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Abstract

Schistosomiasis is one of the world’s most widely distributed and prevalent
parasitic diseases. Less widely recognized is that some species of Schistosoma,
including several that commonly affect humans, also cause disease in other
mammalian species; in particular, infections in non-human primates are
known. With interest increasing in emerging zoonotic diseases, the status of
schistosomiasis as a zoonotic infection is in need of re-appraisal, especially in
light of advances in application of molecular screening and epidemiological
tools where newly reported infections raise general animal welfare and
conservation concerns. Focusing on Africa, this review provides a summary of
the occurrence of schistosomiasis in non-human primates and discusses new
ways in which surveillance for schistosomiasis should be integrated into more
effective conservation management and disease control strategies. Emphasis
is on the more common forms of human schistosomiasis, their clinical
manifestations and epidemiological significance in terms of infection reservoir
potential.

Introduction

Blood-flukes of the genus Schistosoma are digenean
trematodes that require a freshwater snail intermediate
host and a mammalian definitive host. Out of the 21
currently recognized species, only eight have been
confirmed as infections of humans and, of these, only
three are heavily implicated as diseases of significant
public health importance (table 1). The rest of the genus is
only known from animal infections, and specifically
mammals; the various species have adapted to a wide
variety of taxa, with some specializing on one species
while others have a wide definitive host range (Pitchford,
1977). For the purposes of examining cross-over of
parasitic infections between humans and animals and

vice versa, the term ‘zoonosis’ is used throughout this
paper to describe transmission in both directions. Figure 1
shows a phylogeny of the genus Schistosoma, with
main geographical distributions and primary definitive
hosts marked.

Infections in non-human primates

In Africa, Schistosoma spp. belong either to the
S. mansoni group, characterized by eggs with lateral spines,
or the S. haematobium group, identified by terminal spines
on the eggs. The eponymous species of these two groups
are most commonly found in humans and exact a huge
public health burden on many communities and regions.
There are, however, other species within these groups that
primarily affect non-human animals; this section will
outline these other species that are found in Africa, most*E-mail: standley@princeton.edu
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of which are primarily known as infections in rodents and
ungulates, but some of which have been reported from
non-human primates too. The rest of the review will focus
on accounts of ‘human’ schistosome species, namely
S. haematobium, S. intercalatum/guineensis and S. mansoni,
as found in non-human primates.

Other species that make up the Schistosoma haematobium
group are S. intercalatum, S. guineensis, S. bovis, S. mattheei,
S. margrebowiei, S. leiperi, S. curassoni and the recently
described S. kisumuensis (Webster et al., 2006; Hanelt et al.,
2009). Schistosoma intercalatum and S. guineensis primarily
infect humans (table 1). The remaining species, with the
exception of S. kisumuensis, usually parasitize artiodacty-
lid ruminants, with some most commonly found in
domestic ungulates whereas others are more frequently
observed in wild bovids. There are occasional reports
in the literature of S. bovis and S. mattheei from humans
and baboons, although usually alongside a mixed
infection with either S. mansoni or S. haematobium. Given
the similarities in egg morphology between most of the
various species of the terminally spined S. haematobium
group, it has often been assumed that many of
these observations were a case of misidentification of
the schistosome species, which can vary considerably
(Pitchford, 1965). However, S. mattheei was recently
confirmed using molecular methods from a free-ranging
baboon troop in Zambia (Weyher et al., 2010), suggesting
that accounts of this parasite in humans should also
be investigated further as a potential zoonosis.

In addition, there is one account of eggs of
S. margrebowiei, traditionally considered an antelope
schistosome though also found in domestic ungulates,
being recovered from a human rectal biopsy in Mali,
mixed with S. haematobium and S. mansoni (Pitchford,
1959). The egg morphology of S. margrebowiei is unique
among African schistosomes (Christensen et al., 1983);
although experimental passage has never been success-
ful, other infections have also been reported from Zambia
(Giboda et al., 1988), suggesting that while humans
may contract incidental infections with S. margrebowiei,

infections are not fully viable in humans. So far, non-
human primates have not been reported to be infected
with this schistosome but epidemiological coverage has
been limited. Schistosoma kisumuensis is unique among the
‘non-human’ S. haematobium group species in being
exclusively an infection of small mammals, such as
rodents and insectivores; it was very recently described,
using molecular methods, from western Kenya, and
as such is not included in the 2006 phylogeny on which
fig. 1 is based (Hanelt et al., 2009). Further research is
required before its compatibility with primates can be
described with any certainty.

The S. mansoni group has traditionally been classified
to consist only of three other species: S. hippopotami,
S. edwardiense and S. rodhaini. Schistosoma hippopotami, on
the basis of recent molecular analysis, has since been
re-classified as basal to all African schistosomes (Webster
et al., 2006); this species, together with S. edwardiense,
is also unusual in only having been found in a single
species of definitive host: the African hippopotamus
(Hippopotamus amphibius). Schistosoma rodhaini, on the
other hand, is primarily an infection of rodents; baboons
have been successfully experimentally infected, but only
when also co-infected with S. mansoni (Nelson & Teesdale,
1965). The literature only mentions one reported case of a
natural infection of S. rodhaini in a human, from what is
now D. R. Congo (D’Haenens & Santele, 1955); however,
given the age of the reference and its isolation in the
literature, it may be suggested that it is a case of false
diagnosis of an egg-variant of S. mansoni.

Focus upon S. mansoni, S. haematobium and
S. intercalatum/guineensis

The distribution of the four main types of human
schistosome (S. haematobium, S. mansoni, S. intercalatum
and S. guineensis) covers vast swathes of Africa and
Madagascar, including areas of high human density such
as the West African coast, the Sahel and the southern and

Table 1. The eight species of schistosome reported in humans.

Schistosoma
species Distribution Natural definitive host species (excluding humans)

Human public
health importance

S. mansoni Africa, Middle East, South America,
Caribbean

Non-human primates (including apes), rodents,
insectivores, artiodactylids (waterbuck),
procyonids (raccoon)

High

S. haematobium Africa, Middle East Non-human primates (not apes), artiodactylids
(pigs, buffalo)

High

S. intercalatum Central Africa (D.R. Congo only) Possibly rodents Low
S. guineensis West Africa (Lower Guinea) Possibly rodents Low
S. mattheei Southern Africa Non-human primates (not apes), artiodactylids

(cattle, antelope)
Low

S. japonicum East Asia (China, Philippines,
Indonesia)

Non-human primates, artiodactylids (water buffalos
in particular), carnivores, rodents, perissodactylids
(horses)

High

S. mekongi SE Asia (Vietnam, Cambodia,
Laos, Thailand)

Carnivores (dogs), artiodactylids (pigs) Moderate

S. malayensis Peninsular Malaysia Rodents (van Mueller’s rat) Low

Schistosoma guineensis was only described in 2003, and so many past references to S. intercalatum may have actually been referring to
S. guineensis. References include Fenwick (1969), Pitchford (1977), Christensen et al. (1983), Loker (1983), Pagès et al. (2003), Attwood et al.
(2008) and Standley et al. (2011).
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eastern highlands (see fig. 2). Many of these regions are
also highly suitable for other species of primate; given the
close geographical and genetic proximity of many
primate species to humans, it is no surprise that these
are the groups of mammals most likely to be at risk from
infection with human diseases of all kinds, including
schistosomes, and infections with other trematode genera
have been observed in free-ranging primate populations
in Africa (Murray et al., 2000; Sleeman et al., 2009). In
addition, as human populations grow at a rapid rate and
communities push ever further into remote forest
locations, they are coming into contact with relatively
pristine primate habitats, thus potentially putting new
species at risk of exposure to schistosomiasis infection.

Given the endangered and threatened status of many of
Africa’s primate populations, these examples of human to
wildlife transmission of parasites are of immediate
concern to primate conservation managers. As such,
and particularly considering the vast amount of research
attention awarded to wild primate populations, it is
surprising that until recently, relatively little concerted
effort has been undertaken to characterize and diagnose
parasitic infections in non-human primates, revealing a
disease screening prejudice. By contrast, the early years of

the 21st century have witnessed renewed interest in
questions of zoonotic transmission of diseases, and thus a
number of surveys have since reported on the observation
of Schistosoma in a variety of non-human primates, mainly
afforded by exploratory applications of new diagnostic
tools concurrently being rolled-out for disease surveil-
lance in people. The methods for identifying these
infections and confirming their transmission will be
discussed in the next section; here, it suffices to outline
past reports of human schistosomiasis in non-human
primate species, as well as more current accounts.

To this date, S. intercalatum/guineensis has yet to be
observed as a natural infection in non-human primates.
This may be because, on the whole, these parasites are
focally distributed in relatively dense tropical forest
regions, where primate species tend to be arboreal and are
less likely to come into contact with terrestrial infected
water sources. Evidence for this hypothesis comes from
the observation that several primate species, including
some that are distributed in the same countries as
S. intercalatum/guineensis, are experimentally susceptible
to infection (Cheever et al., 1976; Kuntz et al., 1978b, 1980).
However, these species might not be exposed to the
parasite, due to habitat preference or behaviour;
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Fig. 1. Phylogeny of Schistosoma, as recognized in 2006. Schistosoma kisumuensis was only described in 2009 (Hanelt et al., 2009). Known
naturally infected definitive host groups are shown by the icons. The points ‘A’, ‘B’ and ‘C’ indicate the three suggested points where
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marked ‘H’ demonstrate clades with known hybridization between species. Figure adapted from Webster et al. (2006).
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for example, the Patas monkey is known to be a good
experimental host of S. intercalatum (Kuntz et al., 1978a),
and is found in parts of Central and West Africa, but tends
to inhabit savannah habitats which might not be suitable
for Bulinus forskalii or B. africanus group snails, the
intermediate snail hosts of S. guineensis and S. inter-
calatum, respectively. Wright et al. (1978) indeed suggested
that the forest/non-forest interface might be a barrier to
transmission. Given that chimpanzees are also known to
be susceptible (Kuntz et al., 1978b), spend time on the
ground as well as in the trees, and are distributed in
patches throughout the region where S. intercalatum/
guineensis are found, future parasitological surveys of Pan
troglodytes and P. paniscus (the bonobo) should be alert to
the possibility of encountering S. intercalatum/guineensis.

In contrast, S. haematobium has been reported as a
natural infection of non-human primates, although
S. mansoni is still the more common human schistosome
in this taxon. Based on the collated records presented by
Ouma & Fenwick (1991), by the early 1990s both parasites
had been observed in vervet monkeys (Cercopithecus
aethiops, also known as grivet monkeys), Sykes monkeys
(C. mitis) and baboons (Papio spp.). These accounts
have spanned Africa; they include surveys from Kenya,

Tanzania, Uganda, Zimbabwe, Senegal and Ethiopia.
In addition, a chimpanzee imported into the USA from
Senegal was diagnosed with S. haematobium (De Paoli,
1965), although at the time of Ouma & Fenwick’s review
(1991) no S. mansoni had ever been observed as a natural
infection of any ape other than humans. It is no
coincidence that all of these localities are known areas
with high endemic prevalence of schistosomiasis in
human communities, suggesting that a combination of
environmental transmission suitability and high levels
of infection in humans is putting non-human primates
at risk of exposure.

Changing disease landscapes and
epidemiological potential

It should therefore come as no surprise that human-
mediated landscape change and population growth may
explain the increasing number of observations of human
schistosomiasis in non-human primates in recent years.
By far the most common reported non-human primate
host has been the baboon, and the dominant parasite
in these instances has been S. mansoni, although one
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distributions in Africa
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observation of a baboon infected with S. haematobium was
made from South Africa in the 1990s (Appleton & Henzi,
1993). Observations have been equally as widespread in
the past two decades as in earlier years, with accounts
of infection from Kenya (Munene et al., 1998; Muriuki
et al., 1998; Hahn et al., 2003), Tanzania (Muller-Graf et al.,
1997; Murray et al., 2000), Ethiopia (Phillips-Conroy,
1986; Legesse & Erko, 2004), Senegal (McGrew et al., 1989;
Howells et al., 2011) and Nigeria (Weyher et al., 2006);
baboons have also recently been implicated as potential
reservoir hosts for S. mansoni in parts of the Arabian
peninsula (Ghandour et al., 1995; Zahed et al., 1996).

In several of these cases, as well as other incidences of
parasite transmission between humans and non-human
primates, it has been suggested that forest fragmenta-
tion, increased proximity of humans to wild habitats and
the emerging reliance of wild primates on human
settlements for food (such as through crop-raiding) is at
least partially responsible for increased exposure and
risk of these animals contracting ‘human’ diseases
(Weyher et al., 2006). A worrying trend is that national
park and forest reserve areas, which might have been
expected to afford a degree of protection against
zoonotic transmission of infections, also seem to show
signs of human to animal transfer of parasites, as has
been seen in Bwindi National Park in Uganda with
infections of intestinal parasites in mountain gorillas
(Graczyk et al., 2002) although transmission of schisto-
somiasis at least would be very unlikely in these cooler,
higher altitude environments. In most of the above cases,
it is unclear whether transmission is being sustained
entirely by the primate population or if human
populations continue to contribute significantly to the
maintenance of the life cycle.

Of note is the observation that while baboons in many
locations have been shown to be infected with S. mansoni,
other sympatric non-human primate species were
described as free of the parasite. This is particularly
interesting given that in several cases, these sympatric
primate species are known to be experimentally
susceptible to S. mansoni infection, and have even been
observed naturally infected in the wild. For example,
in their survey of three species of wild primate in Kenya,
Munene et al. (1998) positively identified S. mansoni
infections in baboons but not in local vervet or Sykes
monkeys, despite earlier accounts of these species
being infected, also in East Africa (Nelson, 1960; Nelson
et al., 1962).

Similarly, Legesse & Erko (2004) observed natural
schistosomiasis infections in baboons in Ethiopia, but not
in sympatric vervet monkeys. Infected baboons have
further been reported from two localities, Fongoli in
Senegal and Gombe Stream National Park in Tanzania,
which are also inhabited by troops of chimpanzees;
despite extensive parasitological surveys, these chimpan-
zees have never convincingly displayed positive infection
with S. mansoni (Muller-Graf et al., 1997; Murray et al.,
2000; Bakuza & Nkwengulila, 2009; Howells et al., 2011).
There is an isolated, unpublished account, from the early
1990s, of S. mansoni eggs being recovered from
chimpanzee stool in Gombe Stream National Park
(Nutter, 1993); however, since both earlier and ensuing
examinations failed to reconfirm the finding, it may be

that this report is a case of mislabelled samples, and the
stool had actually belonged to a baboon.

Likewise, there are locations where chimpanzees are
known to inhabit areas that have high levels of
schistosomiasis transmission to humans, and yet appear
not to have contracted the disease; one such location is
Rubondo Island, where prevalence in humans in island
communities nearby is very high, and snails shedding
S. mansoni cercariae have been observed in the shallow
waters fringing the island itself (Standley et al., 2010).
However, despite extensive parasitological surveys, the
chimpanzees, vervet monkeys and guerezas (Colobus
guereza) that inhabit the island have not been reported to
be infected (Petrzelkova et al., 2006; Petrášová et al., 2010),
based on stool examinations; given the insensitivity of
direct faecal examinations it would be interesting to also
include serological tests for evidence of exposure and
infection as an alternative diagnostic tool.

The sanctity of sanctuaries: opportunities for
testing captive populations

The relative absence of natural infections of Schistosoma
species in chimpanzees has long suggested that despite
their close phylogenetic relationship to humans, these
apes are perhaps not naturally susceptible to the parasite,
or do not access infected water sources in ways which
would expose them sufficiently to infection. This
assumption has been resolutely refuted through the
confirmation of naturally acquired infections of S. mansoni
in wild-born, semi-captive chimpanzees on Ngamba
Island, a sanctuary for rescued and orphaned chimpan-
zees (Standley et al., 2011). Over the course of four surveys
in 3 years, 11% of chimpanzees tested for S. mansoni
infection were stool-positive for eggs, which were later
hatched and used to infect Biomphalaria snails, proving
their viability. Chimpanzees were also observed close
to the water’s edge on a number of occasions, indicating
behavioural risk of exposure that might have accrued
by gradual habituation to the lake itself. Of more concern
is recent evidence of significant liver pathology in
these chimpanzees, comparable to humans progressing
towards chronic infection status; this observation was
made by using ultrasound imagery, a technology never
before used for diagnosis of clinical schistosomiasis in
naturally infected non-human primates (C.J. Standley &
J.R. Stothard, in preparation).

In general, primate sanctuaries may provide a useful
means for monitoring the risk of zoonotic transmission
of schistosomiasis. In the case of chimpanzees, there
are over a dozen sanctuaries across Africa dedicated to
their rehabilitation and protection. While independently
managed, run and funded, they are all co-ordinated by
the Pan-African Sanctuary Alliance (PASA), an umbrella
organization dedicated to the rehabilitation and care
of non-human primates. While most of the sanctuaries
are found close to or within the existing range of
chimpanzees, others are further removed from their
natural habitat, such as Sweetwaters in Kenya and
JGI-Chimpanzee Eden in South Africa. Figure 2 denotes
the locations of each of these sanctuaries, against
the background of the distribution of schistosomiasis;
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it clearly shows that even though some of the sanctuaries
are located outside of the natural range of chimpanzees,
all 13 are located in regions known to be endemic for
schistosomiasis transmission.

Sanctuaries possess a number of qualities that lend
themselves to monitoring the emergence and progression
of zoonotic diseases. First of all, the animals are all usually
highly habituated to human presence, and in many cases,
spend a portion of their time in a captive environment,
allowing for the easy collection of various types of
samples for diagnosis of disease. Similarly, the behaviour
of the chimpanzees themselves is often easily observed; as
such, levels of water contact, for example, can be
calculated, as a proxy for transmission risk of schistoso-
miasis. In addition, for reasons of access to the public,
several of these sanctuaries are located relatively close to
human habitation, although contact with local popu-
lations is strictly controlled. Finally, if disease is detected,
sanctuaries provide a controlled environment in which to
administer treatment, for example via provisioning or
annual health checks. The close observation of the
animals and their habituated status allows for close
monitoring of the effects of such medication once it has
been given.

Despite these clear benefits of surveying the health of
chimpanzees (and other non-human primates) in sanctu-
aries, and their location within transmission zones, very
few sanctuaries have performed diagnostic screening
for schistosomiasis in their captive animals (table 2).
In addition to Ngamba Island, Sweetwaters sanctuary in
Kenya recently tested the urine of some of its chimps
with circulating cathodic antigen (CCA)-dipsticks, find-
ing roughly 50% of those tested positive for the disease
(unpublished data). In Guinea, only a single individual
was tested; low-intensity infections may not present any
discernible symptoms, so it would be recommended that
if screening were to be done, it should be applied to as
many of the individual chimpanzees at the sanctuary as
possible. Finally, given the ease of collecting different
forms of samples from captive chimps (faeces, urine and

blood, for example), sanctuaries would be an ideal
location to test out new field-ready diagnostic tools,
which can then be applied more widely to determining
the emergence of schistosomiasis as a zoonotic infection
in wild primates.

Balancing diagnosis and analysis: identifying
emerging zoonotic risk

A consideration of past reports of schistosomiasis in
animals in Africa, together with an evaluation of the
disease in captive primates would not be complete
without looking at potential risks of emerging zoonotic
infections in wild populations. This includes an examin-
ation of methods for researchers to determine the origin,
transmission direction and causes of infections found
both in humans and wildlife. In order to do so, scientists
should be encouraged to employ the same up-to-date
technology on animal populations as is used in humans,
for consistency of results. Finally, research on zoonotic
parasitic infections should embrace the use of a multi-
disciplinary tools in order to analyse their results and
thus produce conclusions that can be used to inform other
interested parties across different fields, from public
health to conservation medicine and encompassing
biogeography, molecular epidemiology and mathemat-
ical modelling (Stephens et al., 1998; Daszak et al., 2004;
Morens et al., 2004; Wilcox & Gubler, 2005).

The observation and identification of forms of
schistosomiasis passing between humans and animals
is often a non-trivial matter, given the wide variety of
definitive host species at risk of infection as well as
morphological similarities between different schistosome
species across several life stages. A crucial obstacle facing
researchers is the difficulty in accessing samples from
populations of wild animals. Standardized protocols for
sampling and data collection of primate groups should be
employed, to ensure consistency of results between
surveys; some such protocols already exist, and so should
be rigorously followed (Gillespie, 2006).

Table 2. A summary of the Pan-African Sanctuary Alliance (PASA) sanctuaries containing chimpanzees and their schistosomiasis
infection status, if known. ‘Map ID’ refers to the geographical location of each sanctuary, as shown in fig. 2.

Sanctuary name Location (Map ID)
Number of

chimpanzees
Number
sampled

Infection
status

Ngamba Island Chimpanzee Sanctuary Uganda (1) 44 44 Positive
Sweetwaters Chimpanzee Sanctuary Kenya (2) 41 41 Positive
Centre de Conservation pour Chimpanzés Guinea (3) 41 1 Negative
Lwiro Chimpanzee Sanctuary DRC (4) 50þ 0 Unknown
J.A.C.K. Chimpanzee Sanctuary DRC (5) 39 0 Unknown
Chimfunshi Wildlife Orphanage Zambia (6) 102 0 Unknown
Sanaga-Yong Chimpanzee Rescue Center Cameroon (7) 59 0 Unknown
Limbe Wildlife Center Cameroon (8) 50 0 Unknown
Tacugama Chimpanzee Sanctuary Sierra Leone (9) 85þ 0 Unknown
Tchimpounga Chimpanzee Rehabilitation Centre Rep. Congo (10) 125 0 Unknown
Pandrillus Nigeria (11) 30 0 Unknown
JGI-Chimpanzee Eden South Africa (12) 35 0 Unknown
Chimpanzee Rehabilitation Trust Gambia (13) 76* 0 Unknown

DRC, Democratic Republic of Congo (Congo-Kinshasa); Rep. Congo, Republic of the Congo (Congo-Brazzaville). *Although rehabilitated
with human intervention, these chimpanzees and their descendents are now free-living, though protected and monitored by the
Chimpanzee Rehabilitation Trust.
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The next question involves the type of sample and the
methods used for diagnosing infection. The traditional
approach is to observe eggs passed either in the stools,
for gastrointestinal species (such as S. mansoni, S. rodhaini,
S. intercalatumandS.guineensis)orurine, forS.haematobium.
While these methods are cheap, simple and relatively
effective, they are not in line with current diagnostic
efforts in human populations. For example, the CCA
dipstick utilizes a tiny drop of urine, but since only
feeding, adult worms produce circulating cathodic
antigen, this is more indicative than eggs in stool of an
active infection. This method has been tested on Ngamba
Island’s semi-captive chimpanzee population (Standley
et al., 2011), and was shown to have greater sensitivity
than any stool-based diagnostic (apart from polymerase
chain reaction), and so may be especially useful in
animals that are not efficient egg excretors.

Similarly, if non-human primate IgG/IgM molecules
are sufficiently similar to human IgG/IgM, blood samples
can be used for schistosome egg antigen enzyme-linked
immunosorbent assay (SEA-ELISA), which is highly
sensitive in the diagnosis of humans (Stothard et al., 2009).
This method has also been tested on Ngamba Island,
showing over 90% prevalence in the chimpanzees
(Standley et al., 2011). Given that antibodies to egg
antigens may persist in the bloodstream up to several
years after the infection has been cleared, this method
may be particularly effective in gauging past exposure to
Schistosoma ( Doenhoff et al., 2004), but is not necessarily
accurate in measuring current infection status. New
research initiatives, such as SCORE (Schistosomiasis
Consortium for Operational Research and Evaluation,
http://score.uga.edu), specifically include a focus on
field-evaluation of diagnostics, including the CCA test
but also alternatives such as CAA (circulating anode
antigen). In order to ensure that surveys of animals
are comparable and consistent with these on-going
and parallel human studies, the inclusion of such new,
field-reliable and highly sensitive rapid diagnostic tests
should be incorporated into future sampling efforts.

One disadvantage with these rapid diagnostic tests is
that they only diagnose infection to genus rather than
species level. Morphology has traditionally been the first
method for species identification; the shape, size and
spine location on schistosome eggs is often sufficient.
Adult worms, too, have interspecies variations in body
form and behaviour; cercarial identification is more
difficult, but is aided by the type of intermediate snail
host used and emergence behaviour. However, there have
been observations of intraspecific variations in egg shape,
perhaps due to host morphology; moreover, hybrids are
difficult to detect through morphology alone. In these
cases, the advent of molecular tools has revolutionized
researchers’ ability to confirm species identification
(Webster et al., 2006), hybrids (Webster et al., 2007) and
even the direction of transmission, in this setting as well
as with other parasitic diseases (Graczyk et al., 2002;
Standley et al., 2011).

Moreover, monitoring changes in parasite genotype
over time and comparing variation between human
and animal populations can determine the source and
maintenance of the infection, with implications for
the resultant design of control interventions (Nejsum

et al., 2010). For example, molecular tools may provide
insight into whether a non-human primate population is
maintaining transmission independently of human com-
munities, and thus can be considered a true reservoir of
disease (as we believe is now occurring on Ngamba
Island), or whether human transmission is required for
continued infection, implicating public health measures
as the key to breaking the infection cycle. As such, when
investigating purported cases of zoonotic transmission
of schistosomiasis, we recommend that molecular tools
be employed alongside accurate and effective diagnoses,
in order to produce best evidence for the transmission
dynamics of that particular setting.

In addition to molecular tools, there are other methods
that should be employed alongside traditional parasito-
logical surveys for analysing the zoonotic potential of
parasitic diseases. For example, there is a growing
movement to integrate spatial epidemiological data
with human and animal population distribution infor-
mation, using geographical information systems (GIS),
in order to evaluate high-risk areas for the cross-over
of infectious diseases (Eisen & Eisen, 2007). While
geospatial models have been applied to schistosomiasis
epidemiology in humans (Clements et al., 2010), and to
human–animal schistosomiasis transmission in Asia
(Williams et al., 2002; Ishikawa et al., 2006), it would be
useful to integrate animals into these models within an
African setting. These can also be informed by classic
models of disease transmission, as developed by
Anderson & May (1991), and used to gauge the risk of
emergence of infection in particular areas, as well as to
evaluate the effect of control interventions.

Implications for public health and wildlife
conservation

In Africa, the human public health burden of
schistosomiasis is well known, but less recognized is
the risk imparted on non-human primate populations
by these parasites. Better epidemiological monitoring
of non-human primates is needed, especially where
such animals may become important animal reservoirs
maintaining disease transmission in the face of public
health control. Examples are also given how endangered
non-human mammals, such as chimpanzees, will profit
from a specific consideration of schistosomiasis as part
of their conservation strategy. Indeed, we advocate that
public health initiatives and wildlife monitoring groups
should work more synergistically to develop better
disease control and conservation strategies.
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