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Introduction

“Zoonosis” is defined as a disease or infection that is naturally transmitted from verte-

brate animals to humans [1]. Zoonotic diseases can be either transmitted via direct or 

indirect contact. Transmission of an infectious agent from a vertebrate animal to a hu-

man by an arthropod vector is an example of indirect transmission of zoonotic dis-

ease. Viruses that maintain transmission cycles between vertebrate animal reservoirs 

as main amplifying hosts and insects as primary vectors are known as arboviruses (ar-

thropod-borne viruses). Arboviruses must replicate in the arthropod vectors, such as 

mosquitoes, ticks, midges or sandflies, prior to transmission. Female mosquitoes ac-

quire virus during blood feeding of an infected animal and the virus replicates in the 

mesenteronal epithelial cells. The virus released from the mesenteronal epithelial cells 

infects salivary glands after secondary amplification in other cells and tissues. Some 

arboviruses can infect the salivary glands without secondary amplification in other 

cells and tissues. Subsequently, the virus released from salivary gland epithelium is 

transmitted during blood feeding of the vertebrate host. Arboviruses are included in 

different taxonomic families, including Flaviviridae (genus Flavivirus), Bunyaviridae 

(genus Nairovirus, Orthobunyavirus, Phlebovirus, and Tospovirus), Togaviridae (genus 
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In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses 
(arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavi-
rus) that are important in both humans and domestic animals. Specifically, we will focus on 
alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezu-
elan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile 
virus). Most of these viruses were originally found in tropical regions such as Africa and South 
America or in some regions in Asia. However, they have dispersed widely and currently cause 
diseases around the world. Global warming, increasing urbanization and population size in 
tropical regions, faster transportation and rapid spread of arthropod vectors contribute in con-
tinuous spreading of arboviruses into new geographic areas causing reemerging or resurging 
diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents 
and created major public health issues and disease epidemics.

Keywords: Arthropod-borne viruses, Arboviruses, Alphaviruses, Flaviviruses, Equine Encepha-
lomyelitis, Encephalitis, Zoonoses
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Alphavirus), Rhabdoviridae (genus Vesiculovirus), Ortho-

myxoviridae (genus Thogotovirus), and Reoviridae (genus 

Orbivirus and Coltivirus) (Fig. 1). Many of the important zoo-

notic arboviruses belong to the families Togaviridae and Fla-

viviridae [2]. However, there are many other clinically impor-

tant human and animal arboviruses belonging to the Bunya-

viridae family, such as Crimean-Congo hemorrhagic fever vi-

rus (tick-borne) in the genus Nairovirus [3] and Toscana virus 

(sandfly-borne) and Rift Valley fever virus (mosquito-borne) 

in the genus Phlebovirus [4]. Colorado tick fever virus in the 

family Reoviridae (genus Coltivirus) is also an important hu-

man arbovirus [5-7]. 

 Arboviruses are maintained in complex life cycles involv-

ing nonhuman primate/vertebrate hosts and primary arthro-

pod vectors (Fig. 2). Mosquitoes are the most important vec-

tors that transmit zoonotic viruses. Different mosquito spe-

cies (Culex spp., Aedes spp., etc.) may act as vectors for the 

same virus in different vertebrate hosts depending on differ-

ent geographical and ecological locations. Ticks, sandflies 

(Phlebotomus spp.) and gnats (Culicoides spp.) are also im-

portant vectors of some arboviruses. Vertical transmission 

(transovarial and transstadial) occurs in some arthropod vec-

tors as they transmit some arboviruses from parent arthro-

pod to offspring arthropods (Fig. 3). This type of transmission 

mainly occurs in tick-borne encephalitis viruses (TBEVs) but 

it has been also reported in some mosquito-borne viruses [8-

10]. For example, La Crosse virus, one of the most important 

viruses among agents causing California encephalitis, is trans-

mitted by its main vector, Aedes triseriatus, not only by trans-

ovarial and transstadial routes but also sexually [11]. 

 Most known arboviruses were first isolated in tropical re-

gions such as Africa and South America and in some Asian 

countries. However, the geographic distribution and frequen-

cy of epidemic outbreaks of arboviral diseases have expand-

ed dramatically across the world in the past several decades 

[12]. Several factors such as changes in viral genetics, host 

and/or vector population, and climate changes facilitated ex-

pansion and transmission of arboviruses resulting in emer-

Fig. 1. Classification of arboviruses. Arboviruses are included in six 
different taxonomic virus families. a)Arboviruses that cause human 
encephalitides belong to four genera in four virus families.
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Fig. 2. Vertebrate host and vector transmission cycles. (A) Enzootic 
cycle (sylvatic or jungle cycle). The natural transmission of virus be-
tween wild animals (vertebrate hosts) and primary or enzootic insect 
vectors and that leads to the amplification of the virus in the vector. 
The vertebrate host is the reservoir host that can harbor a virus indef-
initely with no ill effects. Therefore, reservoir host is the primary host 
of a virus and may be re-infected several times during their life. (B) 
Epizootic cycle (rural cycle). The virus is transmitted between non-wild 
or domestic animals and the primary or accessory insect vectors. This 
can lead to an epidemic outbreak of viral disease in a domestic animal 
population where the virus is amplified (amplifying host), often with 
the implication that it may extend to humans by insect vectors (e.g., 
Japanese encephalitis virus, Venezuelan equine encephalitis virus 
[VEEV]). (C) Urban cycle. Humans are the source of infection for mosqui-
toes due to high level of viremia. The virus cycles between humans 
and insect vectors (urban vector e.g., A. aegypti) repeatedly, as reinfec-
tion occurs with every new insect bite (e.g.,dengue virus, yellow fever 
virus, St. Louis encephalitis virus, VEEV, chikungunya virus, Rift Valley 
fever virus). (D) Humans are dead-end hosts in the infection chain and 
do not develop sufficient viremia and do not serve for amplification of 
the virus to be transmitted again to insect vector (e.g., Eastern equine 
encephalitis virus, Western equine encephalitis virus, West Nile virus, 
and Sindbis virus). a)Amplifying host is in which the level of virus can 
become high enough that an insect vector such as a mosquito that 
feeds on it will probably become infectious. b)Dead-end host or inci-
dental host is an intermediate host that does generally not allow trans-
mission of the virus to the definitive host. They do not develop suffi-
cient viremia to be picked up by the insect vectors. c)Bridge vector is 
an arthropod that acquires virus from an infected wild animal and 
subsequently transmits the agent to human or secondary host.
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gence/reemergence of arboviral disease outbreaks in new re-

gions in the world. Extensive tropical urbanization and faster 

and increased movement of humans and animals with mod-

ern transportation helped vectors to be in closer contact with 

vertebrate reservoir hosts raising transmission potential. In-

troduction of West Nile virus into the New World and the 

emergence of Japanese encephalitis virus (JEV) in Australia 

are a few prominent examples of recent unexpected emerg-

ing/reemerging zoonotic diseases [13,14].

 Epidemics/epizootics of humans and domestic animals 

usually occur when the enzootic virus is introduced into rural 

environments or comes to close contact with humans by a 

bridge vector (Fig. 2). Usually, humans and domestic animals 

develop clinical disease but do not develop a sufficient level 

of viremia to infect arthropods, thus, they are considered dead-

end hosts and do not contribute to the transmission cycle [15, 

16]. However, some arboviruses such as dengue fever (DF), 

yellow fever, and chikungunya (CHIKV) viruses cause high 

levels of viremia in humans and can be transmitted from per-

son to person by mosquitoes (urban cycle) (Fig. 2) [17].

 In this review, we will mainly focus on the transmission 

and epidemiology of mosquito-borne arboviruses, especially 

alphaviruses and flaviviruses that are pathogenic to humans 

as well as domestic animals, thus, increasing the public health 

and economic significance. Although these viruses, with the 

exception of JEV, are not currently circulating in the Korean 

peninsula, there is a great chance for other viruses to emerge 

when a competent vector and vertebrate host populations 

happen to be temporally and spatially together in a permis-

sive environment. 

Alphaviruses

Alphaviruses (formerly, group A arboviruses) are enveloped, 

positive-sense, single-stranded RNA viruses that belong to 

the genus Alphavirus in the family Togaviridae. The alphavi-

rus genome varies between 11 and 12 kb in length and is com-

posed of a non-segmented, single-strand RNA with a 7-meth-

ylguanosine and a poly A tail at 5´- and 3´-terminus, respec-

tively [18,19]. It encodes four non-structural proteins respon-

sible for genome replication and protein processing, and ge-

nerates a subgenomic mRNA (26S). The five structural pro-

teins (C, E3, E2, 6K, and E1) are translated from the 26S sub-

genomic mRNA [18,20].

 The alphaviruses are widely distributed throughout the 

world. They have been classified as belonging to either New 

and Old World alphaviruses: New World alphaviruses (e.g., 

Eastern equine encephalitis virus [EEEV], Western equine 

encephalitis virus [WEEV], and Venezuelan equine encepha-

litis virus [VEEV]) are distributed across the Americas and 

cause encephalitis in humans, whereas Old World alphavi-

ruses (e.g., Sindbis virus [SINV], CHIKV, O’nyong-nyong virus 

[ONNV], Ross River virus [RRV], Barmah Forest virus [BFV], 

and Semliki Forest virus [SFV]), characterized by fever, rash, 

and arthritis, are found in Europe, Asia, Australia, and parts 

of Africa [21,22]. However RRV, SINV, and CHIKV have been 

occasionally associated with encephalitis. The alphavirus se-

rogroups can be divided into seven antigenically related com-

plexes: Barmah Forest, Eastern equine encephalitis (EEE), 

Middleburg, Ndumu, Semliki Forest, Venezuelan equine en-

cephalitis (VEE), and Western equine encephalitis (WEE) 

[21,23-25]. All clinically relevant alphaviruses are transmitted 

by mosquitoes. More than one mosquito species is usually 

involved in the alphavirus transmission cycle. The survival of 

alphaviruses in a certain geographic region depends on the 

presence of competent vectors (mosquitoes) and of verte-

brate hosts that develop viremic infection with low pathoge-

nicity. Important amplification hosts are birds (for SINV, SFV, 

EEEV, and WEEV), rodents (for RRV, VEEV, BFV), and mon-

keys (for CHIKV, ONNV, and Mayaro fever virus) [26]. 

Eastern equine encephalitis virus 

Fig. 3. Vertical transmission cycle (transovarial and transstadial). A 
vertical transmission exists in some arthropod vectors and is epide-
miologically important. This type of transmission is found in viruses 
that belong to tick-borne encephalitis complex. However, it is also 
found in some of the mosquito-transmitted viruses (e.g., La Crosse 
encephalitis, Murray Valley encephalitis, St. Louis encephalitis, Japa-
nese encephalitis,West Nile, and Western equine encephalitis).
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EEEV is a zoonotic virus transmitted by mosquitoes and orig-

inating in birds [27]. In North America, EEEV is an important 

cause of disease in domestic animals and humans. The dis-

ease is severe in horses, pigs, dogs, and some species of birds. 

EEEV was first isolated in 1933 from the brains of affected hors-

es during a widespread outbreak in the northeastern US, in 

New Jersey and Virginia [27,28]. However, horse deaths have 

recently been reported further north along the eastern coast 

of the US (New Hampshire and Maine) and Canada. In 1936, 

South American EEEV was first isolated from a horse in Ar-

gentina [29,30]. The EEEV strains present in South and North 

America are antigenically and genetically different from each 

other and also differ in human pathogenicity [31,32]. There 

are four lineages (I, II, III, and IV) of EEEV based on their an-

tigenicity and distribution in various geographic regions (Ta-

ble 1) [33,34]. The closely related North American EEEV (NA-

EEEV) lineage I viruses that occur in the US, Canada and the 

Caribbean are the most virulent to horses and humans. In 

contrast, infection of horses or humans with more genetically 

and antigenically diverse virus strain, enzootic in Central and 

South America (lineages II, III, and IV [SA-EEEV]), rarely re-

sults in significant clinical disease. The lineage II strains are 

distributed along the coasts of South and Central America, 

lineage III in the Amazon Basin, and lineage IV in Brazil [34, 

35]. 

 In North America, EEEV is enzootic from the eastern and 

gulf coasts as far as to inland sites (Texas) [36,37]. NA-EEEV 

strains are genetically highly conserved, with only one major 

lineage (lineage I) from the first isolation in 1933 [38]. Most 

EEE outbreaks in North America occur in the late summer 

and early fall, often associated with heavy rainfall. Outbreaks 

in horses are common and often accompanied by high case-

fatality rates. Eighty to 90% of the infected horses develop 

acute and lethal disease, and about 66% of the survivors de-

velop severe neurologic sequelae [27]. During outbreaks or 

epidemics of EEE, horses do not serve as amplifying hosts but 

they tend to be the first to develop clinical signs and often 

serve as an indicator of the start of an outbreak or epidemic. 

Table 1. A list of important alphaviruses 

Antigenic complex         Virus Antigenic variety Equine clinical syndrome Geographic distribution

Eastern equine encephalitis  
  (EEE) 

EEEVa) North American (lineage I)
South American (lineages II, III, IV)

Encephalitis
Encephalitis

North America, Caribbean
South and Central America

Western equine encephalitis  
  (WEE)

WEEVa)

HJV
FMV
BCRV
Y62-33
Sindbis

Several

Sindbis (I)
Sindbis (II)
Sindbis (III)
Sindbis (IV)
Sindbis (V)
Aura

Encephalitis
Encephalitis (rare)
None reported
None reported
None reported
None reported
None reported
None reported
None reported
None reported
None reported

North and South America
North and South America
Western North America
Oklahoma, USA
Russia
Africa, Asia, Europe, and Australia
Africa
Europe
New Zealand
Azerbaijan
South America

Venezuelan equine encephalitis  
  (VEE)

I VEEVa)

II Everglades virusa)

III Mucambo

IV Pixunaa)

V Cabassou
VI AG80-663

AB
C
D
E
F

A Mucamboa)

B Tonatea)

B Bijou Bridge
C 71D-1252

Encephalitis
Encephalitis
None or mild febrile illness
None or mild febrile illness
None
None or mild febrile illness
None or mild febrile illness
None reported
None reported
None reported
None or mild febrile illness 
None reported
None reported

South, Central and North America
South and Central America
South and Central America
Central America
Brazil
Florida, USA
Brazil and Trinidad
French Guinea
Western North America
Peru
Brazil
French Guiana
Argentina

Adapted from Weaver et al. [33], with permission from Elsevier Ltd.
EEEV, Eastern equine encephalitis virus; WEEV, Western equine encephalitis virus; HJV, Highland J virus; FMV, Fort Morgan virus; BCRV, Buggy Creek virus; VEEV, Venezuelan 
equine encephalitis vi rus.
a)Encephalitis and febrile illness in humans.
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Thus, the rapid detection of EEEV in equine specimens is crit-

ical for control of disease outbreaks in humans, horses, and 

other animal species. The NA-EEEV strains are responsible 

for most human cases [31]. Human infections are usually as-

ymptomatic, but some progress to severe encephalitis ac-

companied by high fatality rate or incapacitating sequelae. 

The disease is generally more severe in the elderly and in-

fants [5,39]. Although only few cases of human EEEV infec-

tion have been reported annually since the 1960s, the high 

mortality rate and severe neurologic sequelae in infected pa-

tients make EEEV an important human pathogen. 

 In South America, enzootic EEEV is widely distributed in 

most areas of tropical forests, in the Amazon Basin in Brazil, 

and in Northern Argentina [40]. In these regions, EEEV is prin-

cipally an equine pathogen and equine cases can occur year-

round. However, human EEEV infections were rarely detect-

ed even during major equine epizootics [41-43]. In temperate 

regions of South America (e.g., Argentina), EEEV infections 

often occur during the summer [44]. 

EEEV transmission cycle
The EEEV transmission cycle in North America is maintained 

between the passerine birds as reservoir/amplification hosts 

and ornithophilic mosquito, Culiseta melanura, as the main 

enzootic vector in swamp habitats (Fig. 4) [27]. In addition, 

studies have shown that C. melanura, regarded as a bridge 

vector in human and equine infections so far, may also serve 

as a main epizootic vector as well [45,46]. Mosquito species 

such as C. peccator, C. erraticus, and Uranotaenia sapphirina 

may also serve as enzootic vectors in some regions of the south-

eastern US [47]. These mosquitoes are known to feed on rep-

tiles and amphibians. Recently, snakes have been suggested 

to play a role in the enzootic EEEV transmission cycle as over-

wintering hosts [48-50]. EEEV infections in birds are usually 

asymptomatic; however, disease with high-titered viremia 

and high mortality rate has been reported in chukar partridg-

es, pheasants, egrets, glossy ibises (Plegadis falcinellus), rock 

doves, house sparrows, psittacine birds, ratites (emus, ostri-

ches), African penguins, chicken (<14 days old), pigeons, Pe-

kin ducks, and whooping cranes [51-55]. Passerine birds de-

velop extremely high levels of viremia, enough to infect both 

enzootic vectors as well as a variety of bridge vectors (e.g., Ae-

des and Coquillettidia) that transmit the virus from enzootic 

cycle to humans and horses [27]. In pheasants, EEEV is trans-

mitted through feather picking and cannibalism. Humans 

and equids are dead-end hosts since they do not develop suf-

ficient viremia to transmit the virus [10]. 

 In South America, reservoirs and amplification hosts in-

volved in the enzootic EEEV transmission cycle are not known 

yet. However, seroprevalence and experimental studies sug-

gest thatthe Culex (Melanoconion) subgenus and rodents/

marsupials may serve as principal enzootic vectors and res-

ervoirs, respectively, and they may play a more important 

role in enzootic EEEV transmission in South America [56]. 

The virus mainly causes disease in horses and occasional 

cases of encephalitis have also been reported in sheep, cattle, 

deer, South American camelids (llamas and alpacas), and 

pigs [57,58]. In addition, infections have been seen in dogs, 

goats, bats, and small mammals including rodents [59-62]. 

EEEV vaccine
There is a formalin-inactivated vaccine based on an NA-EEEV 

strain (PE-6) used in horses and emus, however it does not 

induce significant neutralizing anti-E2 antibody to SA-EEEV 

[63]. The vaccine is used in laboratory workers to protect from 

accidental exposure. A similar formalin-inactivated vaccine 

is available for horses. There is no specific therapy for EEE at 

the moment. 

Western equine encephalitis virus
WEEV is genetically diverse and both epizootic and enzootic 

strains have been identified. Epizootic North American strains 

are more virulent than strains that are enzootic in South Amer-

Fig. 4. Enzootic and epizootic/epidemic transmission cycles of Eastern 
equine encephalitis virus (EEEV). The enzootic EEEV transmission cycle 
is maintained between passerine birds as reservoir/amplification hosts 
and Culiseta melanura, as the main enzootic vector in swamp habi-
tats. Rodents/marsupials may serve as principal enzootic vectors and 
reservoirs in South America. Passerine birds develop extremely high 
levels of viremia, enough to infect both enzootic vectors as well as a 
variety of bridge vectors. Humans and equids are dead-end hosts since 
they do not develop sufficient viremia to transmit the virus. 
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ica (sporadic cases of WEE). WEE was the first equine ence-

phalitic arbovirus identified in North America. It is closely re-

lated to Sindbis and SFV since it emerged from a recombina-

tion of viruses in the EEE and the Sindbis lineages [64,65]. 

WEEV was first isolated from brains of affected horses during 

an equine epizootic outbreak in the San Joaquin Valley of 

California in 1930 [66]. In 1938, the first lethal human infec-

tion of WEEV was confirmed [67] and since then it spread to 

the west of North America and the American Midwest with 

periodic equine epizootics and epidemics [68,69]. Epidemio-

logical studies have shown that WEEV occurs throughout 

most of the Americas from the western half of North to South 

America, including Guyana, Ecuador, Brazil, Uruguay, and 

Argentina [65]. In South America, with the exception of Ar-

gentina, only small equine epizootics, but no human WEE 

cases have been reported [29].

 WEEV continues to cause equine encephalitis in northern 

South America and Central America with occasional out-

breaks in Florida and the southwestern US, but only a few 

human cases of WEE have been reported, with low fatality 

rate, in the past several decades in North America [70]. Most 

WEEV infections in humans and equines occur in summer, 

June and July, and slightly later in temperate regions like Can-

ada. Although most human cases of WEE are asymptomatic, 

infants and children are highly susceptible to WEEV infection 

and are most likely to develop severe encephalitis. Clinical 

manifestations develop after 2 to 10 days of incubation and 

are characterized by nonspecific febrile viremia, malaise, and 

headache often in association with meningismus. The case 

fatality rate in humans is about 3% to 4% [71]. The case fatali-

ty rate in horses is 20% to 30%, but can be up to 50% in some 

epidemics [72]. For horses, WEEV is less virulent than EEEV. 

 In addition, Highland J virus (HJV), Fort Morgan virus (FMV), 

and related Buggy Creek virus (BCRV), distinct but closely re-

lated to WEEV, were also isolated in North America [33]. HJV 

has been identified in the eastern US (Florida) and is trans-

mitted from C. melanura mosquitoes to songbirds in fresh-

water swamps [73,74]. It has a low pathogenicity in mam mals 

and is rarely seen in humans or horses. Exposure to HJV has 

not been directly associated with human illness. However, 

HJV can cause sporadic encephalitis in horses, and is also 

pathogenic to turkeys and partridges [53,75-78]. Similar to 

WEEV, BCRV is a natural recombinant virus derived from Old 

World SINV and New World EEEV [65]. BCRV (and the closely 

related FMV) is apparently widely distributed in North Amer-

ica, having been found in Texas, Oklahoma, Nebraska, Colo-

rado, South Dakota, and Washington State. It was first isolat-

ed in 1980 at Buggy Creek in Grady County, Oklahoma. How-

ever, the ecologically very similar FMV was discovered in the 

1970s in Colorado [79]. BCRV is commonly associated with 

the cimicid swallow bug (Oeciacus vicarius) [79]. The bug is 

an ectoparasite of the colonially nesting cliff swallow (Petro-

chelidon pyrrhonota) and, to a lesser extent, the house spar-

row (Passer domesticus), with both birds serving as hosts to 

BCRV. FMV is also associated with swallow bugs, cliff swal-

lows, and house sparrows. These two viruses are pathogenic 

to swallows but not to humans or horses. These four viruses 

in North America (WEEV, BCRV, FMV, and HJV), the Aura vi-

rus in South America, and SINV with its four subtypes found 

in Africa, Asia, Australia, and Europe, are regarded as mem-

bers of the WEE complex [80].

WEEV transmission cycle
WEEV is maintained in an enzootic cycle between passerine 

birds as reservoirs and its specific mosquito vector, Culex tar-

salis, abundant in agricultural settings in the western US. Do-

mestic and wild birds are considered important reservoir and 

epizootic amplifying hosts (Fig. 5). It has been also suggested 

that lagomorphs and rodents can serve as amplification hosts 

when they are infected with WEEV by Aedes mosquitoes [10, 

Fig. 5. Enzootic and epizootic/epidemic transmission cycles of West-
ern equine encephalitis virus (WEEV). WEEV is maintained in an en-
zootic cycle between passerine birds as reservoirs and its specific mos-
quito vector, C. tarsalis. Domestic and wild birds are considered im portant 
reservoir and epizootic amplifying hosts. It has also been suggested 
that lagomorphs and rodents can serve as amplification hosts when 
they are infected with WEEV by Aedes mosquitos. 

Reservoir hosts

Primary 
cycle

Secondary 
cycle

Enzootic vector 
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Amplification hosts
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44,79].

 Epizootic transmission to horses and humans is mediated 

by bridge vectors, such as Ochlerotatus melanimon in Cali-

fornia, Aedes dorsalis in Utah and New Mexico and A. camp-

estris in New Mexico. The seasonal continuation of the natu-

ral WEEV transmission cycle in temperate regions is not clear. 

However, the annual reintroduction of migratory birds and 

vertical transmission among A. dorsalis mosquitoes are sus-

pected for the maintenance mechanism in temperate regions 

[81].

WEEV vaccine
Formalin-inactivated vaccines have been developed experi-

mentally for the protection of laboratory workers and other 

persons at high risk [82]. There is a formalin-inactivated vac-

cine that is available as a double vaccine in combination with 

EEEV only for veterinary use (horses) [83]. Horses are vacci-

nated twice a year due to low immunogenicity of the inacti-

vated vaccine. Presence of neutralizing antibodies is used as 

a correlate of protection and to monitor the success of immu-

nization. 

Venezuelan equine encephalitis virus 
Of the three equine encephalitis alphaviruses, VEEV is the 

most important zoonotic pathogen, with several reported 

outbreaks in South and Central America [33,84-89] and some 

of the Central American and Mexican outbreaks have spread 

into southern Texas in 1971 [90,91]. The VEEV was first isolat-

ed from brains of affected horses during an equine ence phalitis 

outbreak that occurred in central Colombia and Venezuela in 

1936 [92]. The VEEV antigenic complex is divided into six dis-

tinct antigenic subtypes (I-VI) (Table 1) [88,93]. The “epizootic 

subtypes” of VEEV (types IAB and IC), responsible for the large 

outbreaks of encephalitis in horses in the Western hemisphere 

in the last 25 years, are believed to originate from subtype ID 

strains with an adaptive mutation in the E2 envelope glyco-

protein gene [94]. This mutation increases the ability to infect 

the epidemic mosquito vector, Aedes taeniorhynchus and re-

plication in equids [95,96]. The “enzootic subtypes” of VEEV 

are considered to be of low pathogenicity for equids under 

most circumstances. The enzootic subtypes of VEEV include 

ID, IE, and IF strains from South and Central America, Cen-

tral America and Brazil, respectively, and type II (Everglades) 

virus circulating in Florida. Phylogenetic studies indicate that 

the epidemic subtypes IAB and IC strains emer ged from one 

of six subtypes of ID VEEV lineages, but there was no epidem-

ic strains emerged from IE lineages [86,97-99]. This epidemic-

progenitor subtype ID lineage occurs in western Venezuela, 

Colombia, and the Amazon areas of Ecuador and Peru [84, 

85,100]. Enzootic cycles of VEEV subtypes ID and IE are dis-

persed from southern Florida to northern Argentina [88,101].

 Approximately 150 animal species may become infected 

under natural conditions and may remain subclinical. Horses 

are most severely affected by VEE infection and half of infect-

ed cases (50%) develop encephalitis. However, a subclinical 

to mild course of the disease is possible. Dogs and pigs can 

become clinically ill and infection in dogs with epizootic VEEV 

can be fatal [101]. 

 Infected patients manifest “flu-like” clinical signs (e.g., fe-

ver, severe headache, myalgia) after 1- to 4-days of incuba-

tion. Most clinical cases are self-limited illnesses with recov-

ery after about a week [25,101]. A subset of symptomatic cases 

can progress to neurologic disease with convulsions, drowsi-

ness, and disorientation and sometimes followed by incapac-

itating sequelae (e.g., paralysis, epilepsy, and tremor) [102, 

103]. Signs of encephalitis are rare and are more frequently 

seen in children (4%) than adults (0.4%) [102]. Thus the dis-

ease is less severe in adults than children. The case fatality 

rate in patients is approximately 20% but it can reach up to 

35% in children under 5 years of age. In horses, enzootic and 

epizootic VEEV strains present a major difference in terms of 

pathogenesis, but they show similar virulence in humans. 

Generally, VEE clinical manifestations are indistinguishable 

from other tropical infectious diseases such as DF; therefore, 

the number of cases may be underestimated [104].

VEEV transmission cycle
The enzootic transmission cycle of VEEV is maintained among 

rodents and other vertebrates (e.g., cotton rats, spiny rats, bats, 

and opossums) as reservoirs and mosquitoes in the subge-

nus Culex (Melanoconion) as primary vectors (Fig. 6)[88,98]. 

These enzootic (sylvatic) cycles are limited in distribution, and 

typically found in humid, tropical forests or swamps through-

out the Americas [104-107]. In contrast, epizootic VEEV strains 

(IAB and IC) are transmitted by several mosquito vectors (e.g., 

Aedes and Psorophora spp.) abundant in agricultural habi-

tats, to susceptible amplification hosts such as equids [33]. 

During epizootic or epidemic cycles, equids are efficient am-

plification hosts with high-titered viremia for mosquito trans-

mission. Thus, infections from horses will be transmitted to 

humans during epizootics of VEE in horses. In addition, hu-

mans, dogs, pigs, cats, cattle, goats, bats, and birds can be in-
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fected during an epizootic [26,33]. They develop viremia that 

can be a source of mosquito infections. 

 Epidemiological studies indicate that major human VEEV 

outbreaks emerge from humans being infected from spillover 

of enzootic rodent cycles [87,104,108,109]. Moreover, VEEV 

infected horses can shed virus in body fluids and the virus 

can spread by direct contact or via aerosols. Although direct 

transmission between horses, person-to person, or from hors-

es to humans was not confirmed, there are however, reported 

cases of people infected in laboratories via aerosols [87]. VEEV 

is also important as a biological weapon due to the ease of 

growth in large quantities and the high infectivity when aero-

solized [110,111]. Transplacental transmission of VEE infec-

tions has been observed in horses. 

VEEV vaccine
The VEEV TC-83 strain is the only licensed live-attenuated 

vaccine available to protect horses in endemic regions. This 

vaccine strain has been developed by passaging the Trinidad 

donkey (TrD) IA/B strains 83 times in guinea pig heart cells 

[112]. Genetic characterization of the TC-83 strain indicates 

that the attenuation phenotype relies on only two point mu-

tations (nucleotide position 3 in 5´-noncoding region and 

amino acid position 120 in E2 glycoprotein) [113,114]. Cur-

rently, there is no licensed human VEEV vaccine, but TC-83 

live-attenuated vaccine is used for laboratory workers and 

military personnel [115]. 

 In efforts to develop a live-attenuated VEEV vaccine for 

human use [116], the US Army Medical Research Institute of 

Infectious Diseases in collaboration with the University of 

North Carolina has introduced mutations into an infectious 

clone of the TrD IA/B strain [117-120]. The new vaccine can-

didate, V3526, was shown to be effective in protecting rodent, 

horses and nonhuman primates against virulent challenge 

with VEEV IA/B and other related subtypes (e.g., IE, IIA, and 

IC) [116,120-122]. 

Flaviviruses

Flaviviruses (formerly group B arboviruses) include agents 

pathogenic for humans and animals that are transmitted by 

mosquitoes or ticks [123,124]. Flaviviruses are enveloped vi-

ruses containing a single-stranded positive-sense RNA ge-

nome of approximately 11 kb in length. The viral genome en-

codes three structural proteins (capsid [C], premembrane 

[prM], and envelope [E] proteins) and seven non-structural 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [125]. 

The genus Flavivirus is comprised of more than sixty-six virus 

species, many of which are arthropod-borne human patho-

gens (mainly mosquitoes and ticks) and are highly pathogen-

ic for both humans and animals (Table 2) [126,127]. Flavivi-

ruses are further classified into antigenic complexes and sub-

complexes [128] that are related serologically, genetically, 

and etiologically. The diseases caused by flaviviruses range 

from fevers and encephalitides to hemorrhagic fever. There 

are three complexes of flaviviruses that include important 

agents pathogenic for humans [126]. 

 ‘Virus complexes transmitted by mosquitoes’ (JEV and re-

lated encephalitis virus complex)—The mosquito-borne fla-

viviruses infect a variety of animal species and humans, with 

birds being most important to the enzootic transmission cy-

cle of many of these viruses. Culex mosquitoes are the main 

vectors of these viruses. The following flaviviruses are mem-

bers of this group [126]: 1) JEV (Japanese encephalitis [JE]) in 

Southeast Asia, 2) West Nile virus (WNV; West Nile fever/en-

cephalitis) in Africa, North America, Europe, and Asia, 3) St. 

Louis encephalitis virus (SLEV; St. Louis encephalitis) in 

North and South America, 4) Kunjin virus (KUN; Kunjin virus 

Fig. 6. Enzootic and epizootic/epidemic transmission cycles of Vene-
zuelan equine encephalitis vi rus (VEEV). The enzootic transmission 
cycle of VEEV is maintained among rodents and other vertebrates 
(e.g., cotton rats, spiny rats, bats, and opossums) as reservoirs and 
mosquitoes in the subgenus Culex (Melanoconion) as primary vectors. 
In contrast, epizootic VEEV strains are transmitted by several mosqui-
to vectors (e.g., Aedes and Psorophora spp.) to susceptible amplifica-
tion hosts, horses. During epizootic or epidemic cycles, horses are ef-
ficient amplification hosts with high titered viremia for mosquito 
transmission.
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encephalitis) in Australia, 5) Murray Valley encephalitis 

virus (MVEV; Murray Valley encephalitis) in Australia and 

New Guinea, 6) Rocio virus (Rocio encephalitis) in South 

America, and 7) Usutu virus in Africa and Europe. 

 ‘Virus complexes transmitted by ticks’ (tick-borne en-

cephalitis [TBE] complex)—Rodents are the most impor-

tant vertebrate hosts. Hedgehogs, deer, and livestock may 

also be inapparently infected. Ixodes, Dermacentor, and 

Haemaphysalis ticks are the principal vectors of these vi-

ruses. The following flavivirus zoonoses are transmitted 

by ticks [126,128]: 1) TBE, European subtype (Central Eu-

ropean encephalitis), 2) TBE, Eastern subtype (Russian 

spring-summer encephalitis), 3) Powassan encephalitis 

and Modoc virus encephalitis in North America, 4) loup-

ing ill in Scotland and Negishi virus encephalitis in Japan, 

5) Omsk hemorrhagic fever in Siberia, 6) Kyasanur Forest 

disease in India, and 7) Alkhurma hemorrhagic fever in 

Saudi Arabia. 

 ‘Agents causing yellow fever and dengue which form 

two closely related virus complexes’—Simians and hu-

mans are viremic hosts and Aedes mosquitoes are the vec-

tors. Following are the zoonotic diseases caused by virus-

es in this complex [126]: 1) yellow fever virus (YFV; yellow 

fever) in Central Africa and South America, 2) dengue vi-

rus (DENV) serotypes 1-4 in Asia, Africa, and Central and 

South America (dengue hemorrhagic fever, dengue shock 

syndrome), and 3) Wesselsbron fever in Africa. 

 In this review article, we focus only on two of the most 

important mosquito-borne flaviviruses (JEV and WNV) 

and briefly discuss TBE and other zoonotic encephaliti-

des caused by other arboviruses. 

Zoonosis caused by mosquito-borne flaviviruses
Japanese encephalitis virus (JEV)
JE (formerly known as Japanese B encephalitis) is the most 

common mosquito-transmitted encephalitic disease in 

Asian countries where it is regarded as a major health threat 

[129,130]. JEV was first documented as viral encephalitis 

in the 1870s and isolated in 1935 from the brain of a fatal 

human encephalitis case in Tokyo, Japan [131]. Recently, 

cases of JEV have been reported in Pakistan, Papua New 

Guinea, and Australia indicating expansion of the virus 

into new geographic regions [13,14]. JEV is classified into 

one single serotype with at least four distinct genotypes (I-

IV) [132-134]. Genotype I strains have been isolated in 

Australia, Cambodia, China, Thailand, Japan, Korea, Tai-Vi
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wan, and Vietnam since 1967. JEV strains isolated in Austra-

lia, Indonesia, Malaysia, Papua New Guinea, and Thailand 

between 1951 and 1999 were included in Genotype II. Geno-

type III isolates have been found in temperate areas of Asia 

including China, Japan, Taiwan, and the Philippines since 

1935, and genotype IV was found only in Indonesia in 1980 

and 1981. Recently, Genotype V has been suggested for an 

isolate from the Muar region of Malaysia [132-135]. Geno-

types I and III frequently occur in epidemic regions whereas 

genotypes II and IV are mostly associated with endemic trans-

mission [133]. 

 Up to 70% of adults in tropical regions of Asia have JEV an-

tibodies. An estimated 50,000 cases occur every year where 

the most acutely infected patients are children or non-im-

mune individuals [136]. Clinical infections are severe with a 

case fatality rate of 30% or severe neurologic sequels in up to 

50% of the patients [137]. JEV infections occur all year long in 

South Asian countries while they occur during summer in 

temperate regions [138]. The infection in animals is subclini-

cal, however, it causes abortion in pregnant sows and death 

in newborn piglets [139]. JEV causes inapparent infection in 

horses, but neurologic signs are observed occasionally with a 

high fatality rate. Seroepidemiological studies show that JEV 

can incidentally infect a variety of other vertebrates, includ-

ing dogs, ducks, chickens, cattle, bats, snakes, and frogs [130].

JEV transmission cycle
JEV is maintained in a zoonotic cycle and transmitted by 

mosquitoes,primarily Culex tritaeniorhynchus [139]. This 

mosquito vector mainly hatches in rice fields in India and 

other Asian countries, with multiplication increasing up to 

50% in fertilized fields. JEV also can be transmitted by C. an-

nulus, C. annulirostris, and Aedes mosquitoes [139]. Pigs and 

aquatic birds are the efficient amplification and reservoir hosts 

of JEV that develop high-titered viremia providing a source of 

infection for mosquitoes (Fig. 7)[139]. In enzootic regions, 

pigs, frogs, and waterbirds (e.g., egrets and herons) increase 

the risk of transmission to humans and equines, especially in 

agricultural settings such as rice cultivation areas [139]. The 

combination of increased rice crops and pig farming gives 

JEV an epidemiological advantage. Humans and horses are 

dead-end hosts since the level of viremia is insufficient for 

mosquito transmission and they succumb to encephalitis af-

ter infection. 

JEV vaccines
Despite the use of effective vaccines including both inactivat-

ed whole virus and live attenuated vaccines, JEV remains as 

an important cause of arthropod-transmitted viral encepha-

litis. The first JE vaccines available were inactivated vaccines 

Fig. 7. Enzootic and epizootic/epidemic transmission cycles of Japanese encephalitis virus (JEV) and West Nile virus (WNV). Left: JEV is trans-
mitted by primarily Culex tritaeniorhynchus. Pigs and aquatic birds are the efficient amplification and reservoir hosts of JEV that develop high-ti-
tered viremia. Humans and horses are dead-end hosts since the level of viremia is insufficient for mosquito transmission. Right: WNV maintains 
an enzootic transmission cycle between Culex mosquitoes and birds (reservoir host). Horses, humans, and other mammals infected in a spill-
over transmission are “dead-end” hosts. 
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prepared in mouse brains or primary hamster kidney cells 

with protection efficacy of 76% to 95% [140]. Due to safety con-

cerns, the inactivated vaccines were replaced by the live-at-

tenuated vaccine SA14-14-2. Recently, a new purified inacti-

vated JE vaccine derived from Vero cell-adapted SA14-14-2 

strain (IXIARO, Intercell AG, Vienna, Austria) has been licensed 

in the US, Europe, Canada, and Australia [141]. In addition, a 

live chimeric vaccine containing prM and E proteins of JEV in 

a backbone of attenuated YFV 17D strain was developed by 

Sanofi Pasteur (Chimerivax/IMOJEV, Lyon, France) [142]. 

The Chimerivax/IMOJEV showed outstanding immunoge-

nicity without concerning adverse effects, thus, it was recent-

ly licensed in Australia and is currently under review in Thai-

land [143]. 

West Nile virus (WNV)
WNV was first isolated from blood of a woman in West Nile 

district, Uganda in 1937 [144]. Before its appearance in the 

New World, WNV caused sporadic outbreaks in Africa, the 

Middle East, Asia, and Australia. Since it first emergence in 

New York in 1999, West Nile virus has spread rapidly across 

the US, Canada, Central and South America and is currently 

one of the most common causes of epidemic encephalitis in 

the US [17]. Now, WNV has spread to Europe, the Mediterra-

nean, Asia, and the Americas and has a global distribution 

like DENV, which occurs in tropical and subtropical areas of 

southeast Asia, the Pacific, and the Americas [145]. WNV can 

be divided into five lineages based on the nucleotide sequence 

and phylogenetic analysis. Lineages 1 and 2 are considered 

the main genetic lineages. Lineage 1 is highly invasive and in 

the 1990’s the virulent strain of lineage 1 WNV emerged in the 

Middle East and invaded Eastern Europe and subsequently 

the US, resulting in a worldwide distribution currently. KUN 

is a variant of lineage 1 WNV that is enzootic in Australia. Lin-

eage 2 has remained enzootic in Africa. The nucleotide se-

quence identity between the lineages 1 and 2 is approximate-

ly 75% [146]. Taxonomic status and virulence of lineages 3 

and 4 are not clear but lineage 5 appears to be confined to In-

dia [147]. 

 Most of the WNV infections in humans are subclinical (80%), 

but some develop clinical signs (20%) without neurologic signs 

characterized by biphasic fever, malaise, headache, nausea, 

anorexia, vomiting, myalgia, and arthralgia (West Nile fever). 

Less than 1% of the people will develop neurologic disease (1 

neurologic case in ~150 total infections) and of these 10% are 

fatal (<0.1% of total infections) [148-150]. Neurological dis-

ease is more common in elderly people and immunosup-

pressed individuals and is characterized by meningitis, en-

cephalitis, or meningoencephalitis. Some people develop a 

poliomyelitis-like syndrome of acute flaccid paralysis follow-

ing WNV infection. Horses are the most important domestic 

animal affected by WNV, but severity of the disease is depen-

dent on the neurovirulence of the infecting virus strain [151]. 

The strain of lineage 1 WNV that emerged in North America 

and Europe is highly pathogenic to horses and affected hors-

es show a variety of neurological signs. About 1 in 12 horses 

develops clinical signs following infection characterized by 

fever, anorexia, depression, and encephalomyelitis (muscle 

fasciculation of face and neck, hyperexcitabilty, apprehen-

sion, lameness, ataxia, paresis and recumbency) with low-

grade viremia and 90% of the horses will recover from infec-

tion. However, lineage 2 WNV only causes subclinical disease 

in horses [26,151]. Similarly, KUN causes mild disease in hors-

es. WNV infection has been reported in many other wild and 

domestic species without clinical signs. However, there are 

some reports of West Nile disease in dogs, cats, sheep, squir-

rels, and alligators [151]. 

WNV transmission cycle 
WNV maintains an enzootic transmission cycle between Cu-

lex mosquitoes and birds (reservoir host). Horses, humans, 

and other mammals infected in a spillover transmission are 

“dead-end” hosts (Fig. 7) [152]. In temperate regions, human 

infections usually coincide with the seasonal activity of Culex 

mosquito vectors that peaks in August and September. The 

virus amplification in birds occurs mostly in the late spring 

and early summer. In tropical regions, transmission occurs 

all year long. Due to high number of asymptomatic cases of 

WNV infection, there is a high risk of virus transmission by 

blood transfusion or organ transplantation [153,154]. 

WNV vaccine
West Nile-Innovator is a formalin-inactivated veterinary vac-

cine produced by Fort Dodge Animal Health (now Zoetis, 

Kalamazoo, MI, USA) conditionally licensed by the United 

States Department of Agriculture (USDA) in 2001 and recei-

ved full-licensed status in 2003. Acambis Inc. (Cambridge, 

MA, USA) has developed a live-attenuated vaccine based on 

its ChimericVax technology, which has also been used in the 

development of vaccines against JE and DENVs. The first Chi-

merivax West Nile, WN01, was developed by Intervet as a sin-

gle dose vaccine for horses (PreveNile, Schering-Plough Ani-
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mal Health/Merck) and has been commercially available 

since 2006 in the US [142]. In 2010, there was an urgent recall 

of PreveNile due to increased incidences of adverse effects 

and it has been off the market since then. As a part of the de-

velopment of a WNV vaccine for human use (WN02), three 

mutations were introduced into the WN01 E gene (L107F, 

A316V, and K440R). These mutations are known to attenuate 

the closely related JEV. In the human WN02 vaccine, these mu-

tations were shown to independently enhance neuroattenua-

tion of the chimera, so that reversion at one or two residues 

would maintain the attenuated phenotype [155]. At this time, 

there are no vaccines against WNV available for human use. 

Zoonotic encephalitides caused by other mosquito-borne 
viruses
There are several other flaviviruses that can cause milder cas-

es of human febrile illness with rash and occasional mild en-

cephalitis. These include MVEV, the causative agent of Mur-

ray Valley encephalitis in Australia, and New Guinea and KUN 

virus, which is a close relative of WNV that circulates in Aus-

tralia. The antibodies to MVEV cross neutralize JEV and this 

may explain, in part, the absence of JE in Australia. The KUN 

virus may cause neurological disease in horses, where as MVEV 

is not pathogenic to horses. 

 SLEV also belongs to the family Flaviviridae, genus Flavivi-

rus and cross-reacts serologically with other mosquito-borne 

flaviviruses, especially with JEV and WNV, which makes sero-

logical diagnosis of these viral infections difficult. SLEV oc-

curs in North, Central and South America and it is one of the 

most important arbovirus infections in North America [125]. 

SLEV is maintained in a mosquito-bird-mosquito cycle and 

wild birds (sparrow, pigeon, blue jay, and robin) are the pri-

mary vertebrate hosts [156]. Birds sustain inapparent infec-

tions but develop sufficient viremia to infect mosquito vec-

tors. The principal vectors are C. pipiens and C. quinquefasci-

atus in the east, C. nigripalpus in Florida, and C. tarsalis and 

members of the C. pipiens complex in western states in the 

US [125]. Humans and domestic mammals acquire SLEV in-

fection, but are dead-end hosts. Most SLEV infections are si-

lent but clinical severity can vary from mild nonspecific fe-

brile illnesses to meningitis or encephalitis. The severity of 

the disease and fatality rate increases with age. There is no 

vaccine available but SLEV infection is thought to confer life-

long immunity against subsequent infection.

 California encephalitis serogroup in the genus Orthobun-

yavirus include at least fourteen different viruses (e.g., La Cro-

sse [LAC], Jamestown Canyon virus, snowshoe hare virus and 

Tahyna virus [TAHV]), each of which is transmitted by mos-

quitoes and has a narrow range of vertebrate hosts and a lim-

ited geographic distribution [157-159]. The LAC virus is the 

most important zoonotic pathogen in the California enceph-

alitis serogroup, which is maintained by transovarial trans-

mission in A. triseriatus, a tree-hole-breeding woodland mos-

quito, and is amplified by a mosquito-vertebrate-mosquito 

cycle involving inapparent infection of woodland rodents 

(e.g., squirrels and chipmunks) [160,161]. Humans are dead-

end hosts, and there is no human-to-human transmission. 

The LAC and Jamestown Canyon virus occur in the US, snow-

shoe hare virus occurs in Canada. The LAC virus cause en-

cephalitis in humans and disease is severe in children (child-

hood encephalitis). TAHV has been isolated in the former 

Soviet Union (USSR), where it caused influenza-like disease 

in humans [162]. There is no evidence that there is any clini-

cal disease associated with these viruses other than humans. 

Zoonosis caused by tick-borne flaviviruses
Tick-borne flaviviruses form a major group within viruses 

transmitted by ticks. Mosquito-borne and tick-borne flavivi-

ruses, although distinct, appear to have evolved via a com-

mon ancestral line that diverged from viruses with no known 

arthropod vector [163]. Tick-borne flaviviruses are medically 

important arboviruses causing 10,000 to 15,000 human cases 

every year in Europe and Asia [164]. These viruses circulate 

mostly in forests, moorlands, or in steppe regions and are trans-

mitted between ticks feeding on rodents and other mammals. 

Tick-borne flaviviruses can cause a wide range of disease, 

from mild febrile illness (with biphasic fever) to encephalitis 

or hemorrhagic fever, in humans and animals [165]. Two in-

activated vaccines against TBEV, FSME-IMMUN (Baxter Bio-

sciences), and Encepur (Novartis) [166,167], are used in Eu-

rope, but are not licensed in the US [168,169]. 

Conclusion

Many arboviruses are present in different environments across 

the world and virulent forms of these viruses are constantly 

emerging and invading new habitats. Thus, understanding 

the ecology and epidemiology of these arboviruses is critical 

to predict future emergence mechanisms and to implement 

preventive and control measures. In order to control and pre-

vent the urban spread, it is extremely important to understand 

the mechanisms how the enzootic (sylvatic) strains reemerge 
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and reinitiate urban transmission cycles that infect humans 

and domestic animals. Besides the above-mentioned viruses, 

there are many arboviruses with very little information avail-

able. Therefore, it is only a matter of time before we see the 

emergence of one of these viruses with a virulent phenotype 

and spread into an immunologically naïve population. Intro-

duction of severe fever with thrombocytopenia syndrome vi-

rus (SFTSV) just in this summer of South Korea is an excel-

lent example of a constant geographical expansion of these 

viruses. This virus is a novel member of the genus Phlebovi-

rus in the family Bunyaviridae and causes fever with throm-

bocytopenia syndrome in humans [169]. The transmission 

cycle of SFTSV is not clear yet, but Haemaphysalis longicornis 

ticks are considered as vectors [169,170]. There have been 13 

confirmed cases including 8 fatalities from SFTSV in South 

Korea [171]. 

 Currently, prevention of infection with most arboviruses 

relies primarily on efforts to control vector populations by 

spraying repellents, wearing protective clothing and reducing 

breeding places. Despite the great efforts to make vaccines 

against arboviral infections, especially those that cause severe 

encephalitis, only a few were successful. Currently, several 

new generation live-attenuated vaccines based on modern 

molecular biology techniques are under development. Chi-

meriVax candidates developed against DENV, WNV, and JEV 

showed satisfactory safety and immunogenicity results both 

in vitro and in pre-clinical tests [172]. Among these, the JE-

CV (chimeric vaccine) candidate is closest to registration in 

some endemic countries. Pre-clinical trials have proven that 

JE-CV provides protection against all four major genotypes 

currently in circulation [173]. Moreover, this vaccine candi-

date has advantages of being convenient and affordable since 

it is given as a single-dose vaccine. 

 Antiviral drug development is another area in need of a 

breakthrough. There are no specific effective antiviral treat-

ments for any of the arboviruses, and thus only supportive 

cares like fluid and electrolyte management are available. How-

ever, compound screening has identified potential antiviral 

therapies for evaluation in animals. 
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