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We present a simple and efficient method for refining maps or correspon-
dences by iterative upsampling in the spectral domain that can be imple-
mented in a few lines of code. Our main observation is that high quality maps
can be obtained even if the input correspondences are noisy or are encoded
by a small number of coefficients in a spectral basis. We show how this
approach can be used in conjunction with existing initialization techniques
across a range of application scenarios, including symmetry detection, map
refinement across complete shapes, non-rigid partial shape matching and
function transfer. In each application we demonstrate an improvement with
respect to both the quality of the results and the computational speed com-
pared to the best competing methods, with up to two orders of magnitude
speed-up in some applications. We also demonstrate that our method is
both robust to noisy input and is scalable with respect to shape complexity.
Finally, we present a theoretical justification for our approach, shedding
light on structural properties of functional maps.
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1 INTRODUCTION

Shape matching is a task that occurs in countless applications in
computer graphics, including shape interpolation [Kilian et al. 2007]
and statistical shape analysis [Bogo et al. 2014], to name a few.
An elegant approach to non-rigid shape correspondence is pro-

vided by spectral techniques, which are broadly founded on the
observation that near-isometric shape matching can be formulated
as an alignment problem in certain higher-dimensional embedding
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Fig. 1. Given a small functional map, here of size 2 × 2 which corresponds
to a very noisy point-to-point correspondence (middle right) our method
can efficiently recover both a high resolution functional and an accurate
dense point-to-point map (right), both visualized via texture transfer from
the source shape (left).

spaces [Biasotti et al. 2016; Jain and Zhang 2006; Maron et al. 2016;
Ovsjanikov et al. 2012]. Despite significant recent advances and
their wide practical applicability, however, spectral methods can
both be computationally expensive and unstable with increased
dimensionality of the spectral embedding. On the other hand, a
reduced dimensionality results in very approximate maps, losing
medium and high-frequency details and leading to significant arti-
facts in applications.

In this paper, we show that a higher resolution map can be recov-
ered from a lower resolution one through a remarkably simple and
efficient iterative spectral up-sampling technique, which consists of
the following two basic steps:

(1) Convert a k × k-size functional map to a pointwise map.
(2) Convert the pointwise map to a k + 1 × k + 1 functional map.

Our main observation is that by iterating the two steps above,
starting with an approximate initial map, encoded using a small
number of spectral coefficients (as few as 2ś15), we can obtain an
accurate correspondence at very little computational cost.

We further show that our refinement technique can be combined
with standard map initialization methods to obtain state-of-the-art
results on a wide range of problems, including intrinsic symmetry
detection, isometric shape matching, non-rigid partial correspon-
dence and function transfer among others. Our method is robust
to significant changes in shape sampling density, is easily scalable
to meshes containing tens or even hundreds of thousands of ver-
tices and is significantly (up to 100-500 times in certain cases) faster
than existing state-of-the-art map refinement approaches, while pro-
ducing comparable or even superior results. For example, Figure 1
shows a result obtained with our method, where starting from an
initial 2 × 2 functional map, we recover a high resolution functional
and an accurate pointwise correspondence.

Contributions. To summarize:

(1) We introduce a very simple map refinement method capable
of improving upon the state of the art in a diverse set of shape
correspondence problems; for each problem we can achieve
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the same or better quality at a fraction of the cost compared
to the current top performing methods.

(2) We demonstrate how higher-frequency information can be
extracted from low-frequency spectral map representations.

(3) We introduce a novel variational optimization problem and
develop a theoretical justification of our method, shedding
light on structural properties of functional maps.

2 RELATED WORK

Shape matching is a very well-studied area of computer graphics.
Below we review the methods most closely related to ours, concen-
trating on spectral techniques for finding correspondences between
non-rigid shapes. We refer the interested readers to recent surveys
including [Biasotti et al. 2016; Tam et al. 2013; Van Kaick et al. 2011]
for a more in-depth treatment of the area.

Point-based Spectral Methods. Early spectral methods for shape
correspondence were based on directly optimizing pointwise maps
between spectral shape embeddings based on either adjacency or
Laplacian matrices of graphs and triangle meshes [Jain and Zhang
2006; Jain et al. 2007; Mateus et al. 2008; Ovsjanikov et al. 2010; Scott
and Longuet-Higgins 1991; Umeyama 1988]. Such approaches suffer
from the requirement of a good initialization, and rely on restricting
assumptions about the type of transformation relating the shapes.
An initialization algorithm with optimality guarantees, although
limited to few tens of points, was introduced in [Maron et al. 2016]
and later extended to deal with intrinsic symmetries in [Dym and
Lipman 2017]. Spectral quantities (namely, sequences of Laplacian
eigenfunctions) have also been used to define pointwise descriptors,
and employed within variants of the quadratic assignment problem
in [Dubrovina and Kimmel 2010, 2011]. These approaches have
been recently generalized by spectral generalized multidimensional
scaling [Aflalo et al. 2016], which explicitly formulates minimum-
distortion shape correspondence in the spectral domain.

Functional Maps. Our approach fits within the functional map
framework, which was originally introduced in [Ovsjanikov et al.
2012] for solving non-rigid shape matching problems, and extended
significantly in follow-up works, including [Aflalo and Kimmel 2013;
Ezuz and Ben-Chen 2017; Kovnatsky et al. 2013; Rodolà et al. 2017]
among others (see [Ovsjanikov et al. 2017] for an overview). These
methods assume as input a set of corresponding functions, which
can be derived from pointwise landmarks, dense descriptor fields,
or from region correspondences. They then estimate a functional
map matrix that allows to transfer real-valued functions across the
two shapes, which is then converted to a pointwise map.

Although the first step reduces to the solution of a linear system
of equations, this last step can be difficult and error prone [Ezuz and
Ben-Chen 2017; Rodolà et al. 2015]. As a result, several strong regu-
larizers have been proposed to promote certain desirable properties:
see [Burghard et al. 2017; Huang and Ovsjanikov 2017; Litany et al.
2017; Nogneng and Ovsjanikov 2017; Rodolà et al. 2017; Wang et al.
2018b]. More recently, several other constraints on functional maps
have been proposed to promote continuity of the pointwise corre-
spondence [Poulenard et al. 2018], map curves defined on shapes
[Gehre et al. 2018], extract more information from given descriptor

Source
n = 4.3K

Target
n = 10K

Ini: 4 × 4 zoomOut
to 5 × 5

6 × 6 7 × 7 20 × 20 zoomOut
to 50 × 50

Fig. 2. ZoomOut example. Starting with a noisy functional map of size

4 × 4 between the two shapes we progressively upsample it using our two-

step procedure and visualize the corresponding point-to-point map at each

iteration via color transfer. Note that as the size of the functional map grows,

the map becomes both more smooth and more semantically accurate. We

denote the number of vertices by n.

constraints [Wang et al. 2018a], and for incorporating orientation
information into the map inference pipeline [Ren et al. 2018].
In a concurrent work, [Shoham et al. 2019] also compute hierar-

chical functional maps by building explicit hierarchies in the spatial
domain using subdivision surfaces. Unlike this work, our method
operates purely in the spectral domain, and does not require com-
puting additional shape hierarchies.

High-frequency Recovery. Several approaches have also observed
that high-frequency information can be recovered even if the input
functional map is small or noisy. This includes both optimizing an
input map using vector field flow [Corman et al. 2015], recovering
precise (vertex-to-point) maps [Ezuz and Ben-Chen 2017] from low
frequency functional ones, and using pointwise products to extend
the space of functions that can be transferred [Nogneng et al. 2018].

Iterative Map Refinement. We also note other commonly-used
relaxations for matching problems based on optimal transport, e.g.
[Mandad et al. 2017; Solomon et al. 2016], which are often solved
through iterative refinement. Other techniques that exploit a similar
formalism for solving optimal assignment include the Product Man-
ifold Filter and its variants [Vestner et al. 2017a,b]. Map refinement
has also been considered in the original functional maps approach
[Ovsjanikov et al. 2012] where Iterative Closest Point in the spec-
tral embedding has been used to improve input functional maps.
Finally, in the context of shape collections [Huang et al. 2014; Wang
et al. 2013; Wang and Singer 2013], cycle-consistency constraints
have been used to iteratively improve input map quality. We further
discuss methods most closely-related to ours in Section 4.3 below.
Although these techniques can be very effective for obtaining

high-quality correspondences, methods based purely on optimiza-
tion in the spatial domain can quickly become prohibitively expen-
sive even for moderate sampling density. On the other hand, spectral
techniques can provide accurate solutions for low-frequency match-
ing, but require significant effort to recover a high-quality dense
pointwise correspondence; further, such approaches are often formu-
lated as difficult optimization problems and suffer from instabilities
for large embedding dimensions.

3 BACKGROUND & NOTATION

In this section we introduce the main background notions and nota-
tion used throughout the rest of the paper.
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Given a pair of shapesM andN , typically represented as triangle
meshes, we associate to them the positive semi-definite Laplacian
matrices LM ,LN , discretized via the standard cotangent weight
scheme [Pinkall and Polthier 1993], so that LM = A−1

M
WM , where

AM is the diagonal matrix of lumped area elements andWM is the
cotangent weight matrix, with the appropriate choice of sign to
ensure positive semi-definiteness. We make use of the basis con-
sisting of the first kM eigenfunctions of the Laplacian matrix, and

encode it in a matrix Φ
kM
M
= [φM

1 ,φ
M
2 , . . . ,φ

M
kM

] having the eigen-

functions as its columns. We define the spectral embedding of M as

the kM -dimensional point set
{(

φM
1 (x), . . . ,φM

kM
(x)

)

| x ∈ M
}

.

Given a point-to-point map T : M → N , we denote by Π its
matrix representation, s.t. Π(i, j) = 1 if T (i) = j and 0 otherwise,
where i and j are vertex indices on shape M and N , respectively.
Note that the matrix Π is an equivalent matrix representation of any
pointwise mapT without extra assumptions, such as bijectivity. The
corresponding functional map C is a linear transformation taking
functions on N to functions onM; in matrix notation, it is given
by the projection of Π onto the corresponding functional basis:

C = Φ
+

M
ΠΦN , (1)

where + denotes the Moore-Penrose pseudo-inverse. When the
eigenfunctions are orthonormal with respect to the area-weighted
inner product, so that Φ⊤

M
AMΦM = Id , then Eq. (1) can be written

as: C = Φ
⊤
M
AMΠΦN . Note that C is a matrix of size kM × kN ,

independent of the number of vertices on the two shapes.
A typical pipeline for computing a correspondence using the

functional map representation proceeds as follows [Ovsjanikov et al.
2017]: 1) Compute a moderately-sized basis (60-200 basis functions)
on each shape; 2) Optimize for a functional map Copt by minimizing
an energy, based on preservation of descriptor functions or land-
mark correspondences and regularization, such as commutativity
with the Laplacian operators; 3) Convert Copt to a point-to-point
map. The complexity of this pipeline directly depends on the size
of the chosen basis, and thus the dimensionality of the spectral
embedding. Smaller bases allow more stable and efficient functional
map recovery but result in approximate pointwise correspondences,
while larger functional maps can be more accurate but are also more
difficult to optimize for and require stronger priors.
Our main goal, therefore, is to show that accurate pointwise

correspondences can be obtained even in the presence of only small,
or approximate functional maps.

4 ZOOMOUT: ITERATIVE SPECTRAL UPSAMPLING

As input we assume to be given either a small functional map C0 or
a point-to-point correspondenceT : M → N ; both may be affected
by noise. We will discuss the role and influence of the input map
in detail in the following sections. If it is a point-to-point map, we
first convert it to a functional one via Eq. (1). For simplicity, we first
state our method and then provide its theoretical derivation from a
variational optimization problem in Section 4.4.

Given an input kM ×kN functional map C0 our goal is to extend
it to a newmap C1 of size (kM +1)×(kN+1)without any additional
information. We do so by a simple two-step procedure:
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Fig. 3. Comparison of map quality during ICP iterations in different (fixed)
dimensions vs. ZoomOut from 20 to 100 with step 5. Top row: average
error of pointwise maps during refinement and the error summary of the
refined maps after 15 iterations. Note that regardless of dimension, ICP gets
trapped in a local minimum. Bottom row: visualization of the refined maps
at iteration 1, 2, 3, 5, and 10 of ICP with dimension 100 vs. our method.

(1) Compute a point-to-point map T via Eq. (2), and encode it as
a matrix Π.

(2) Set C1 = (Φ
kM+1

M
)⊤AMΠ Φ

kN+1
N
.

We then iterate this procedure to obtain progressively larger
functional maps C0,C1,C2, ...,Cn until some sufficiently large n.
As we demonstrate below, this remarkably simple procedure, which
can be implemented in only a few lines of code (see Appendix B),
can result in very accurate functional and pointwise maps even
given very small and possibly noisy input. To compute a pointwise
map from a given C in step (1), we solve the following problem:

T (p) = argmin
q

∥C(ΦN(q))⊤ − (ΦM (p))⊤∥2, ∀ p ∈ M (2)

where ΦM (p) denotes the pth row of the matrix of eigenvectors ΦM .
This procedure gives a point-to-point map T : M → N , and can
be implemented via a nearest-neighbor query in kM -dimensional
space. It is also nearly identical, up to change in direction, to the
pointwise map recovery described in the original functional maps
article [Ovsjanikov et al. 2012, Section 6.2] but differs from other
recovery steps, introduced, e.g., in [Ezuz and Ben-Chen 2017] as we
discuss below.
Figure 2 shows an example of ZoomOut on a pair of animal

shapes from the TOSCA dataset [Bronstein et al. 2008]. Starting
with a 4 × 4 functional map, we show both the functional and
point-to-point (visualized via color transfer) maps throughout our
upsampling iterations. Note how the pointwise map becomes both
more smooth and accurate as the functional map grows.
We use the term łupsamplingž in the description of our method

to highlight the fact that at every iteration ZoomOut introduces ad-
ditional frequencies and thus intuitively adds samples in the spectral
domain for representing a map.

ACM Trans. Graph., Vol. 38, No. 6, Article 155. Publication date: November 2019.
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Fig. 4. Impact of the input functional map size. Given a pair of shapes, we

use a fixed set of descriptors and the approach of [Nogneng and Ovsjanikov

2017] to compute a functional map of size k × k and refine it with ICP.

Alternatively, we compute a functional map of size 10 × 10 using the same

approach and upsample it to k × k using our method. Differently from the

ICP baseline, our method leads to improvement as k grows. On the right

we show a qualitative illustration for k = 200.

4.1 Map Initialization

We initialize our pipeline by optimizing for a kM × kN functional
map C0 using an existing approach; we tested recent techniques,
including [Ren et al. 2018; Rodolà et al. 2017] among others, across
different settings described in detail in Section 5.

The key parameter for the initialization is the size of the functional
map, and in most settings, we set kM = kN = k for some small k .
This value ranges between 4 and 20 in all of our experiments, and
allows us to obtain high qualitymaps by upsamplingC0 to sizes up to
200× 200 depending on the scenario. We have observed that the key
requirement for the input mapC0 is that although it can be noisy and
approximate, it should generally disambiguate between the possible
symmetries exhibited by the shape. Thus, for example, if 4 basis
functions are sufficient to distinguish left and right on the animal
models shown in Figure 2, then with a functional map of this size
our method can produce an accurate final correspondence. Perhaps
the most difficult case we have encountered is in disambiguating
front and back in human shapes which requires approximately 15
basis functions. This is still significantly smaller than typical values
in existing functional map estimation pipelines, which are based on
at least 60 to 100 basis functions to compute accurate maps.

4.2 Acceleration Strategies

We propose three ways to accelerate ZoomOut.

4.2.1 Larger step size. The basic method increases the size of the
functional map by one row and one column at each iteration. This
choice is supported by our theoretical analysis below, which sug-
gests that increasing by one at each iteration helps to promote
isometric maps, when they are present. In practice our method also
achieves good accuracy with larger increments ranging between 2

and 5 (see supplementary materials for an illustration). We also note
that in some settings (e.g., in the context of partial correspondence
or in challenging non-isometric pairs), it is more reasonable to have
rectangular functional maps with more rows than columns. There,

Source Initialization Ours

(0.17sec)

RHM
(355sec/570sec)

Fig. 5. Comparison with RHM [Ezuz et al. 2019]. Both methods are ini-

tialized with a 17 × 10 functional map provided by the authors of [Ezuz

et al. 2019]. The reported runtimes (excluding pre-computation) are for a

CPU implementation of our method with acceleration, and a (GPU/CPU)

implementation of RHM. The runtime of pre-computation for our method

is 7s (and 70s for RHM). Our solution has comparable quality and is more

than 2 orders of magnitude faster.

we increase the number of rows with higher increments than that
of columns. We point out these explicitly in Section 5.

4.2.2 Approximate nearest neighbors. We can also use approximate
nearest neighbor instead of exact nearest neighbors during upsam-
pling. This is particularly useful in higher dimensions where such
queries can become expensive. In practice, we have observed that
using the FLANN library [Muja and Lowe 2014] can lead to a 30x
time improvement with negligible impact on final quality (∼0.001%
decrease of average accuracy).

4.2.3 Sub-sampling. In the presence of perfect information, a func-
tional map C of size k × k is fully determined by k point correspon-
dences. Thus, it is possible to sample a small number (typically a
few hundred) points on each shape, perform our refinement using
the spectral embedding of only those points, and then convert the
final functional map to a dense pointwise correspondence only once.
In practice we simply use Euclidean farthest point sampling starting
from a random seed point.

4.3 Relation to Other Techniques

While closely related to multiple existing techniques, our method is
fundamentally different in several ways that we highlight below.

Iterative Closest Point. ICP refinement of functional maps [Ovs-
janikov et al. 2012] differs in that our method progressively increases
the dimension of the spectral embedding during refinement. This
crucial difference allows us to process smaller initial functional
maps, which are easier to compute, and avoids getting trapped in
local minima at higher dimensions, significantly improving the final
accuracy. Figure 3 shows the accuracy of our method compared
to ICP with different dimensions. All methods in this figure refine
the same initial pointwise map at #iter = 1, which is computed
using [Ren et al. 2018] with the orientation-preserving term. More-
over, differently from ICP our approach does not force the singular
values of functional maps to be 1, and inverts the direction of the
pointwise and functional maps in a way that is consistent with the
directions of a map and its pull-back. As we show in Section 4.4,
rather than promoting area-preserving pointwise maps as done in
ICP, our method implicitly optimizes an energy that promotes full
isometries. In Figure 4 we further illustrate that our method pro-
duces significantly more accurate maps in higher dimensions. We

ACM Trans. Graph., Vol. 38, No. 6, Article 155. Publication date: November 2019.
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Source Ini
runtime =

error =

ICP
3s

0.069

PMF
312s

0.108

RHM
56s

0.039

BCICP
301s

0.028

Ours
0.47s

0.024

GT

Fig. 6. Refinement example. Given the initialization computed from WKS
descriptors, we compare our method with existing refinement techniques,
by visualizing the maps via color transfer (first row) and texture transfer
(second row). We also report the average error and the runtime for each
method. Note that our method is 120x faster than RMH and 640x faster
than BCICP, while resulting in lower error.

initialize the maps with the approach of [Nogneng and Ovsjanikov
2017] using the WKS descriptors and 2 landmarks.

BCICP. [Ren et al. 2018] is a recent powerful technique for im-
proving noisy correspondences, based on refining maps in both
the spectral and spatial domains, while incorporating bijectivity,
smoothness and coverage through a series of sophisticated update
steps. While often accurate, this method requires the computation
of geodesic distances, is inefficient, and suffers from poor scalability.
As an extension of the original ICP, this method also uses spectral
embeddings of fixed size. As we show in our tests, our very sim-
ple approach can achieve similar and even superior accuracy at a
fraction of the time cost.

Reversible Harmonic Maps (RHM). [Ezuz et al. 2019] is another
recent approach for map refinement, based on minimizing the bi-
directional geodesic Dirichlet energy. In a similar spirit to ours, this
technique is based on splitting the alignment in a higher-dimensional
embedding space from the computation of pointwise maps. How-
ever, it requires the computation of all pairs of geodesic distances,
and results in least squares problems with size proportional to the
number of points on the shapes. Furthermore, similarly to ICP and
BCICP, the embedding dimension is fixed throughout the approach.
As a result, our approach is significantly more efficient (see Figure 5),
scalable, and, as we show below, more accurate in many cases.

Spatial refinement methods. Spatial refinement methods such as
PMF [Vestner et al. 2017a,b] operate via an alternating diffusion
process based on solving a sequence of linear assignment prob-
lems; this approach demonstrates high accuracy in challenging
cases, but is severely limited by mesh resolution. Other approaches
formulate shape correspondence by seeking for optimal transport
plans iteratively via Sinkhorn projections, but they either scale
poorly [Solomon et al. 2016] or can have issues with non-isotropic
meshes [Mandad et al. 2017]. Interestingly, although fundamentally
different, a link exists between ZoomOut and PMF that we describe
in the supplementary materials.

(1)

(1) (2)
→ · · ·→

(3)
→

(3)
→

20 × 20 50 × 50

50 × 50 Source

Ground-truth

Fig. 7. We use an existing functional map pipeline (1) to compute either a
50 × 50 (top row) or 20 × 20 (bottom row) functional map using the same
input descriptors. We then upsample (2) the smaller map to also have size
50x50 using our technique, and convert both to pointwise maps (3). Our
approach leads to better results as can be seen, e.g., on the arms and legs.

In Figure 6 we show qualitative comparisons with the methods
above on pairs of remeshed shapes from the FAUST [Bogo et al.
2014] dataset. We provide a more complete evaluation with state-
of-the-art refinement methods in Section 5.

4.4 Derivation and Analysis

In this section we provide a theoretical justification for our method
by first formulating a variational optimization problem and then
arguing that ZoomOut provides an efficient way of solving it.

4.4.1 Optimization Problem. We consider the following problem:

min
C∈P

E(C), where E(C) =
∑

k

1

k



C
T
k
Ck − Ik





2
F
. (3)

Here P is the set of functional maps arising from pointwise cor-
respondences, Ck is the principal k × k submatrix of C (i.e., the
submatrix of C consisting of the first k rows and columns), and Ik is
an identity matrix of size k . In other words, Eq. (3) aims to compute
a pointwise map associated with a functional map in which every
principal submatrix is orthonormal.

The energy in Eq. (3) is different from the commonly used penalty
promoting orthonormal functional maps [Kovnatsky et al. 2013,
2016; Ovsjanikov et al. 2012] in two ways: first we explicitly con-
strain C to arise from a point-to-point map, and second we enforce
orthonormality of every principal submatrix rather than the full
functional map of a given fixed size. Indeed, an orthonormal func-
tional map corresponds to only a locally area-preserving point-to-
point correspondence [Rustamov et al. 2013]. Instead, the energy
in Eq. (3) is much stronger and promotes complete isometries as
guaranteed by the following theorem (proved in Appendix A):

Theorem 4.1. Given a pair of shapes whose Laplacian matrices

have the same eigenvalues, none of which are repeating, a functional

map C ∈ P satisfies E(C) = 0 if and only if the corresponding point-

wise map is an isometry.

To derive ZoomOut as a method to solve the optimization prob-
lem in Eq. (3) we first consider a single term inside the sum, andwrite
the problem explicitly in terms of the binary matrix Π representing

ACM Trans. Graph., Vol. 38, No. 6, Article 155. Publication date: November 2019.
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the pointwise map:

min
Π

∥CT
k
Ck − Ik ∥

2
F = min

Π
∥CkC

T
k
− Ik ∥

2
F , (4)

where Ck = (Φk
M
)+ΠΦkN . (5)

This problem is challenging due to the constraints on Π. To address
this, we use half-quadratic splitting, by decoupling Π and Ck . This
leads to the following two separate sub-problems:

min
Π

∥(Φk
M
)+ΠΦkNC

T
k
− Ik ∥

2
F , (6)

min
Ck

∥Ck − (Φk
M
)+ΠΦkN ∥2F . (7)

Nowwe remark that Eq. (6) does not fully constrainΠ since it only
penalizes the image of Π within the vector space of Φk

M
. Instead,

inspired by a related construction in [Ezuz and Ben-Chen 2017] we
add a regularizer R(Π) = ∥(I −Φ

k
M
(Φk

M
)+)ΠΦk

N
C
T
K
∥2
AM

, where we

use the weighted matrix norm ∥X ∥2
AM
= tr (XTAMX ) and AM is

the area matrix of shape M. This regularizer penalizes the image
of ΠΦk

N
C
T
k
that lies outside of the span of Φk

M
, which intuitively

means that no spurious high frequencies should be created. Finally,
it can be shown (see proof in the appendix) that solving Eq. (6) with
the additional term R(Π) is equivalent to solving:

min
Π

∥ΠΦkNC
T
k
− Φ

k
M

∥2F . (8)

The problem in Eq. (8) has a closed-form solution, which reduces
to the nearest-neighbor search described in Eq. (2) above. Moreover,
the problem in Eq. (7) is solved simply via Ck = (Φk

M
)+ΠΦk

N
since

the minimization is unconstrained.
Finally, in this derivation we assumed a specific value of k . In prac-

tice we start with a particular value k0 and progressively increase it.
This is motivated by the fact that if a principal k × k submatrix is
orthonormal, it provides a very strong initialization for the larger
problem on a (k + 1) × (k + 1) matrix since only a single new con-
straint on the additional row and column must be enforced. This
leads to our method ZoomOut:

(1) Given k = k0 and an initial C0 of size k0 × k0.
(2) Compute argminΠ ∥ΠΦk

N
C
T
k
− Φ

k
M

∥2
F
.

(3) Set k = k + 1 and compute Ck = (Φk
M
)+ΠΦk

N
.

(4) Repeat the previous two steps until k = kmax.

4.4.2 Empirical Accuracy. We demonstrate that this simple proce-
dure is remarkably efficient in minimizing the energy in Eq. (3).
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Fig. 8. Value of E(C) across itera-

tions

For this in Figure 8 we plot the
value of the energy during the
iterations of ZoomOut from
k = 20 to k = 120 with
step 5 on 100 pairs of shapes
from the FAUST dataset, and
compare it to the ICP refine-
ment using k = 120. We also
evaluate a method in which
we perform the same itera-
tive spectral upsampling as in
ZoomOut but use the point-
wise map recovery from [Ezuz and Ben-Chen 2017] instead of Eq. (2).
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Fig. 9. Scalability and accuracy test on 6 pairs of scanned bones. The source

shape has 5K vertices. We compare to ICP and BCICP on the same target

shape with different resolution (ranging from 1K to 20K vertices).

Source: n = 5K n = 1K
t = 1.2

n = 5K
t = 5.7

n = 10K
t = 11

n = 50K
t = 55

n = 100K
t = 110

n = 150K
t = 169

Fig. 10. Scalability. The vertices of the bone shapes are colored black to

show the resolution (zoom in for better view), while RGB colors encode the

computed map, via pull-back from the source. The corresponding runtime

for our upsampling, from 5×5 to 50×50 without any acceleration, is reported
below each shape (in seconds).

For all methods, at every iteration we convert the computed point-
wise map to a functional map C of fixed size 120 × 120 and report
E(C). Our approach results in maps with energy very close to the
ground truth, while Deblur with upsampling performs poorly, high-
lighting the importance of the adapted pointwise recovery method.
In the supplementary materials we further detail the differences
between the two methods and their relation to PMF.
Finally, in Figure 7 we also show the result of an existing func-

tional map estimation pipeline with orientation preservation [Ren
et al. 2018] for a map of size 50 × 50 with careful parameter tun-
ing for optimality, which nevertheless leads to noise in the final
point-to-point map. Initializing the map to size 20× 20 using exactly
the same descriptors and up-sampling it to a larger size with our
approach leads to a significant improvement.

5 RESULTS

We conducted an extensive evaluation of our method, both in terms
of its empirical properties (Section 5.1) and in relation to existing
methods, as we showcase across several applications (Section 5.2).

5.1 Performance of ZoomOut

We start by showing an evaluation of scalability, as well as of the
stability and smoothness of our method.

5.1.1 Scalability. In Figure 9 we assess the scalability of our method
using shapes of humerus bones of wild boars acquired using a 3D
sensor. Each bone was scanned independently, and the ground truth
was provided by domain experts as 24 consistent landmarks [Gunz
andMitteroecker 2013] on each shape.We show the average runtime
and accuracy over 6 maps w.r.t. different target mesh resolution; the
input descriptors (one landmark point and WKS descriptors [Aubry
et al. 2011]) for the initialization are fixed. While BCICP, the current
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Fig. 12. Stability of zoomOut
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Fig. 13. Average Dirichlet energy of pointwise maps on 20 TOSCA pairs,
starting with a computed 20 × 20 functional map, refined either using ICP
in different dimensions or ZoomOut until 120 × 120. Our method converges
to a smoother map, with Dirichlet energy closer to the ground truth.

state-of-the-art method, quickly becomes prohibitively expensive at
high resolution, both ICP and ZoomOut without acceleration have
approximately linear complexity. On the other hand, the accuracy
for BCICP and our method are stable w.r.t. different resolutions,
while ICP is less accurate and more unstable. Figure 10 also shows
an example with meshes having ∼150K vertices.
Figure 11 shows the results of our sub-sampling strategy for

acceleration on one pair of bones, where the source has 20K vertices,
and the target has 5K vertices. The corresponding runtime (blue
curve) and average error (red curve) w.r.t. different sampling size for
the source shape are reported. We can see that around 100 samples
on a 20K mesh are enough to produce a refined map with similar
quality to that of our method without sampling (whose average is
shown as dashed black).

5.1.2 Stability. We also evaluate the stability of our method w.r.t.
noise in the initial functional map. Here we test on a single shape
pair from FAUST initialized using the approach of [Ren et al. 2018]
while fixing the size of the computed functional map to 4. Given
this 4 × 4 initial functional map, we add white noise to it and use
our method to refine the map. Figure 12 shows the average error
over iterations for 100 independent random tests. This plot shows
that our method is robust to noise in the input, even if the input
maps can have errors up to approximately 40% of the shape radius.
At the same time, our algorithm can efficiently filter out the noise
within a small number of iterations. Note that in 94 cases out of 100
the refined maps converged to a nearly identical final result, while
in the remaining 6, the refinement led to maps that are mixed with
symmetric ambiguity since there is too much noise introduced into
their initialization.
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Fig. 14. Error summary of symmetry detection. We compare with the recent
state-of-the-art methods IntSymm [Nagar and Raman 2018] and GroupRep
[Wang and Huang 2017], as well as to the baseline Blended Intrinsic Maps
(BIM) [Kim et al. 2011] and BCICP.

5.1.3 Smoothness. The maps refined with our method are typically
very smooth, although this constraint is not enforced explicitly.
Figure 13 shows a quantitative measurement of the smoothness
compared to ICP with different dimensions on 20 pairs of shapes
from the TOSCA dataset [Bronstein et al. 2008], starting with a
20 × 20 functional map computed via [Nogneng and Ovsjanikov
2017]. Map smoothness is measured as the mean Dirichlet energy
of the normalized coordinates of the target shape mapped on the
source through the given point-to-point map. Our method clearly
provides smoother maps, and approaches the ground truth after a
few iterations.

5.2 Practical Applications

We applied our method across a range of application scenarios,
including symmetry detection, map refinement among complete
shapes, partial matching and function transfer. In each application
we demonstrate a quantitative improvement as well as a significant
speedup compared to the best competing method. Note that in
all experiments, we use the same initialization for all competing
methods to guarantee a fair comparison.
Unless otherwise stated, ICP uses the same dimension as the

output dimension of ZoomOut. łOursž refers to applying ZoomOut
on the complete meshes, while łOurs∗ž refers to ZoomOut with
sub-sampling for acceleration. In both cases, we always output
dense correspondences between complete meshes. To measure the
accuracy, we only accept direct ground-truth maps (except for the
symmetry detection application, where the symmetric ground-truth
maps are considered). For texture transfer, we first convert the point-
wise map to a functional map with size 300×300, then we use this
functional map to transfer the uv-coordinates from source to target.

5.2.1 Symmetry Detection. We first apply our approach for com-
puting pose-invariant symmetries. This problem has received a lot
of attention in the past and here we compare to the most recent
and widely used techniques. In this application we are only given
a single shape and our goal is to compute a high-quality intrinsic
symmetry, such as the left-right symmetry present in humans. This
problem is slightly different from the pairwise matching scenario,
since the identity solution must be ruled out. We do so by leverag-
ing a recent approach for encoding map orientation in functional
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Table 1. Symmetry Detection. Given approximate symmetric maps (Ori-

entRev [Ren et al. 2018]), we refine them using our method or BCICP, and

compare the results to several state-of-the-art methods, including BIM,

IntSymm, and GroupRep. Here we report the average error and runtime

over 100 FAUST shapes and 71 SCAPE shapes. We also include the results

of our method with sub-sampling for acceleration (called Ours*).

Measurement Average Error (×10−3) Average Runtime (s)
Method \ Dataset FAUST SCAPE FAUST SCAPE

BIM [Kim et al. 2011] 65.4 133 34.6 41.7
GroupRep [Wang and Huang 2017] 224 347 8.48 16.7
IntSymm [Nagar and Raman 2018] 33.9 60.3 1.35 1.81
OrientRev (Ini) [Ren et al. 2018] 68.0 110 0.59 1.07
Ini + BCICP [Ren et al. 2018] 29.2 49.7 195.1 525.6

Ini + Ours 16.1 46.2 22.6 62.7
Ini + Ours* 18.5 46.6 1.78 3.66

Improv. w.r.t

state-of-the-art

Ini + Ours 44.9% 7.0% 8× 8×
Ini + Ours* 36.6% 6.2% 110× 140×

Ground-truth BIM IntSymm GroupRep OrientRev BCICP Ours

Fig. 15. Symmetry detection. We show two examples with FAUST (first row)

and SCAPE (second row) and visualize the symmetric maps from different

methods via texture transfer. Note that our method with acceleration is

over 100× faster than BCICP, while achieving comparable or better quality.

map computations [Ren et al. 2018]. Namely, we compute an initial

10 × 10 functional map by solving an optimization problem with

exactly the same parameters as in [Ren et al. 2018] and WKS de-

scriptors as input, but instead of orientation-preserving, we promote

orientation-reversing maps. This gives us an initial functional map

which we then upsample to size 100×100. Figure 14 shows the error

curves on the SCAPE [Anguelov et al. 2005] and FAUST benchmarks

(for which we have the ground truth symmetry map), while Table 1

reports the average error and runtime. Note that the shapes in both

datasets are not meshed in a symmetric way, so a successful method

must be able to handle, often significant, changes in mesh structure.

Our approach achieves a significant quality improvement com-

pared to all state-of-the-art methods, and is also significantly faster.

With acceleration, we achieve a speedup of more than 100x on a

workstation with a 3.10GHz CPU and 64GB RAM. Figure 15 further

shows a qualitative comparison. Finally, we remark that for human

shapes the first four Laplacian eigenfunctions follow the same struc-

ture disambiguating top-bottom and left-right. Therefore we can

use a fixed 4× 4 diagonal functional map with entries 1, 1,−1,−1 as

an initial guess for human symmetry detection. Results with this

initialization are shown in the supplementary materials.

Original Remeshed
Remeshed

+ Resampled

Fig. 16. Different triangulation

WKS desc 2 landmarks Neural SHOT

Fig. 17. Different descriptors

Table 2. Quantitative evaluation of refinement for shape matching.

The Original and Remeshed datasets include 300 shape pairs. The Resampled

dataset includes 190 FAUST pairs and 153 SCAPE pairs.

Average Error (×10−3) Average Runtime (s)

Method \ Dataset Original Remeshed Resampled Original Remeshed Resampled

Ini 67.3 44.0 46.5 - - -

ICP 54.0 36.3 29.3 10.2 10.1 5.32
Deblur 61.9 38.6 44.4 10.9 11.7 10.4
RHM 41.9 33.3 32 41.4 42.5 47.4
PMF 26.4 25.9 86.4 736.5 780.2 311.5
BCICP 21.6 19.5 26 183.7 117.8 364.2

Ours 15.8 13.3 21.7 9.60 9.64 6.49
Ours* 17.5 14.5 24.6 1.14 1.15 0.68

Improv.
Ours 26.9% 31.8% 16.5% 19× 12× 56×
Ours* 19.0% 25.6% 5.4% 160× 100× 535×

5.2.2 Refinement for shape matching. We applied our technique to

refine maps between pairs of shapes and compared our method with

recent state-of-the-art refinement techniques, including RHM [Ezuz

et al. 2019], PMF [Vestner et al. 2017b], BCICP [Ren et al. 2018],

Deblur [Ezuz and Ben-Chen 2017], as well as the standard refinement

ICP [Ovsjanikov et al. 2012].

For each dataset (FAUST and SCAPE), we consider three different

versions. (1) Original: where all the meshes have the same trian-

gulation. (2) Remeshed: we randomly flipped 12.5% of the edges

(using gptoolbox [Jacobson et al. 2018]) keeping the vertex posi-

tions unchanged to maintain a perfect ground-truth. (3) Remeshed

+ Resampled (called "Resampled" in Table 2): we use the datasets

provided in [Ren et al. 2018], where each shape is remeshed and re-

sampled independently, having different number of vertices (around

5k) and often significantly different triangulation. As such, these are

more challenging than the original datasets on which near-perfect

results have been reported in the past. Figure 16 shows a FAUST

shape in the three versions.

To demonstrate that our algorithm works with different initial-

izations, we use three different types of descriptors to compute the

initial functional maps (with size 20 × 20) for the three datasets:

(1) WKS; (2) descriptors derived from two landmarks (see the two

spheres highlighted in the middle of Figure 17); (3) Learned SHOT

descriptors [Roufosse et al. 2018]: the descriptors computed by a

non-linear transformation of SHOT, using an unsupervised deep

learning method trained on a mixed subset of the remeshed and re-

sampled SCAPE and FAUST dataset. For the experiments with WKS

descriptors, we also use the orientation-preserving operators [Ren

et al. 2018] to disambiguate the symmetry of the WKS descriptors.

Table 2 reports the average error and runtime, while the cor-

responding summary curves are in the supplementary materials.

Figure 6 shows a qualitative example. Our method without accel-

eration achieves 26.9%, 31.8%, and 16.5% improvement in accuracy

over the state-of-the-art while being 10 to 50 times faster. With
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acceleration, our method is more than 100-500× faster than the top
existing method while still producing accuracy improvement. Our
method is also much simpler than BCICP (see Appendix B for an
overview of the source code of BCICP and our method). Interest-
ingly, we also note that the method in [Roufosse et al. 2018] overfits
severely when trained directly on functional maps of size 120 and
results in an average error of 97.5. In contrast, training on smaller
functional maps and using our upsampling leads to average error of
21.7. Please see the supplementary for an illustration. We provide
evaluation of other quantitative measurements such as bijectivity,
coverage, and edge distortion in Appendix C. We also provide addi-
tional qualitative examples and comparison to the Deblur method
on non-isometric shapes in Appendix D.

5.2.3 Matching different high-resolution meshes. SHREC19 [Melzi
et al. 2019] is a recent benchmark composed of 430 human pairs
with different connectivity and mesh resolution, gathered using 44
different shapes from 11 datasets. Each shape is aligned to the SMPL
model [Loper et al. 2015] using the registration pipeline of [Marin
et al. 2018], thus providing a dense ground truth for quantitative
evaluation. This benchmark is challenging due to high shape vari-
ance and due to the presence of high-resolution meshes (5K to 200K
vertices, see supplementary materials for examples). In Table 3 we
report full comparisons in terms of average error and runtime.
Since BCICP and PMF require a full geodesic distance matrix as

input, we apply them on simplified shapes (we used MATLAB’s
reducepatch for the remeshing). The refined maps are then propa-
gated back to the original meshes via nearest neighbors; please see
the supplementary materials for more details.

We initialize ZoomOut with the 20× 20 functional map provided
as baseline in [Melzi et al. 2019], and upsample this map to size
120× 120 with a step of size 5. Our method achieves the best results
while being over 290× faster. We also highlight that although we
have a similar accuracy as BCICP, we better preserve the local details
as shown in Figure 18, since we avoid the mesh simplification and
map transfer steps.

In the supplementary materials, we further compare to methods
that are applicable on full-resolution meshes directly. The experi-
ment is conducted on a subset of SHREC19 and our method achieves
a significant improvement in accuracy.

5.2.4 Point cloud surfaces. Several standard methods for meshes
typically fail when applied to point clouds. We tested our approach
on point clouds generated from the FAUST and TOSCA datasets,
by sampling points within mesh triangles uniformly at random. We
estimate the Laplace operator on point clouds as proposed in [Belkin
et al. 2009]. The initial 20 × 20 functional map is estimated with
the approach of [Nogneng and Ovsjanikov 2017], using WKS and
2 landmarks (Ini). We then upsample from 20 to 120 with steps of
size 5, and compare with ICP, ICP20 and ICP120. Quantitative and
qualitative results are shown in Table 4 and Figure 19.

5.2.5 Partial Matching. A particularly challenging setting of shape
correspondence occurs whenever one of the two shapes has missing
geometry. In [Rodolà et al. 2017] it was shown that, in case of partial
isometries, the functional map matrix C has a łslanted diagonalž

with slope proportional to the area ratio A(N)
A(M)

(here, M is a partial

Table 3. SHREC19 summary. We compare with the refinement techniques
RHM, PMF, BCICP and the baseline ICP on 430 shape pairs. We report an
accuracy improvement over BCICP (the top performing method on this
benchmark), and a significant gap in runtime performance over all methods.

Method #samples
Measurement

Avg. Error (×10−3) Avg. Runtime (s)
Initialization - 60.4 -

ICP - 47.0 87.3
Deblur - 55.4 102.1
RHM - 42.6 2313

PMF
500 56.2 72.9
1000 51.8 118.1
5000 83.2 349.3

BCICP
500 40.7 90.0
1000 33.6 163.7
5000 30.1 437.9

Ours* 500 28.8 1.5

Improv. Ours* 500 4% 290×

Source (n = 53K ) PMF (500) PMF (1000) PMF (5000)

Initialization BCICP (500) BCICP (1000) BCICP (5000)

Reference (n = 16K ) Ours (500) Ours (1000) Ours (5000)

Fig. 18. Different sampling density. Here we show an example from the
SHREC19 benchmark on a pair of shape with 53K and 16K vertices respec-
tively. We compare with PMF and BCICP under different sampling density
(500, 1000, and 5000 samples). The computed maps are visualized via texture
transfer. Our method achieves the best global accuracy while preserving the
local details at the same time. Further, our method is much less dependent
on the sampling density than BCICP or PMF.

Table 4. Quantitative evaluation on point cloud surfaces. Our method
is both more accurate and faster than ICP on average.

Measurement \ Method Ini ICP ICP20 ICP120 Ours*
Improv.
Ours

Average Error (×10−3) 51.0 49.7 31.4 36.9 22.3 29.0%

Average Runtime (s) - 29.6 8.3 305.2 4.0 2×

shape andN is a complete shape). Our spectral upsampling method

can still be applied in this setting. To do so, we weakly enforce the

expectation of a slanted diagonal by allowing rectangularC. Namely,
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Fig. 19. Results on non-rigid point cloud surfaces. We tested on 10 FAUST

pairs and 10 TOSCA pairs. Below, we visualize geodesic error directly on

the point clouds, defined as the Euclidean distance between the estimated

matches and the ground truth. The heatmap grows from white (zero error)

to dark red (≥ 10% deviation from ground truth).
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→ · · · →

19 × 30 30 × 47

Fig. 20. Partial matching involves functional maps C with slanted diagonal.

To account for this particular structure, we iteratively increase the two

dimensions of C by different amounts, see Equations (9)-(10). This allows
correct upsampling, as shown in this example.
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Fig. 21. Top: Comparisons on the SHREC’16 Partiality benchmark with the

state of the art method Partial Functional Maps (PFM) [Rodolà et al. 2017]

and with the Random Forests (RF) baseline [Rodolà et al. 2014]. Average

runtimes are 6sec for our method and 70sec for PFM, both initialized with a

4 × 4 ground truth C. Bottom: Qualitative results on the dog class.

we define the update rules for the step size as follows:

kM 7→ kM + 1 (9)

kN 7→ kN + 1 + ⌈
kN
100

(100 − r )⌉ (10)
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Fig. 22. Comparisons on the SHREC’16 Topology benchmark. Competing

methods include PFM, RF, Green’s Embedding (GE) [Burghard et al. 2017],

Expectation Maximization (EM) [Sahillioğlu and Yemez 2012], Convex Opti-

mization (CO) [Chen and Koltun 2015], and Fully Spectral Partial Matching

(FSPM) [Litany et al. 2017]. Dashed curves indicate sparse methods.

Source

Fig. 23. Top: the regions with topology noise are highlighted in orange;

Bottom: maps computed using our method visualized via color transfer.

where r is an estimate for rank(C) obtained via the formula r =

max
kM
i=1{i | λ

M
i < maxkNj=1 λ

N
j } after setting kM = kN = 100 (see

[Rodolà et al. 2017, Eq. 9] for details). In the classical case where
bothM andN are full and nearly isometric, the estimate boils down
to r = min{kM ,kN} = 100 and Eq. (10) reduces to kN 7→ kN + 1;
see Figure 20 for an illustration.
For these tests we adopt the SHREC’16 Partial Correspondence

benchmark [Cosmo et al. 2016a], consisting of 8 shape classes (hu-
mans and animals) undergoing partiality transformations of two
kinds: regular ‘cuts’ and irregular ‘holes’. All shapes are additionally
resampled independently to ∼10K vertices. Evaluation is performed
over 200 shape pairs in total, where each partial shape is matched
to a full template of the corresponding class. Quantitative and qual-
itative results are reported in Figure 21.

5.2.6 Topological Noise. We further explored the case of topological
changes in the areas of self-contact (e.g., touching hands generating
a geodesic shortcut). For this task, we compare with the state of
the art on the SHREC’16 Topology benchmark [Lähner et al. 2016]
(low-res challenge), consisting of 25 shape pairs (∼ 12K vertices)
undergoing nearly isometric deformations with severe topological
artifacts. We initialize our method with a 30 × 30 matrix C esti-
mated via standard least squares with SHOT descriptors [Tombari
et al. 2010]. Since self-contact often leads to partiality, we use the
rectangular update rules (9)-(10). Results are reported in Figure 22.
Figure 23 shows some example maps computed using our method.

5.2.7 Different Basis. In [Melzi et al. 2018] it was proposed to
address the partial setting by considering a Hamiltonian HM =
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Table 5. Results in the transfer of different classes of functions, average on
20 pairs from FAUST dataset. Initial map size is 40 × 30 (Ini), final size of
ours is 210 × 200. The methods marked with † are initialized with the initial
functional maps refined by ICP. See text for details.

function Ini ICP p2p† ICP200 Prod† Ours Ours†

HeatKernel 0.80 0.18 0.15 0.17 0.19 0.10 0.10

HeatKernel200 0.95 0.84 0.52 0.34 0.65 0.29 0.29

HKS 0.66 0.55 0.21 0.21 0.28 0.14 0.13

WKS 0.51 0.15 0.06 0.11 0.13 0.04 0.04

XYZ 0.67 0.13 0.09 0.12 0.15 0.05 0.05

Indicator 0.77 0.30 0.18 0.20 0.26 0.17 0.17

SHOT 0.87 0.82 0.87 0.74 0.78 0.73 0.73

AWFT 0.45 0.26 0.18 0.19 0.24 0.14 0.14

Delta 0.98 0.93 0.67 0.43 0.82 0.38 0.38

original f Ini ICP p2p† ICP300 Prod† Ours

Fig. 24. Function transfer example on a non-isometric pair from TOSCA.We
show the original function on the source shape (leftmost) and the transfer
results for the different methods. The functional map is upsampled from
size 40 × 30 to 310 × 300. We mark the methods initialized with ICP with †.

LM +VM in place of the standard manifold Laplacian, whereVM =
diag(1−v) is a localization potential concentrated on the support of
a given (soft) indicator function v : M → [0, 1]; eigenfunctions of
HM are supported on v . We performed experiments showing that
spectral upsampling can still be applied as-is to improve the quality
of maps, when these are represented in this alternative basis. In
these tests we initialized as in [Melzi et al. 2018], and evaluated on
the entire dataset of [Cosmo et al. 2016b], consisting of 150 cluttered
scenes and 3 query models (animals). The results are reported in
the supplementary materials.

5.2.8 Transfer of functions. Functional maps can be used to transfer
functions without necessarily converting to pointwise correspon-
dences. This application, however, can be hindered by the fact that
small functional maps can only transfer low-frequency information.
A recent approach [Nogneng et al. 2018] has tried to lift this restric-
tion by noting that higher frequency functions can be transferred
using łextendedž bases consisting of pointwise products of basis
functions. Our approach is similar in spirit since it also allows to
extend the expressive power of a given functional map by increasing
its size and thus enabling transfer of higher-frequency information.
We evaluated our method by directly comparing with the state

of the art [Nogneng et al. 2018]. For 9 different classes of functions
we compute the error as the norm of the difference between the
transferred function and the ground truth д (obtained by transfer-
ring using the ground truth pointwise map), normalized by the
norm of д. The functions considered are: Heat Kernel computed
with 30 and with 200 eigenfunctions, descriptors HKS [Sun et al.
2009], WKS [Aubry et al. 2011], SHOT [Tombari et al. 2010], AWFT
[Melzi et al. 2016], the coordinates of the 3D embedding, binary
indicator of region, and the heat kernel with a very small time pa-
rameter approximating a delta function defined around a point. The
results are reported in Table 5. We use the same parameters adopted
in [Nogneng et al. 2018], and average over 20 random FAUST pairs.

Source Target Ini ICP PMF RHM BCICP Ours

Fig. 25. Failure case. Here we show a challenging case where the initial map
has left-to-right, back-to-front, and arm-to-leg ambiguity. When refining
such a low-quality initial map, our method sometimes fails to produce a
good refined map. However, our refinement still outperforms the regular
ICP method with respect to the quality of the computed correspondences.

We refine the initial map (Ini) of size 40 × 30, computed using the
approach of [Nogneng and Ovsjanikov 2017], to 210 × 200 with a
step size of 1. We also compare to ICP: ICP refinement applied to Ini;
p2p: function transfer using the point-to-point map obtained by ICP;
ICP200: ICP applied to a functional map of dimension 210 × 200 esti-
mated through the same pipeline adopted for Ini; Prod: the method
proposed in [Nogneng et al. 2018]. We outperform all the competi-
tors for all the classes.

We also compare the results obtained by our method initializing
the functional map after applying ICP, and the two are almost the
same everywhere. A transfer example of a high-frequency function
between a dog and a cat shapes from TOSCA is visualized in Fig-
ure 24. Our refinement achieves the best results with respect to all
the competitors even in this non-isometric pair. In the supplemen-
tary materials we report other qualitative comparisons.

6 CONCLUSION, LIMITATIONS & FUTURE WORK

We introduced a simple but efficient map refinement method based
on iterative spectral upsampling. We presented a large variety of
quantitative and qualitative results demonstrating that our method
can produce similar or better quality on a wide range of shapematch-
ing problems while typically improving the speed of the matching
by an order of magnitude or more. We find it remarkable that our
method has such strong performance, even though it is conceptu-
ally simple and only requires a few lines of code to implement. In
many cases, our method outperforms very complex frameworks
that consist of multiple non-trivial algorithmic components.
Our method still comes with multiple limitations. First, while

being robust to noise, its success still depends on a reasonable ini-
tialization. Starting with a bad initialization, such as random func-
tional maps, our method would produce poor results. Second, the
method still relies on some parameters that have to be tuned for
each application. Specifically, we need to identify the number of
basis functions in the initialization and the final number of basis
functions. Additionally, the step size during upsampling has to be
chosen for optimal speed, but using a step size of one is always a
safe choice. Finally, our method is very robust to deviations from
perfect isometries, but still will fail for significantly non-isometric
shape pairs. See examples in Figure 25 and in Appendix D. In future
work, we would like to investigate how to automatically compute
the minimal size of the input functional map and plan to extend our
work to other settings such as general graphs and images.
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A THEORETICAL ANALYSIS

Proof of Theorem 4.1. We will prove this theorem with the help of
the following well-known lemma, for which we give the proof in
the Supplementary Material for completeness:

Lemma A.1. Let us be given a pair of shapes M,N each having

non-repeating Laplacian eigenvalues, which are the same. A point-to-

point mapT : M → N is an isometry if and only if the corresponding

functional map C in the complete Laplacian basis is both diagonal

and orthonormal.

Proof. To prove Theorem 4.1 first suppose that the map T is
an isometry, and thus, thanks to Lemma A.1, the functional map
C = Φ

+

M
ΠΦN is diagonal and orthonormal. From this, it imme-

diately follows that every principal submatrix of C must also be
orthonormal implying E(C) = 0.

To prove the converse, suppose thatC ∈ P. Then E(C) = 0 implies
that every principal submatrix of C is orthonormal. By induction
on k this implies that C must also be diagonal. Finally since C ∈ P,
again using Lemma A.1 we obtain that the corresponding pointwise
map must be an isometry. □

A.1 Map Recovery

Our goal is to prove that Eq. (6) with the regularizer R(Π) = ∥(I −

Φ
k
M
(Φk

M
)+)ΠΦk

N
C
T
K
∥2
AM

is equivalent to solving minΠ ∥ΠΦk
N
C
T
k
−

Φ
k
M

∥2
F
: In other words:

argmin
Π

∥(Φk
M
)+ΠΦkNC
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M
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M
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= argmin
Π
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k
− Φ

k
M

∥2F . (11)

For this we use the following result: for any matrix X and basis B
that is orthonormal with respect to a symmetric positive definite
matrix A, i.e. BTAB = Id , and thus B+ = BTA, if we let ∥X ∥2

A
=

tr (XTAX ) then: ∥X ∥2
A
= ∥B+X ∥2

F
+ ∥(I − BB+)X ∥2

A
. To see this,

observe that ∥B+X ∥2
F
= tr (XTABBTAX ) while ∥(I − BB+)X ∥2

A
=

tr
(

XT (I −ABBT )A(I − BBTA)X
)
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(

XT (A −ABBTA)X
)

since

BTAB. We now use this result with X = ΠΦ
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and A = AM . This gives:
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It remains to show that argminΠ ∥X ∥2
AM
= argminΠ ∥X ∥2

F
with

X = ΠΦ
k
N
C
T
k
− Φ

k
M
. For this note simply that since Π represents a

pointwise map, both problems reduce to finding the row of Φk
N
C
T
k

that is closest to each of the rows of Φk
M
.

Note that in supplementarymaterial we derive both an alternative
approach to ZoomOut and, as mentioned in Section 4.3. provide a
link between our approach and PMF.

B IMPLEMENTATION

This Appendix lists standardMatlab code for our method and BCICP,
which is the most competitive method to ours while being or-
ders of magnitude slower. Note that a fully-working version of
ZoomOut can be implemented in just 5 lines of code, while
BCICP relies on the computation of all pairs of geodesics distances
on both shapes, and even after pre-computation, is more than 250
lines of code relying on numerous parameters and spread across a
main procedure and 4 utility functions.

B.1 Source Code - ZoomOut

1 f u n c t i o n [C , P ]=ZoomOut (M,N , C , k _ f i n a l )

2

3 f o r k= s i z e (C , 1 ) : k _ f i n a l −1

4 x = knnsearch (N . Phi ( : , 1 : k ) ∗C ' ,M. Phi ( : , 1 : k ) ) ;

5 P = sp a r s e ( 1 :M. n , x , 1 ,M. n ,N . n ) ;

6 C = M. Phi ( : , 1 : k +1 ) ' ∗M.A∗P ∗N . Phi ( : , 1 : k +1 ) ;

7 end

B.2 Source Code - BCICP [Ren et al. 2018]
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1 Precompute :
2 ( 1 ) comple te p a i rw i s e g e od e s i c d i s t a n c e ma t r i x o f each

shape ;
3 ( 2 ) v e r t e x one−r i n g ne ighbor ;
4 ( 3 ) edge l i s t o f each mesh
5

6 f u n c t i o n [ T12 , T21 ]=BCICP ( S1 , S2 , T12 , T21 , K )
7 B1 = S1 . Phi ( : , 1 : 5 0 ) ;
8 B2 = S2 . Phi ( : , 1 : 5 0 ) ;
9 f o r k =1 :K
10 [ T21 , T12 ]= re f ine_pMap ( T21 , T12 , S1 , S2 ) ;
11 C12 = B2 \ B1 ( T21 , : ) ;
12 C21 = B1 \ B2 ( T12 , : ) ;
13 T12 = knnsearch ( B2 ∗C21 ' , B1 ) ;
14 T21 = knnsearch ( B1 ∗C12 ' , B2 ) ;
15 [ T21 , T12 ]= re f ine_pMap ( T21 , T12 , S1 , S2 ) ;
16 C1 = B1 \ B1 ( T21 ( T12 ) , : ) ;
17 C1 = ma t _p r o j e c t i o n ( C1 ) ;
18 C2 = B2 \ B2 ( T21 ( T12 ) , : ) ;
19 C2 = ma t _p r o j e c t i o n ( C2 ) ;
20 T21 = knnsearch ( B2 ( T12 , : ) ∗C2 ' , B2 ) ;
21 T12 = knnsearch ( B1 ( T21 , : ) ∗C1 ' , B1 ) ;
22 end
23 end
24

25 f u n c t i o n [ T21 , T12 ]= re f ine_pMap ( T21 , T12 , S1 , S2 )
26 f o r k =1 : 4
27 T12 = improve_coverage ( T12 , S1 , S2 ) ;
28 T21 = improve_coverage ( T21 , S1 , S2 ) ;
29 T12 = improve_smoothness ( T12 , S1 , S2 ) ;
30 T21 = improve_smoothness ( T21 , S1 , S2 ) ;
31 T12 = f i x _ o u t l i e r s ( T12 , S1 , S2 ) ;
32 T21 = f i x _ o u t l i e r s ( T21 , S1 , S2 ) ;
33 end
34 end
35

36 f u n c t i o n [ T12 ]= improve_coverage ( T12 , S1 , S2 )
37 % around 120 l i n e s o f code
38 f u n c t i o n [ T12 ]= improve_smoothness ( T12 , S1 , S2 )
39 % around 50 l i n e s o f code
40 f u n c t i o n [ T12 ]= f i x _ o u t l i e r s ( T12 , S1 , S2 )
41 % around 50 l i n e s o f code
42 . . .

C ADDITIONAL MEASUREMENTS

Given 10 random shape pairs from the FAUST original dataset,
Table 6 shows the performance summary of different refinement
methods w.r.t. the following measurements as used in [Ren et al.
2018]. Specifically, we evaluate the mapsT12 andT21 between a pair
of shapes S1 and S2:

• Accuracy. We measure the geodesic distance between T12
(and T21) and the given ground-truth correspondences.

• Un-Coverage. The percentage of vertices/areas that are NOT
covered by the map T12 (or T21) on shape S2 (or S1)

• Bijectivity. The composite mapT21 ◦T12 (orT12 ◦T21) gives a
map from the shape to itself. Thus, we measure the geodesic
distance between this composite map and the identity.

• Edge distortion. We measure how each edge in S1 (or S2) is
distorted by the map T12 (or T21) as follows:

evi∼vj =
(dS2

(

T12(vi )),T12(vj )
)

dS1 (vi ,vj )
− 1

)2

We then average the distortion error over all the edges as a
measure for the map smoothness.

Table 6. Additional measurements. Besides the map accuray, we also

measure the coverage, bijectivity, and edge distortion as a smoothness

measure on 10 random shape pairs from the original FAUST dataset.

Measurement\ Method Ini
Refinement methods

ICP PMF (gauss) RHM BCICP ours ours∗

Accuracy (×10−3) 98.4 85.8 36.3 63.9 49.9 33.3 36.8
Un-Coverage (%) 72.3 42.4 0 44.5 15.9 23.6 30.7
Bijectivity (×10−3) 104 89.6 1.90 24.6 5.48 15.6 14.8
Edge distortion 10.9 26.4 37.3 3.69 5.49 1.16 4.37

Note that the PMF method optimizes for a permutation matrix
directly, that is why the computed maps covered all the vertices
and give almost zero bijectivity error in Table 6 (the bijiectivity
error is not strictly zero because the mapsT12 andT21 are computed
independently). The method BCICP includes heuristics to explicitly
improve the coverage, bijectivity, and smoothness. Even though
our method is not designed to optimize these measurements, it still
achieves reasonable performance. Note that our method gives the
smallest edge distortion, which suggests that our method not only
gives the most accurate map but also the smoothest map w.r.t. all
the competing methods.

D COMPARISON TO DEBLUR

Source

In
itialization

IC
P

D
eblu

r
O
u
rs

Fig. 26. Comparison to [Ezuz and Ben-Chen 2017] on non-isometric shape

pairs.

The work of [Ezuz and Ben-Chen 2017] also provides an approach
for recovering a point-wise map from a functional map, based on
a different energy. Specifically, our energy defined in Eq. (3) and
the resulting point-wise map conversion step defined in Eq. (6) are
different from the deblurring energy defined in Eq. (4) in [Ezuz and
Ben-Chen 2017]. Figure 26 shows a qualitative comparison between
our method and this method, which we call łDeblur.ž We use 5
landmarks to compute the initial maps (first row), and we then
apply ICP, Deblur, and ours to refine the initial maps. Note that in
these examples, we rescale the target shapes to the same surface
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area as the source shape. We can see that even when the shape pair is far from isometry, our method can still produce reasonable maps,
even though our theory relies on the isometry assumption.
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