latter, and in
this case the statement follows from tedious but trivial considerations.
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A Remaining proofs

A.1 Proofs for Section 2

We will need the following Karamata’s theorem in the boundary case, see [11, Thm.
1.5.9a–b]:

Lemma A.1. Let `(x) ∈ RV0 (as x ↓ 0), such that
∫ 1

x
`(t)dt <∞ for any x ∈ (0, 1).

(i) Then
∫ 1

x
t−1`(t)dt/`(x)→∞ and the numerator is RV0.

(ii) If
∫ 1

0
t−1`(t)dt <∞ then

∫ x
0
t−1`(t)dt/`(x)→∞ and the numerator is RV0.

Proof of Proposition 2.3. Let us verify the conditions of [34, Thm. 2], which is trivial in
the case α ∈ (0, 1) ∪ (1, 2). In case α = 2 our assumption implies that Π−(x) ≤ CΠ+(x)

for some finite C and all x small enough. Hence for such x we have

x2Π(x)

v(x)
≤ (C + 1)

x2Π+(x)∫ x
0
y2Π(dy)

and it is left to show that this fraction converges to 0. Letting `(x) = x2Π+(x) ∈ RV0 we
find using integration by parts that∫ x

0

y2Π(dy) = −
∫ x

0

y2dΠ+(y) = 2

∫ x

0

y−1`(y)dy − `(x) + `(0+)

showing that `(0+) is convergent. According to Lemma A.1(ii) we must have `(0) = 0

and the above must explode when divided by `(x) as x ↓ 0. The proof in the case α = 2 is
now complete.

In the case α = 1 we need to show that m(x)/(xΠ(x)) → ±∞. Our assumption
implies that Π+(x)−Π−(x) > cΠ+(x) for some c > 0 and all small enough x, as well as
Π(x) ≤ 2Π+(x). We let `±(x) = xΠ±(x) and first consider b.v. case. As above, observe
that `+(0) = 0 and thus also `−(0) = 0. Now

m(x) = −
∫ x

0

ydΠ+(y) +

∫ x

0

ydΠ−(y)

=

∫ x

0

y−1(`+(y)− `−(y))dy − (`+(x)− `−(x))

> c

∫ x

0

y−1`+(y)dy − `+(x)

for small enough x. Hence for small x

m(x)

xΠ(x)
>
c
∫ x

0
y−1`+(y)dy

2`+(x)
− 1/2→∞

according to Lemma A.1(ii). This shows that (2.6) holds true with the limit process being
a positive drift.

In ub.v. case we have∫ 1

x

yΠ(dy) =

∫ 1

x

y−1`(y)dy − `(1) + `(x)→∞

showing that
∫ 1

x
y−1`(y)dy →∞, see Lemma A.1(i). Now

m(x) = γ −
∫ 1

x

y−1(`+(y)− `−(y))dy + (`+(1)− `−(1))− (`+(x)− `−(x))

< c′ − c
∫ 1

x

y−1`+(y)dy < − c
2

∫ 1

x

y−1`+(y)dy
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for some constant c′ and small enough x, where the last line is implied by the divergence
of the integral. Using Lemma A.1(i) once again we find

m(x)

xΠ(x)
< −

c/2
∫ 1

x
y−1`+(y)dy

2`+(x)
→ −∞

and the proof is complete.

A.2 Proofs for Section 3

Lemma A.2. If X is a driftless b.v. process attracted to a linear drift process under
zooming-in then Π(ε) ∈ RV−1 as ε ↓ 0.

Proof. From the proof of [34, Cor. 1] we see that it must be that M(x) = −
∫ x

0
ydΠ(y) ∈

RV0. Using integration by parts we get

Π(x) =

∫ ∞
x

x−1dM(x) =

∫ ∞
x

y−2M(y)dy − x−1M(x).

By Karamata’s theorem the last integral is in RV−1, and hence also the sum must be in
RV−1.

Proof of Proposition 3.7. First we show that when X is a subordinator, then P(X1 ≤ x)

decays faster than any power of x. For that, see

P(X1 ≤ x) ≤ P(X1/n ≤ x,X2/n −X1/n ≤ x, . . . ,Xn/n −X(n−1)/n ≤ x)

= (1− P(X1/n > x))n =
[
1−

nP(X1/n > x)

n

]n
→ e−Π+(x),

where the last limit holds for x, points of continuity of Π+(·), see e.g. [32]. We may
assume that γ′ = 0 since otherwise the statement is obvious. Now Π+(x) ∈ RV−α, see
also Lemma A.2, and we conclude that P(X1 ≤ x) decays faster than any power.

Now we proceed with the proof of the lower bound. From [38, Eq. (3.7)] we have
the inequality P(Xt ≤ x) ≥ ctU [0, x] with ct > 0, given that

∫
0
κ(1/s, 0)ds < ∞ and

either (i) t is small enough or (ii) X drifts to −∞ implying κ(0, 0) > 0. Corollary 3.2 and
the assumption ρ < 1 show that the integral is indeed convergent. Thus according to
Proposition 3.6 we have P(Xt ≤ x) ≥ RVαρ when either (i) or (ii) hold. We carry out the
proof in three distinct cases

Case 1. Π(R−) > 0 and ρ < 1. Choose h > 0 such that Π−(h) = λ > 0. Let t be
small enough so that the above bound is true for the process Xh with negative jumps
exceeding h in absolute value removed (Xh belongs to the same class Dα,ρ as X, see [34,
Lem. 3]). Now by requiring that a big negative jump occurs before t we get a lower
bound:

P(X1 ≤ x) ≥ P(X
h

eλ
≤ x, eλ < t)P(X1 ≤ h) ≥ P(X

h

t ≤ x)c

with c > 0, where eλ is the first time of the big negative jump. The result now follows
when ρ 6= 1.

Case 2. Π(R−) > 0 and ρ = 1. Note that P(X
h

ε/aε ≤ c) → P(X̂1 ≤ c) > 0 for c > 0

large enough (here large c is needed in case X̂ is a drift process). Take the asymptotic

inverse a−1
u ∈ RVα of αε [11, Thm. 1.5.12] to find that P(X

h

a−1
x/c
≤ x) has a positive limit.

It is left to require a jump of size < −h in the time interval (0, a−1
x/c) to get a lower bound

(up to a positive constant). But the probability of such a jump is λa−1
x/c ∈ RVα as claimed.

EJP 25 (2020), paper 113.
Page 23/33

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP513
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Zooming-in on a Lévy process

Case 3. Π(R−) = 0. Assume that Π+(h) = λ > 0 for some h > 0, and let Xh be the
process with positive jumps exceeding h removed. We have the lower bound

P(X1 ≤ x) ≥ P(X
h

1 ≤ x, eλ > 1) = P(X
h

1 ≤ x)e−λ,

which is RVαρ when Xh
t → −∞ as t → ∞. That is, we need to ensure that EXh

1 =

γ −
∫ 1

h
xΠ(dx) < 0 with h < 1. This is always possible when

∫ 1

0
xΠ(dx) =∞, and is also

possible when
∫ 1

0
xΠ(dx) <∞ and γ′ < 0.

It is left to consider an independent sum of a linear Brownian motion and a pure jump
subordinator. We may also represent such a process as Wt + Yt with a linear Brownian
motion W and a bounded variation process Y with linear drift γ′Y < 0. Clearly,

P(X1 ≤ x) ≥ P(W 1 ≤ x/2)P(Y 1 ≤ x/2)

where P(Y 1 ≤ x/2) has a positive limit. Thus we only need to show that P(W 1 ≤ x) =

P(τWx > 1) ≥ RV1, where τWx is an inverse Gaussian subordinator. But this is immediate
and the proof is now complete.

Proof of Proposition 3.5. Using the strong Markov property we get for any s ∈ (0, ε)

n(Xε > δ) =

∫ ∞
0

n(Xs ∈ dx)P(Xε−s > δ − x,Xε−s > −x)

≤ n(Xs > δ/2) + n(Xs ≤ δ/2)P(Xε−s > δ/2)

≤ n(Xs > δ/2) + n(s < ζ)P(Xε > δ/2).

Using [17, Thm. 6] and the above lower bound on n(Xs > δ/2) we find

P(Xε > δ/2) =

∫ ε

0

n(Xs > δ/2)n(ε− s < ζ)ds

≥ n(Xε > δ)

∫ ε

0

n(ε− s < ζ)ds− P(Xε > δ/2)

∫ ε

0

n(s < ζ)n(ε− s < ζ)ds,

where the latter integral equals to 1, and thus we have

n(Xε > δ)

∫ ε

0

n(s < ζ)ds ≤ 2P(Xε > δ/2).

But
∫ ε

0
n(s < ζ)ds ∈ RV1−ρ, and so it is left to observe that P(Xε > δ/2) = O(ε), which

readily follows from Doob-Kolmogorov inequality.

Similarly, we have

n(Xε > δ) ≥ n(Xs > 2δ)P(Xε > −δ)

and then also

P(Xε > 2δ) ≤ n(Xε > δ)

∫ ε

0

n(ε− s < ζ)ds/P(Xε > −δ)

yielding the lower bound, since P(Xε > 2δ) ≥ P(Xε > 2δ) ∼ εΠ+(2δ).

A.3 Proofs for Section 4

Recall that (γ(n), σ(n),Π(n)) is the Lévy triplet of the rescaled process bnXt/n as
defined in (4.6).
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Proof of Lemma 4.8. Using Π(n)(dx) = Π(b−1
n dx)/n we find that∫ ∞

1

xpΠ(n)(dx) =
bpn
n

∫ ∞
b−1
n

xpΠ(dx).

Since bn is regularly varying at ∞ with index 1/α we see that bpn/n → 0 and so it is
sufficient to consider the limit of

bpn
n

∫ 1

b−1
n

xpΠ(dx) =
ε

apε

∫ 1

aε

xpΠ(dx),

where ε = 1/n ↓ 0. Recall also the definitions of m(x) and v(x), the truncated mean and
variance functions, given in (2.3).

Consider the case where X̂ is a Brownian motion, so that p < 2. From [34, Thm. 6 (i)]
we see that v ∈ RV0 and εv(aε)/a

2
ε → σ̂2. Hence

ε

apε

∫ 1

aε

xpΠ(dx) ≤ ε

apε

∫ 1

aε

xp−2dv(x) =
εv(aε)

a2
ε

·
∫ 1
aε
xp−2dv(x)

ap−2
ε v(aε)

→ 0,

because the first ratio converges to σ̂2 and the second to 0 according to the Karamata’s
theorem, see [11] or [34, Thm. 6].

Consider the case of a strictly α-stable process X̂. Let f+(x) := Π(x, 1), f−(x) :=

Π(−1,−x) and f(x) = f−(x)+f+(x) then according to [34, Thm. 2] we have f±(x) ∈ RV−α
(or at least the dominating one) and εf±(αε)→ ĉ±

α . Since∫ 1

x

ypΠ(dy) = xpf+(x) + p

∫ 1

x

yp−1f+(y)dy

thus we have

ε

apε

∫ 1

aε

xpΠ(dx) =
ε

apε

(
apεf+(aε) + p

∫ 1

aε

xp−1f+(x)dx

)
= εf+(aε) ·

(
1 +

p
∫ 1
aε
xp−1f+(x)dx

apεf+(aε)

)
→ ĉ+

α
·
(

1 +
p

α− p

)
=

ĉ+
α− p

and the result follows.
Finally, consider the case, where X̂ is a linear non-zero drift process. Then necessarily

α = 1 and according to [34, Thm. 6 (ii)] we must have xΠ(x)/m(x)→ 0 and εm(aε)/aε →
γ̂. Letting M(x) =

∫
x≤|y|<1

|y|pΠ(dy) note that it is sufficient to show that εM(aε)/a
p
ε → 0.

Let f(x) = f+(x) + f−(x). The main difficulty here is that f(x) does not necessarily
belong to the class RV−1 however we do have that m ∈ RV0 according to [34, Proof of
Thm. 6], see also its proof. We have xf(x)/m(x)→ 0 and εm(aε)/aε → γ̂ thus εf(aε)→ 0

and for any δ > 0 there exists x0 such that xf(x) ≤ δm(x) for x < x0. Then

ε

apε

∫
aε≤|x|<1

|x|pΠ(dx) =
ε

apε

(
apεf(aε) + p

∫ 1

aε

xp−1f(x)dx

)
= εf(aε) +

εm(aε)

aε
·
p
∫ x0

aε
xp−2m(x)dx

ap−1
ε m(aε)

· δ +
ε

apε

∫ 1

x0

xp−1f(x)dx.

The first and the third term converge to 0. Since m ∈ RV0, then according to Karamata’s

Theorem we have
∫ x0
aε

xp−2m(x)dx

ap−1
ε m(aε)

→ 1
1−p and since the choice of δ > 0 was arbitrary, we

conclude that
ε

apε

∫
aε≤|x|<1

|x|pΠ(dx)→ 0,

and the proof is complete.
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Next, we consider the general case where (2.6) does not necessarily hold, but redefine
bn = n1/α+ for some α+ > α, and thus also X(n)

t = bnXt/n.

Lemma A.3. For any α+ > α and bn = n1/α+ we have X(n)
1

d→ 0. If, moreover, p < α+

and
∫∞

1
xpΠ(dx) <∞ then

∫∞
1
xpΠ(n)(dx)→ 0 as n→∞.

Proof. First, we consider the integral. As in the beginning of the proof of Lemma 4.8 it
is sufficient to observe that

bpn
n

∫ 1

1/bn

xpΠ(dx) ≤ 1

n

∫ 1

1/bn

(bnx)β+Π(dx) ≤ b
β+
n

n

∫ 1

0

xβ+Π(dx)→ 0,

where β+ ∈ (α ∨ p, α+) and the latter integral is finite because β+ > α ≥ β0.

According to [36, Thm. 15.14] the convergence X(n)
1

d→ 0 is equivalent to

m(b−1
n )bn/n→ 0, v(b−1

n )b2n/n→ 0, Π±(ub−1
n )/n→ 0

for all u > 0. All of these limits can be shown using the above trick, and we only
consider the first quantity (the most tedious). If

∫
|x|<1

|x|Π(dx) < ∞ then m(b−1
n ) =

γ′ +
∫
|y|<b−1

n
yΠ(dy). The case α = 1 is trivial, but for α < 1 we have

bn
n

∫
|y|<b−1

n

|y|Π(dy) ≤ 1

n

∫
|y|<b−1

n

|bny|β+Π(dy) ≤ b
β+
n

n

∫
|y|<1

|y|β+Π(dy)→ 0

with β+ ∈ (α, α+ ∧ 1). When
∫
|x|<1

|x|Π(dx) =∞ we have α ≥ 1 and it is sufficient to note
that

bn
n

∫
b−1
n <|y|<1

|y|Π(dy) ≤ b
β+
n

n

∫
|y|<1

|y|β+Π(dy)→ 0

for β+ ∈ (α, α+). The proof is concluded.

Lemma A.4. In the cases (i) p ≤ α = 2 and (ii) p ≤ α = 1 with X b.v., the sequences
|γ(n)|, σ(n),

∫
|x|≤1

x2Π(n)(dx),
∫∞

1
xpΠ(n)(dx) for the scaling bn = n1/α are bounded pro-

vided that
∫∞

1
xpΠ(dx) <∞.

Proof. The statement is trivially true for σ(n) and the rest follows using the simple trick
from Lemma A.3. We only consider∫ ∞

1

xpΠ(n)(dx) =
1

n

∫ ∞
n−1/α

(n1/αx)pΠ(dx) ≤ C +
1

n

∫ 1

n−1/α

(n1/αx)αΠ(dx),

where we used p/α− 1 ≤ 0 and convergence of
∫∞

1
xpΠ(dx). The second term converges

to
∫ 1

0
xαΠ(dx) <∞, which is finite in both cases (i) and (ii).

Proof of Proposition 4.6. It is clear that 1A(n)c converges to 1 in probability and so by

Slutsky’s Lemma we find that Ṽ (n) d→ V̂ . Thus it is left to show uniform integrability.
Conditional on the event {N = k,A(n)c}, split the process into k + 1 pieces separated

by the big jumps, where each piece starts at 0 and does not include the terminating big
jump. Let V (n)

i,k be the (conditional) discretization error for the supremum of the i-th
piece keeping the original grid. Since each piece is at least 1/n long and conditioning
affects only the length of the piece, the same argument as in the proof of Theorem 4.2
based on Lemma 4.7 shows that the 1 + ε moment of V (n)

i,k is bounded by a constant C
not depending on i, k. Note that by removing big jumps we still have a process in Dα,ρ,
but now β∞ =∞.
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It is left to note that the conditional V (n) is bounded by the maximum over V (n)
i,k which

in turn is bounded by the sum. Hence using Minkowski’s inequality we find

E
(
Ṽ (n)

)1+ε

≤
∞∑
k=0

P(N = k)E

((
V (n)

)1+ε

|A(n)c, N = k

)

≤
∞∑
k=0

P(N = k)(k + 1)1+εC ≤ E(1 +N)1+εC <∞

and the proof is complete.

Proposition A.5. Let X be a compound Poisson process with drift γ ∈ R satisfying∫
|x|>1

|x|Π(dx) <∞. Then (4.3) holds true.

Proof. For n ∈ N, k ∈ {0, . . . , n− 1} define

Nk,n := #
{
t ∈
(
k
n ,

k+1
n

)
: Xt− 6= Xt

}
, Ak,n := {Nk,n ≤ 1}

and put An :=
⋂n−1
k=0 Ak,n. We have the decomposition

nE(M −M (n)) = nE(M −M (n);An) + nE(M −M (n);Acn).

Step 1. Show that nE(M −M (n);An)→ 1
2 |γ|P(τ ∈ (0, 1)). This is clear when γ = 0; in

the following we assume γ 6= 0. Since then X is in a domain of attraction of linear drift,
it follows that (

n(M −M (n)) | τ ∈ (0, 1)
)

d→ V̂
d
= |γ|U,

where U is uniformly distributed over [0, 1]. Combination of Slutsky Lemma with the
uniform integrability of (M −M (n))1{An} yields the result.

Step 2. Show that, with Bk := {Nk,n = 2,∩i 6=kAi,n}, the following are equal up to o(1)

term:

nE(M −M (n);Acn),
∑n−1
k=0 nE(M −M (n);Ack,n),∑n−1

k=0 nE(M −M (n);Nk,n = 2),
∑n−1
k=0 nE(M −M (n);Bk).

This step is a rather tedious, but also, a pretty straightforward application of inclusion-
exclusion principle. We only show the first equivalence, as the rest is similar. Note that
P(Ak,n) = O(n−2) and that we have a very crude upper bound M −M (n) ≤ γ+

∑N
k=1 |Jk|,

where N is the number of jumps of the CP process and J1, J2, . . . are iid jumps. For
j < k < n we have

E(M −M (n);Acj,n ∩Ack,n) ≤ P(Acj,n ∩Ack,n)E
(
γ +

∑N
k=1 |Jk|

∣∣Acj,n ∩Ack,n)
= P(Ak,n)2E

(
γ +

∑N
k=1 |Jk|

∣∣N ≥ 4
)
≤ Cn−4,

where C > 0 does not depend on j, k, n. This implies that∑
0≤j<k<n nE(M −M (n);Acj,n ∩Ack,n)→ 0.

Step 3. Notice that when X is a Compound Poisson process then I has an alternative
representation:

I = λ2E
(

(J1 +XU ) ∧ (−J2 −X
′
1−U )

)+

,

where λ = Π(R), U is uniformly distributed over [0, 1], X ′ is a statistical copy of X,
random variables J1, J2 have the law Π(dx)/λ, and U,X,X ′, J1, J2 are independent.
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Step 4. Show that
∑n−1
k=0 nE(M −M (n);Bk)→ 1

2I. Working on the event Bk, let J1, J2

be the two jumps in time interval
(
k
n ,

k+1
n

)
in the order of occurrence. Moreover, let

Lt := Xt − sups∈[0,t]Xs, Rt := supt∈[s,1]Xs −Xt

and notice that Lt1 , Rt2 are independent when t1 ≤ t2. We have

(M −M (n))1{Bk} ≥
((

(J1 + Lk/n) ∧ (−J2 −R(k+1)/n)
)+ − |γ|/n)1{∩i6=kAi,n}

and an analogous upper bound holds true, with +|γ|/n instead of −|γ|/n. Now, we denote

G(n−)(t) := E
((

(J1 + Lt) ∧ (−J2 −Rt)
)+ − |γ|/n;An

)
G(n+)(t) := E

(
(J1 + Lt) ∧ (−J2 −Rt)

)+
+ |γ|/n.

Lt and Rt are stochastically non-increasing and non-decreasing respectively since Lt
d
=

Xt, Rt
d
= X1−t (this holds true also on the event An) thus

G(n−)((k + 1)/n) ≤ (M −M (n))1{Bk} ≤ G
(n+)(k/n).

It is clear that G(n±)(t)→ G(t) point-wise, where G(t) := E
(
(J1 +Xt) ∧ (−J2 −X

′
1−t)

)+
.

Since P(Nk,n = 2) = λ2

2n2 e
−λ/n, we have

n−1∑
k=1

nE(M −M (n);Bk) ≤
n−1∑
k=0

nP(Nk,n = 2)G(n+)(k/n)

= λ2

2

n−1∑
k=0

1
nG

(n+)(k/n)→ λ2

2

∫ 1

0

G(t)dt = 1
2I,

where we used dominated convergence. Analogous reasoning leads to the same lower
bound, which concludes the proof.

A.4 Proofs for Section 5

Proof of Lemma 5.4. Letting φ(θ) = ψ(iθ), we note that the condition (5.2) ensures the
following bound on the characteristic function of Xt: |eφ(θ)t| ≤ exp(−ct|θ|γ) for some
c > 0 and |θ| > 1, see [40, Lem. 2.3]. By the inversion formula we have

p(t, x) =
1

2π

∫
R

e−ixθ+φ(θ)tdθ,

because the characteristic function eφ(θ)t is integrable. Thus p(t, x) is bounded for all
t > δ, x ∈ R, and so we need to consider t ∈ (0, δ], x > δ since the case x < −δ is
analogous.

Assume for a moment that X has no jumps larger than 1 in absolute value, and so
φ(θ) is smooth. From the Lévy-Khintchine formula we find that |φ′(θ)| ≤ c0 + c1|θ| and
|φ(k)(θ)| ≤ ck for k ≥ 2 and some positive constants ck; for this we differentiated under
the integral with respect to Π(dx) and used the inequality |eia − 1| ≤ |a|. Integration by
parts gives ∫ ∞

0

e−ixθ+φ(θ)tdθ =
1

ix
+

∫ ∞
0

1

ix
φ′(θ)te−ixθ+φ(θ)tdθ,

and it would be sufficient to establish that∫ ∞
1

t(c0 + c1θ) exp(−cθγt)dθ
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is bounded for all t ∈ (0, δ). This, however, is only true for γ = 2. Nevertheless, we may
apply integration by parts k times to arrive at the bound:∫ ∞

1

A(t, θ) exp(−cθγt)dθ,

where A(t, θ) is a weighted sum of the terms θitj with i < j and i = j = k; one may also
use Faà di Bruno’s formula here. Note that∫ ∞

0

θitj exp(−cθγt)dθ = tj−(i+1)/γ

∫ ∞
0

θi exp(−cθγ)dθ,

which is bounded for small t when γ ≥ (i + 1)/j. Since γ > 1 this inequality is always
satisfied for the integers i < j, whereas for i = j = k we get γ ≥ (k + 1)/k and so we
simply need to ensure that k is sufficiently large.

Suppose now that Xt = X̂t + Yt is an independent sum, where Y is a Poisson process
with jumps larger than 1. The density of Xt is given by

p(t, x) =

∫
P(Yt ∈ dz)p̂(t, x− z) ≤ P(Yt = 0)p̂(t, x) + P(Yt 6= 0) sup

x
p̂(t, x),

where p̂(t, x) is bounded on the set away from the origin. It is thus sufficient to show
that the second term stays bounded as t ↓ 0. But P(Yt 6= 0) is of order t and supx p̂(t, x) =

O(t−1/γ) according to [40, Thm. 3.1] completing the proof.
Finally, suppose that (5.2) is satisfied with γ < 1 but for some γ′ ∈ (γ, 1), we have that

lim
ε→0

εγ
′−2

∫ ε

−ε
x2Π(dx) = 0

which according to [40, Thm. 3.1(b)] implies supx p(t, x) ≥ ct−1/γ′ for t small enough. We
may assume that for small enough t the supremum is achieved by x ∈ [−δ, δ], because
otherwise we have a contradiction. Now suppose that Π(dx) has a point mass at 1, so that
with probability of order t there is one jump of size 1. But then supx∈[1−δ,1+δ] p(t, x) ≥
c1t

1−1/γ′ →∞ as t→ 0 showing that p(t, x) explodes away from x = 0.

B Correction

The results of this paper build on [34] which, however, has a mistake and a gap in
the proofs, and we correct them in the following.

Firstly, we note that convergence of transforms∫ ∞
0

e−qtfn(t)dt→
∫ ∞

0

e−qtf(t)dt for all q > 0

for bounded non-negative fn, f does not imply that fn(t) → f(t) for almost all t > 0

(it is true for the cumulative functions
∫ t

0
fn(s)ds). This renders the last paragraph in

the proof of Theorem 4 in [34] invalid, and hence we only have the limit theorem for a
killed Lévy process, that is, when the time horizon T is assumed to be an independent
exponential random variable. Nevertheless, we may use the fact that the convergence is
Rényi-mixing to provide a simple extension to a deterministic T .

Consider the process X on the time interval [0, T ] and let M, τ denote the supremum

and its time. Let F (ε)
T be a bounded functional of (Xτ+sε −M)s∈[−r,r] for some fixed

number r > 0, and let A and B be events in σ(Xs, s ∈ [0, 1]) and in σ(X ′s, s ≥ 0),
respectively, where X ′s = X1+s−X1. In the following we assume that T is an independent
exponential. It is established in [34] that

E(F
(ε)
T ;A|T ≥ 1, B)→ fP(A|T ≥ 1, B) = fP(A) (B.1)
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as ε ↓ 0. Here P(T ≥ 1, B) > 0 and f does not depend on the choice of A and B, since
we have Rényi-mixing convergence for a killed original process.

It is only required to prove that E(F
(ε)
1 ;A) → fP(A). Assume for a moment that A

implies X1 6= X1 and choose

A′ = A ∩ {X1 = X1−δ, X1 −X1 > h}, B′ = {X ′ < h},

so that on T ≥ 1 the event A′ ∩B′ implies that τ < 1− δ and hence for ε < δ/r we have

F
(ε)
T = F

(ε)
1 . Thus

E(F
(ε)
1 ;A′) = E(F

(ε)
1 ;A′|T ≥ 1, B′) = E(F

(ε)
T ;A′|T ≥ 1, B′)→ fP(A′).

Moreover, we have the bound

sup
ε>0
|E(F

(ε)
1 ;A)− E(F

(ε)
1 ;A′)| ≤ CP(X1 6= X1−δ or X1 −X1 ≤ h)→ 0

as δ, h ↓ 0, since we have assumed that the supremum over [0, 1] is not attained at 1. This
shows

E(F
(ε)
1 ;A,X1 6= X1)→ fP(A,X1 6= X1)

for an arbitrary event A ∈ σ(Xs, s ∈ [0, 1]). When P(X1 = X1) > 0, we may look at the
time-reversed process on the event that it does not become negative. The result in this
case is, in fact, trivial and the proof of Theorem 4 in [34] is fixed.

Secondly, there is a problem with the continuity of some basic functionals of sample
paths on infinite time intervals. In particular, the supremum and its time are not
continuous on the Skorokhod space D[0,∞), even though they are obviously continuous
on the relevant subsets of D[0, T ] for any T > 0. This concerns the proof of Theorem 5
as well as the proof of Theorem 3 in Appendix of [34]. The main tool to overcome this
issue is the approximation Lemma, see [10, Thm. 3.2] or [36, Thm. 4.28].

In the following we provide a correction to the proof of Theorem 5 in [34], and note
that the same bounds can be used with respect to Theorem 3. More concretely, we need
to show for any a > 0 that

lim
T→∞

lim sup
ε↓0

P(sup
t≥T

Y
(ε)
t ≥ −a) = 0, (B.2)

where Y (ε)
t = (Xτ+tε −M)/aε is the post-supremum process of X(ε) corresponding to

time-space rescaling of X; similar statement is needed for the pre-supremum process,
see also [3, Lem. 4].

Note that it is sufficient to prove (B.2) for X killed at an independent exponential
time instead of time 1, and we assume this in the following. Next, we use the Markov
property to see that

P(sup
t≥T

Y
(ε)
t ≥ −a) =

∫ 0

−∞
Px(sup

t≥0
Y

(ε)
t ≥ −a)P(Y

(ε)
T ∈ dx), (B.3)

where Y (ε) underPx is the (killed) process conditioned to stay negative, and the measures
P(Y

(ε)
T ∈ dx) have a proper weak limit as ε ↓ 0. Furthermore, for x > a we have

P−x(sup
t≥0

Y
(ε)
t ≥ −a) = 1−m(ε)(x− a)/m(ε)(x)

with m(ε)(x) = E
∫∞

0
1{H(ε)

t <x}dt analogously to [18, Thm. 1] establishing this formula

for the limit process. According to the proof of [34, Thm. 3] m(ε)(x) → m(x) for all
x > 0 with m corresponding to the self-similar limiting process. Moreover, the functions
m(ε),m are monotone and continuous, and so m(ε)(xε) → m(x) whenever xε → x > 0.
Hence (B.3) converges as ε ↓ 0 to the respective probability for the limit post-supremum
process. The result follows upon letting T →∞.
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