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Abstract The worldwide colony-forming hapto-
phyte phytoplankton Phaeocystis spp. are key organ-
isms in trophic and biogeochemical processes in the
ocean. Many organisms from protists to Wsh ingest
cells and/or colonies of Phaeocystis. Reports on spe-
ciWc mortality of Phaeocystis in natural plankton or
mixed prey due to grazing by zooplankton, especially
protozooplankton, are still limited. Reported feeding
rates vary widely for both crustaceans and protists
feeding on even the same Phaeocystis types and sizes.
Quantitative analysis of available data showed that:
(1) laboratory-derived crustacean grazing rates on
monocultures of Phaeocystis may have been overesti-
mated compared to feeding in natural plankton
communities, and should be treated with caution;

(2) formation of colonies by P. globosa appeared to
reduce predation by small copepods (e.g., Acartia,
Pseudocalanus, Temora and Centropages), whereas
large copepods (e.g., Calanus spp.) were able to feed
on colonies of Phaeocystis pouchetii; (3) physiologi-
cal diVerences between diVerent growth states, spe-
cies, strains, cell types, and laboratory culture versus
natural assemblages may explain most of the varia-
tions in reported feeding rates; (4) chemical signaling
between predator and prey may be a major factor con-
trolling grazing on Phaeocystis; (5) it is unclear to
what extent diVerent zooplankton, especially proto-
zooplankton, feed on the diVerent life forms of Phae-
ocystis in situ. To better understand the mechanisms
controlling zooplankton grazing in situ, future studies
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should aim at quantifying speciWc feeding rates on
diVerent Phaeocystis species, strains, cell types, prey
sizes and growth states, and account for chemical sig-
naling between the predator and prey. Recently devel-
oped molecular tools are promising approaches to
achieve this goal in the future.

Keywords Colony formation · DMS · 
Gut pigment · Molecular methods · Microzooplankton · 
Phaeocystis · antarctica · Predator defense

Introduction

The haptophyte Phaeocystis is a dominant phyto-
plankton genus in tropical to polar seas (Baumann
et al. 1994). They are key species in marine food
webs and biogeochemical cycles, e.g., as major pro-
ducers of carbon and climatically important sulWde
compounds (Liss et al. 1994; Alderkamp et al. this
volume; Stefels et al. this volume). Three major spe-
cies: P. globosa ScherVel, P. pouchetii (Hariot) Lag-
erheim and P. antarctica Karsten (Medlin and
Zingone this volume) exist in two main morphotypes:
small single cells and mucilaginous colonies (see
Rousseau et al. this volume for details on the diVerent
cell and morphotypes).

The success of Phaeocystis has been ascribed to a
number of factors, including escaping from grazing
by its dramatic ability to shift morphotype between
solitary Xagellates of a few micrometers to large
mucous colonies up to several cm in diameter
(Weisse et al. 1994; Chen et al. 2002; Schoemann
et al. 2005; Veldhuis and Wassmann 2005; Rousseau
et al. this volume). For a phytoplankton bloom to
form, the sum of growth and accumulation must be
larger than the sum of loss due to horizontal and verti-
cal advection, sinking, lysis and predation (e.g.,
Smayda 1997; Banse 1994). Advection is beyond the
control of all phytoplankton, and thus not likely to be
a strong selective force for Phaeocystis (but see Seu-
ront et al. this volume). Neither does the growth rate
of Phaeocystis appear to be exceptionally high rela-
tive to other bloom-forming phytoplankton, such as
diatoms (Hegarty and Villareal 1988). Indeed, in
many Weld and mesocosm studies Phaeocystis blooms
co-occurred with, or followed the demise of, diatom
blooms (Peperzak et al. 1998; GoVart et al. 2000;
Rousseau et al. 2002; Tungaraza et al. 2003; Larsen

et al. 2004). Sinking loss of Phaeocystis also seems to
be small for the large colonies (Reigstad and Wass-
mann this volume). This could be partly due to the
balloon-like characteristics of the colonies: colonial
cells are embedded in a thin mucous skin whereas the
interior of the colonies is hollow (van Rijssel et al.
1997). Although single cells are susceptible to viral
lysis, an intact mucous skin may protect colonial
Phaeocystis cells from viral lysis and other infections
(reviewed by Brussaard et al. this volume). A remain-
ing possible explanation for the success of Phaeocys-
tis despite its moderate growth rate is its ability to
reduce grazing mortality, which is the focus of this
review article.

Grazing on Phaeocystis (mainly P. globosa and P.
pouchetii) has been studied since the beginning of the
last century (e.g., Lebour 1920, 1922), and a wide
range of organisms have been reported to be able to
ingest Phaeocystis (Table 1). Unfortunately, most of
the early studies were based on light microscopy of
gut contents of the grazers, and neither feeding rate
nor detailed description of the prey species was avail-
able (see Notes in Table 1, and further discussion
below). It was not until the 1980s that direct quantita-
tive studies on zooplankton feeding on Phaeocystis
were reported (reviewed in Peperzak 2002; Rousseau
et al. 2000; Schoemann et al. 2005; Weisse et al.
1994). Published grazing rates span wide ranges even
for the same predators feeding on the same Phaeocys-
tis species, morphotype and food concentration. This
indicates that the widely accepted view of grazing
vulnerability as a function of predator-to-prey size
ratio and prey abundance (Frost 1972; Hansen et al.
1994a) for a given predator type (Hansen et al. 1997)
may be compounded by other factors controlling
grazing on Phaeocystis.

Although copepods and other organisms may ingest
Phaeocystis spp. (Table 1), at least when they are in
palatable condition (Estep et al. 1990; Long and Hay
2006), there are also reports of reduced zooplankton
feeding and abundance during blooms of Phaeocystis
(Table 2) and low reproductive output in copepods,
even when feeding rates are relatively high (Verity
and Smayda 1989; Turner et al. 2002; Klein Breteler
and Koski 2003; Long and Hay 2006). Several authors
have previously reviewed various negative eVects of
Phaeocystis on diVerent organisms (e.g., Weisse et al.
1994; Turner et al. 2002; Schoemann et al. 2005); and
we provide an updated summary in Table 2. However,
123
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some of these data were derived from ecologically
unrealistic organisms or assays and should be inter-
preted with caution (see discussion below). Further,
positive correlations between Phaeocystis abundance
and mesozooplankton in the Weld have also been
reported, and some of the negative eVects have been
debated and ascribed to other organisms (see Notes in
Table 2). Furthermore, results from fatty acid analysis
indicate that dominating crustacean zooplankton may
derive a major part of their diet from P. pouchetii in
northern latitudes (Sargent et al. 1985) and from
P. globosa in lower latitudes (Hamm and Rousseau
2003), suggesting that Phaeocystis do enter the food
web.

A number of factors have been shown to control
predation on this enigmatic genus: predator-to-prey
size ratio, predator species and stage, prey species,
morphotype, growth state and abundance (reviewed
in Weisse et al. 1994; Rousseau et al. 2000; Peperzak
2002; Schoemann et al. 2005). However, to our
knowledge, a quantitative analysis of the interactive
eVect of these factors has not been attempted. Using
available literature, we attempt to quantify the relative
importance and interactions among some of these fac-
tors in controlling zooplankton grazing on Phaeocys-
tis spp. We also review recent Wndings on various
unique aspects of the life history and physiology of
Phaeocystis spp., and how they aVect zooplankton
grazing. Last, we discuss the need for new methodo-
logical approaches to address some of the remaining
questions concerning zooplankton grazing on Phaeo-
cystis.

Grazing on Phaeocystis: quantitative patterns in 
published data

Reports on copepods and other crustaceans dominate
available zooplankton grazing data on Phaeocystis
spp. These data show a wide range of rates, even for
similar predator-prey combinations. We therefore
attempt to summarize available quantitative data in
relation to some of the mechanisms proposed to con-
trol the feeding on Phaeocystis. The shortage of quan-
titative feeding studies on microzooplankton and
Phaeocystis was pointed out already a decade ago
(Weisse et al. 1994), and the number of such studies
is still limited, especially for protozoan microzoo-
plankton, whether using laboratory cultures (Table 3)

or natural plankton assemblages (Table 4) as food.
Due to the shortage of protozooplankton data a gen-
eral statistical analysis of the factors controlling their
grazing on Phaeocystis cannot yet be performed, but
the available data will be discussed further below.

Crustacean zooplankton grazing on Phaeocystis: is 
there a general pattern?

It is generally assumed that a shift from single cell to
colony may be part of Phaeocystis defense against
grazing by microzooplankton (Weisse et al. 1994;
Rousseau et al. 2000; Peperzak 2002; Schoemann
et al. 2005). Because of the ability of Phaeocystis to
vary its functional prey size by forming colonies, it is
often considered as dual species (sensu Turner et al.
2002): colonies can be referred to as macroplankton
and are assumed to be suitable food for zooplankton
and nekton, while the solitary nanoplankton are
assumed to be vigorously grazed by microzooplank-
ton (Lebour 1922; Hollowday 1949; Admiraal and
Venekamp 1986; Weisse and ScheVel-Möser 1990).
On the other hand an increase in size may result in a
more suitable prey size range for larger predators
such as crustacean zooplankton. For palatable prey,
ingestion rates generally increase from small prey to
the optimum prey size before the prey becomes too
large to handle or ingest (Frost 1972; Hansen et al.
1994a). Thus, size may be a major factor controlling
predation on Phaeocystis.

Many studies showed that the size of Phaeocystis
strongly inXuences the feeding rates of diVerently
sized metazoan predators. Hansen et al. (1990)
reported that Calanus Wnmarchicus copepodites (CI-
V) showed lower feeding rate on P. pouchetii colo-
nies of >100 �m than similarly sized diatoms, while
in the 30–100 �m size range feeding rates on diatoms
and colonies were similar. Tande and Båmstedt
(1987) showed that copepodite stage V of C. Wnmar-
chicus fed equally well on P. pouchetii single cells
and the diatom Chaetoceros furcellatus, whereas
Huntley et al. (1987), using the larger copepod
C. hyperboreus CIV-V, reported much higher grazing
rates on colonies 25–200 �m and >200 �m than on
single cells of P. pouchetii or the diatom Chaetoceros
socialis. In a study with grazers of diVerent sizes
feeding on P. pouchetii, Hansen et al. (1994b)
observed an optimal predator-to-prey size ratio for
feeding and an upper size ratio above which no ingestion
123
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Table 2 Negative eVects on various organisms ascribed to Phaeocystis spp., with notes on contradictory reports

EVect Note References

Protists and other microbes

Defence against viral attacks by intact colony membranes Reviewed by Brussaard et al. (this volume)

Antibiotic to bacteria in the acid environment of penguin guts. A Sieburth (1960, 1961)

Haemolytic activity in laboratory, or correlated with 
abundance of P. pouchetii during blooms of natural 
planktonin mesocosms

Stabell et al. (1999), van Rijssel et al. (this volume)

Suggested allelopathy, e.g., possible negative intercations by 
P. pouchetii on T. nordenskioeldii and Skeletonema 
costatum in vitro. Rapid decrease in abundance of 
Thalassiosira nordenskioeldii and Ebria sp. during a 
bloom of P. pouchetii.

Barnard et al. (1984), Smayda (1973)

Allelopathy, Wltrates from mesocosm blooms of P. pouchetii 
and laboratory cultures of P. globosa resulting in reduced 
growth and lysis of the cryptophyte phytoplankton 
Rhodomonas baltica.

Long (Unpublished data)

Lack of feeding of the ciliates Mesodinium pulex and 
Strombidium elegans in laboratory experiments despite high 
concentrations of P. globosa and no alternative food.

Hansen et al. (1993), Tang et al. (2001)

Low biomass of bacteria and protozooplankton during blooms 
of colonial Phaeocystis

B van Boekel et al. (1992)

Metazooplankton

Many copepods show low abundances, development, 
gut content and/or much lower feeding activity compared to 
alternative food such as diatoms, during blooms of 
Phaeocystis

C Bautista et al. (1992), Breton et al. (1999), Daro (1985), 
Davies et al. (1992), Frangoulis et al. (2001), 
Gasparini et al. (2000), Hansen and van Boekel 
(1991), Turner (1994), Weisse et al. (1994)

Low feeding by Calanus spp. and Metridia longa on actively 
growing colonies of P. pouchetii

D Estep et al. (1990)

Low feeding by nauplii on some cell types of P. globosa Dutz and Koski (2006)

Low reproductive output from Acartia spp., 
Temora longicornis, Pseudodiaptomus pelagicus and 
Eucalanus pileatus feeding on Phaeocystis, despite 
sometimes high ingestion rates.

E Klein Breteler and Koski (2003), Long and Hay (2006), 
Tang et al. (2001), Turner et al. (2002), Verity and 
Smayda (1989)

Inhibiting copepod feeding by transparent exopolymer 
particles (TEP) derived from a Phaeocystis globosa.

Dutz et al. (2005)

Suggested reduction of zooplankton feeding due to mucus 
secretion from colonies of P. globosa.

Seuront et al. (this volume)

Not a good food organism for the barnacle Balanus balanoides Cook and Gabbott (1972)

Other organisms

Oxygen deWciency due to sedimenting Phaeocystis killing less 
mobile fauna in the sediments. 

Rogers and Lockwood (1990)

Colonies clogging gills and thus reducing feeding in several 
mussels, especielly smaller, e.g., P. globosa colonies 
reduced feeding in Mytilus edulis <3 cm, while larger 
where able to Wlter colonies.

Blauw (this volume), Kopp (1978), Meixner (1981), 
Petri et al. (1999), Pieters et al. (1980), Smaal and 
Twisk (1997)

Inhibited growth in the bryozoan Electra pilosa possibly due 
to Phaeocystis.

Jebram (1980)

Toxic to sea urchin larvae Hansen et al. (2003, 2004)

Toxic to blowXies (Calliphora omitoria) Stabell et al. (1999)
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occurs. These results were also supported by Levin-
sen et al. (2000), who reported ingestion of single P.
pouchetii by the smaller females of C. Wnmarchus but
not by the larger C. glacialis and C. hyperboreus.
Also, the krill Euphausia superba (35–40 mm)
showed similar feeding on 50–100 �m P. antarctica
colonies compared to the diatom Thalassiosira ant-
arctica, whereas both single cells and larger colonies
of P. antarctica were grazed at lower rates compared
to the diatom (Haberman et al. 2003). Thus, data such
as these support the notion that substantial shifts in
size between Phaeocystis life forms aVect grazing by

diVerently sized predators. However, there is still a
considerable variation in feeding rates on various
forms of Phaeocystis, ranging from zero to expected
maximum rates (sensu Hansen et al. 1997) for a num-
ber of predators (reviewed in Weisse et al. 1994;
Schoemann et al. 2005).

In order to evaluate the relative importance of fac-
tors other than size and how they may help explain
the observed variations in grazing rates, we compiled
the available quantitative data, converted them into
carbon units, and performed a series of correspon-
dence and cluster analyses described below.

Table 2 continued

Notes:

A: It has also been reported that the high concentrations of acrylate in Phaeocystis colonies do not inhibit surrounding bacteria and may
be absorbed to the mucus matrix (Noordkamp et al. 2000)

B: But when solitary cells are abundant during blooms (Admiraal and Venekamp 1986; Weisse and ScheVel-Möser 1990), or during
the breakdown (van Boekel et al. 1992), microzooplankton such as ciliates may be numerous

C: There are also some reports on apparently increased abundances of mesozooplankton during periods of blooms of Phaeocystis
(Fransz and Gieskes 1984; Fransz et al. 1992; Weisse et al. 1986)

D: But in a later bloom stage the copeods switch to selectively feed upon the senescent P. pouchetii, rather than the diatoms (Estep
et al. 1990)

EVect Note References

Migrating herring hindered by a “barrier” 
of Phaeocystis blooms

F Savage (1930, 1932)

Toxic to cod larvae Aanesen et al. (1998), Eilertsen and Raa (1995), 
Hansen et al. (2004)

Skin and eye irritation of humans Dunne et al. (1984)

Table 3 Quantitative laboratory studies on protozooplankton grazing on Phaeocystis

All experiments are based on particle disappearance and cell counts of cultured P. globosa, or cf. globosa in Hansen et al. (1993). Notes
are given on whether the grazer feed (yes) or not at all (no) on Phaeocystis, or showed higher or lower feeding rates on Phaeocystis,
compared to alternative prey oVered in parallel single prey species incubations

Grazer Alternative prey Feeding on P. globosa References

Oxyrrhis marina No Yes Hansen et al. (1993)

Strombidinopsis acuminatum No Yes Hansen et al. (1993)

Strombidium elegans No No Hansen et al. (1993)

Strombidium sp. No Yes Verity (2000)

Noctiluca scintillans No Yes Jakobsen and Tang (2002)

Gyrodinium dominans No Yes Tang and Simó (2003)

Lohmanniella oviformis Isochrysis galbana Lower Tang et al. (2001)

Rimostrombidium conicum Isochrysis galbana Higher Tang et al. (2001)

Strombidium vestitum Isochrysis galbana Higher Tang et al. (2001)

Gyrodinium dominans Isochrysis galbana Higher Tang et al. (2001)

Gymnodinium sp. Isochrysis galbana Lower Tang et al. (2001)

Mesodinium pulex Gymnodinium sp. No Tang et al. (2001)
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Treatment of literature data

Many reports of crustacean grazing on Phaeocystis
spp. are based on non-prey-speciWc gut Xuorescence
during blooms of Phaeocystis. An unknown fraction
of such Xuorescence may stem from prey other than
Phaeocystis. Indeed, the often co-occurring diatoms
may even be a preferred prey (Gasparini et al. 2000).
In addition, more than half the total biomass (and
chlorophyll) of the Phaeocystis colony may be due to
diatoms and other organisms living in and on the col-
onies during late bloom stages (Sazhin et al. this vol-
ume). Therefore, we exclude data based on non-
speciWc gut pigments of grazers feeding on mixed or
natural food suspensions. We converted all grazing
rate measurements into common currency of carbon
units, using either (in the preferred order): (1) directly
reported data, (2) data reported in accompanying
papers, (3) personal communications with the
authors, or (4) common conversion factors (such as
those used in Hansen et al. 1997). For quantitative
and statistical analyses we included only grazing data
from studies that reported experiment location (Weld
or laboratory study), grazer species, stage or size, and
Phaeocystis average size (or size range). To be
included in the statistical analysis the sources also
must have reported Phaeocystis species, abundance,
morphotype and growth state (exponential or station-
ary—either given in the text or assumed from the
state of the bloom). See Table 5 for further details on
the variables. The sources used are listed in Table 6.

Statistical methods

To investigate relationships between crustacean graz-
ing rates on Phaeocystis and experimental conditions,
a multiple correspondence analysis (MCA) followed
by a hierarchical cluster analysis (HCA) was per-
formed using SPAD 3.5 software (Lebart et al. 1988).
The combination of MCA and cluster analysis is a
common way to explore relationships among a large
number of variables and to facilitate interpretation of
the correspondence analysis results (Lebart et al.
2000). MCA uses a contingency table as data, which
provides a simultaneous representation of the obser-
vations (rows) and variables (column) in a factorial
space. This form of multivariate analysis describes
the total inertia (or variability) of a multidimensional

Table 5 Active structural variables used in the multiple corre-
spondence analysis (MCA). n denotes the number of observa-
tions from each source

Description of variables: modalities Label n

Experiment location

Field Field 91

Laboratory Laboratory 205

Crustacean predators

Acartia clausi Acl 13

Acartia hudsonica Ahu 5

Acartia tonsa Ato 12

Pseudocalanus elongatus Pel 13

Temora longicornis Tlo 35

Temora stylifera Tst 15

Metridia longa Mlo 1

Centropages hamatus Cha 14
Calanus Wnmarchicus CW 105

Calanus glacialis Cgl 8

Calanus hyperboreus Chy 75

Phaeocystis species

globosa P. globosa 107

pouchetii P. pouchetii 189

Phaeocystis growth

Exponential Exponential 277

Stationary Stationary 19

Phaeocystis abundance (Ab, �g C l¡1)

0.1–125 Ab1 81

125–250 Ab2 91

250–500 Ab3 37

500–1000 Ab4 71

1000–1810 Ab5 16

C-speciWc ingestion (CI, d¡1)

0–0.01 CI1 83

0.01–0.1 CI2 151

0.1–1.5 CI3 62

Phaeocystis selection

Positive selection For 14

Negative selection Against 76

Null selection Null 5

Single prey Single 201

Predator-to-prey size ratio (P:p)

0.8–4 P:p1 57

4–16 P:p2 90

16–64 P:p3 49

64–256 P:p4 25

256–1120 P:p5 75
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set of data, in a sample of fewer dimensions (or axes)
that is the best summary of the information contained
in the data (Greenacre 1984; Everitt and Dunn 2001).
Our data set contains both categorical and continuous
variables that were used in the MCA as active
(Table 5) and illustrative variables (PL, ESD, CI and
Ab deWned below), respectively. The factorial axes of
the MCA were computed using active (categorical)
variables whereas the continuous illustrative (or sup-
plementary) variables were simply projected into this
factorial plane without participating in its computa-
tion. The location of these continuous illustrative
variables, is shown as arrows along the factorial axes
in Fig. 1A, and expresses their linkage to the pattern
of the categorical active variables displayed by the
factorial axes (Lebart et al. 2000). Observations with
missing data for carbon-speciWc ingestion and experi-
mental characteristics were excluded from the MCA.
Only four observations with Phaeocystis antartica
were available, and were therefore also excluded. A
data matrix of the remaining 296 observations with
eight active and four illustrative variables were used
for the analyses (Table 5). The size of predators (pro-
some length; PL) and prey (equivalent spherical
diameter; ESD) were treated as illustrative variables.

These continuous variables were used to calculate a
predator-to-prey size ratio (P:p) with Wve categories
(or modalities) used in the statistical treatment. Simi-
larly, C-speciWc ingestion (CI) and Phaeocystis abun-
dance (Ab) were transformed into categorical
variables of three and Wve categories, respectively, to
be tested both as illustrative and active variables in
the MCA. The metric used in the MCA is based on
the �2. This was also the metric used in the following
cluster analysis. The type of HCA used here is an
agglomerative clustering, i.e., a procedure that suc-
cessively groups the closest objects into clusters,
which then are grouped into larger clusters of higher
rank (Legendre and Legendre 1998). The programme
identiWes: (i) the cluster (group of observations)
which has the smallest within-group variance and the
greater variance between groups, and (ii) the descrip-
tors (variables) that are highly representative of each
cluster. The descriptors of the observations used in
the clustering were their factorial coordinates on the
Wrst six axes obtained in the MCA. These Wrst six
axes explained about 58% of the total variability
(inertia) in the data, and the additional amount of
variability explained by the axes decreased markedly
after the Wrst six axes.

Table 6 Sources of data 
used for the multiple 
correspondence analysis 
(MCA) and hierarchical 
cluster analysis (HCA) 
presented in Fig. 1, and 
quantitative summary in 
Fig. 2, respectively 

References Location Phaeocystis Fig. 1
n

Fig. 2
n

Antajan unpublished Field globosa 6 6

Dutz and Koski (2006) Lab globosa 7 7

Estep et al. (1990) Field pouchetii 25 25

Gasparini et al. (2000) Field globosa 55 55

Haberman et al. (2003) Lab antartica 3

Hansen et al. (1990) Lab pouchetii 62 62

Hansen et al. (1993) Lab globosa 5 5

Hansen et al. (1994b) Lab pouchetii 20

Huntley et al (1987) Lab pouchetii 4 4

Klein Breteler and Koski (2003) Field globosa 4

Koski et al. (2005) Field globosa 2 6

Koski unpublished Field pouchetii 3 3

Tande and Båmstedt (1987) Lab pouchetii 95 95

Tang et al (2001) Lab globosa 4

Turner et al. (2002) Lab globosa 15 15

Verity and Smayda (1989) Lab globosa 9 9

Verity (2000) Lab globosa 8 12

Weisse (1983) Lab globosa 18

n denotes the number of 
observations from each 
source
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Results from statistical analysis

The result of the MCA indicated that the Wrst and sec-
ond axes accumulate about 19% and 12% of the total
variability, respectively (Fig. 1A). Two variables
basically contribute to the Wrst axis: the selection

(“Against” and “Single”, cumulated 18% of the con-
tribution to axis 1) and the experiment location
(“Lab” and “Field”, cumulated 17.5% of the contribu-
tion). Thus, this axis diVerentiates laboratory experi-
ments where Phaeocystis was the only prey
(“Single”), as opposed to Weld experiments where

Fig. 1 First factorial plane of MCA of data on crustacean graz-
ing experiment on Phaeocystis. (A) Projections of continuous
illustrative variables in the correlation circle (radius 1) and ordi-
nation of active variables: Phaeocystis species (�), growth (C)
and abundance (�), crustacean species (�), predator-to-prey

size ratio (B), experiment location (�), selection (�). (B) Ordi-
nation of data (�) labelled according to their C-speciWc inges-
tion characteristic and delimitation of the four groups designed
by the hierarchical clustering (�2 distance). See Table 5 for label
identiWcation
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alternative prey were available and Phaeocystis was
selected against (“Against”). The predator-to-prey
size ratio modality “P:p1” (size ratio < 4) also has an
important contribution to the Wrst axis (10%), show-
ing that small copepods (such as Centropages hama-
tus, Acartia clausi and Pseudocalanus elongatus)
tend to reject Phaeocystis in situ. On axis 2, the two
modalities “Stationary” and “For” have the greatest
contribution (18% and 20%, respectively). This axis
separates grazing experiments where Phaeocystis in a
stationary growth phase was selected positively by
predators in situ. In the Wrst factorial plane we also
observed that Phaeocystis concentration and preda-
tor-to-prey size ratio in lab experiments were higher
than what was generally observed in situ (Fig. 1A)
and that higher carbon-speciWc ingestions were
mostly related to laboratory experiments (Fig. 1B).

The combined analysis of the MCA and HCA
clearly distinguished four groups of observations
(Fig. 1B and Table 7). Groups 1 and 2 bring together
97% of the grazing experiments performed in the Weld
and are separated from groups 3 and 4, which com-
prise 96% of the lab experiments with Phaeocystis
provided as single prey. Group 1 consists of Weld
experiments with small-size copepods selecting
against P. globosa. Group 2 includes all Weld experi-
ments with positive selection for P. pouchetii (93% of

the group), and is characterized by a slightly higher
predator-to-prey size ratio (87% of them had a P:p-
ratio of 4–16, “P:p2”). In these experiments Phaeo-
cystis was in the stationary growth phase and in rela-
tively low abundance (“Ab1” = abundance between
0.1 and 125 �g C l¡1). The group 3 is characterized
by lab grazing experiments of Temora spp. on
P. globosa. The predator-to-prey size ratio in these
laboratory experiments was higher (89% of them had
a P:p ratio of 64–256, “P:p4”) than what was com-
monly observed in grazing experiments on natural
plankton. Similarly we observed higher carbon-spe-
ciWc ingestion than what was observed in situ for this
copepod genus (group 1). Group 4 brings together the
lab grazing experiments on P. pouchetii by larger
copepods (Calanus spp.). This group includes the
highest Phaeocystis abundance and predator-to-prey
size ratio tested in lab experiments and grouped the
highest carbon-speciWc ingestion estimates.

In conclusion, the MCA and the HCA analyses
suggested that: (1) the lowest grazing rates from the
Weld (often zero) were recorded for small copepods
(Acartia, Pseudocalanus, Temora and Centropages)
in blooms of Phaeocystis globosa colonies, (2) large
copepods (e.g., Calanus) feeding on Phaeocystis
pouchetii had higher grazing rates, especially in lab
studies, when no alternative food was present and (3)

Table 7 Characterization of the most typical properties of the four groups designed by the hierachical cluster analysis deWned in
Fig. 1 panel B

Gr/mod corresponds to the percentage of the modality belonging to the group, and mod/gr corresponds to the percentage of the group
belonging to the modality. Modality label as in Table 5. n denotes the number of observations

Group n 1 2 3 4

82 15 27 172

Modality gr/mod mod/gr Modality gr/mod mod/gr Modality gr/mod mod/gr Modality gr/mod mod/gr

Group 
characteristics

Against 95 88 For 100 93 P:p4 96 89 Single 84 98

Field 80 89 Stationary 79 100 Tst 100 56 P. pouchetii 87 95

P:p1 96 67 Ab1 19 100 P. globosa 25 100 Lab 82 98

P. globosa 66 87 Field 16 100 Tlo 34 44 P:p5 100 44

CI1 55 56 P:p2 14 87 Lab 13 100 Chy 96 42

Cha 100 17 Cgl 38 20 CI3 19 44 CW 88 53

Acl 100 16 P. pouchetii 7 93 Ab4 86 35

Pel 100 16 Exponential 62 100

Ab1 48 48 P:p3 88 25

Tlo 63 27 Ab5 100 9

Ab2 44 49 CI3 77 28

CI2 66 58
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P. pouchetii in a stationary growth phase was posi-
tively selected by large copepods.

It is important to note that grazing data for large
copepods (Calanus spp. and Metridia longa) were
only available for P. pouchetii, whereas grazing stud-
ies with small copepods (Acartia, Centropages,
Pseudocalanus and Temora) were limited to P. glob-
osa. Thus, the presently available data do not allow us
to determine whether the diVerent results for P.
pouchetii and P. globosa are due to diVerences
between the two species, or diVerences between the
predators. In order to test for species-speciWc diVer-
ences, we need to compare grazing on both species
simultaneously using similar methodologies in future
studies.

Quantitative results from data on crustacean grazing

Because the statistical analysis suggested a large
diVerence between feeding rates in laboratory and
Weld investigations, we compared the average speciWc
ingestion rates in all available Weld and laboratory
experiments (Table 6), and for Wve groups of preda-
tor-to-prey size ratios separately (Fig. 2). These com-
parisons revealed that: (1) overall feeding (carbon
speciWc ingestion) on Phaeocystis spp. was signiW-
cantly lower [p < 10¡8, analysis of variation
(ANOVA)] in all Weld (average 2.5% d¡1) studies
with natural plankton, compared to laboratory studies
(average 11% d¡1), (2) the highest average carbon-
speciWc ingestion rate (23% d¡1) on Phaeocystis spp.
was found when the predator-to-prey size ratio (P:p)
was 4–16 in lab studies, whereas there was no clear
size ratio trend in Weld studies, and (3) ingestion was
low (·2% d¡1) when P:p was < 4 in both lab and
Weld, indicating that the upper eVective size limit for
prey equivalent spherical diameter was ¼ of the pred-
ator prosome length.

Thus, crustacean grazers show a much lower graz-
ing on Phaeocystis in the Weld than in the laboratory.
One reason for this discrepancy could be that fewer
than 5% of the laboratory studies oVered the cope-
pods alternative prey to Phaeocystis whereas alterna-
tive prey were available in the Weld. Alternatively,
laboratory cultures might not display the same chemi-
cal grazing cues (and possible grazing deterrents) as
Phaeocystis growing in natural plankton. Hapto-
phytes may lose their inhibitory eVects in vitro, and
toxicity may be species-, strain- or growth-condition-

speciWc (Edvardsen and Paasche 1998). Support for
this hypothesis comes from laboratory studies that
failed to recreate toxicity in the lab that was observed
in the Weld, even with haptophytes isolated from
highly toxic blooms, such as the Chrysochromulina
polylepis bloom in 1988 (Nielsen et al. 1990). Like-
wise, the antipredation eVect revealed by Estep et al.
(1990) in actively growing Weld-collected Phaeocys-
tis pouchetii apparently disappeared during the Wrst
12 h in experimental containers. It may be that labora-
tory or other in vitro studies underestimate the nega-
tive eVects of potentially toxic haptophytes in situ,
but this requires explicit evaluation.

Ideally, future investigations on the ecology of
zooplankton feeding should preferably be conducted
in situ, although laboratory experiments are needed to
investigate the eVects of potentially important signal-
ing substances between Phaeocystis and diVerent pre-
dators in presence of realistic alternative prey.

Grazing by protozooplankton and other 
microzooplankton

General trends in grazing by protozoan microzooplank-
ton on Phaeocystis are diYcult to assess since the
number of quantitative investigations is limited
(Tables 3 and 4). Very few studies have investigated

Fig. 2 Crustaceans (all stages of copepods and krill) grazing on
Phaeocystis pouchetii, P. globosa or P. antarctica, in laboratory
and Weld experiments. Average daily carbon-speciWc ingestion
rates (percent �g C �g C¡1 d¡1) are presented for Wve diVerent
predator-to-prey size categories [derived from predator prosome
or carapace length and average equivalent spherical diameter
(ESD) of the Phaeocystis prey, solitary cells or colonies]. Error
bars denote the standard error (SE) of the average; the number
of observations (n) for each category are given above each col-
umn. Note the high daily ration for P:p size ratio 64–256 in the
Weld is due to a single (30%) value (with that value excluded, the
rate is 3.0 § 1.0 %)
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microzooplankton as potential grazers on colonial
Phaeocystis spp. The colonies are protected by a tough
skin (Hamm et al. 1999) and microzooplankters are
generally assumed to be too small to prey actively on
colonial forms of Phaeocystis (Hansen et al. 1994a;
Weisse et al. 1994; Tang 2003). In accordance, Irigoien
et al. (2003) reported that nauplii of Calanus Wnmar-
chicus did not ingest colonies of Phaeocystis in the
Irminger sea. However, the protists Noctiluca scintil-
lans (Weisse et al. 1994; Jakobsen and Tang 2002) and
apparently Gyrodinium cf. spirale (Stelfox-Widdi-
combe et al. 2004) are able to ingest small colonies,
while some tintinnids and rotifers “attack” and “hover
around colonies”, possibly ingesting released cells
(Hollowday 1949; Admiraal and Venekamp 1986). The
abundance of microzooplankton has also been reported
to decline or remain low during natural blooms of colo-
nial Phaeocystis, but increases rapidly during the
breakdown of the colonies at the end of the bloom (e.g.,
Peperzak et al. 1998; van Boekel et al. 1992). This sug-
gests that actively growing colonies are inferior prey
for microzooplankton, while single cells released from
decaying colonies may be a suitable food source. How-
ever, an alternative explanation for the low microzoo-
plankton abundance during Phaeocystis blooms is the
strong selective predation pressure from larger zoo-
plankton such as copepods (Hansen et al. 1993; Gaspa-
rini et al. 2000).

It is clear from the literature that at least some
microzooplankton may readily ingest single-celled
Phaeocystis (Tables 3 and 4), and chemical cues from
microzooplankton grazing have been shown to induce
colony formation (Long and Hay 2006) and enlarge-
ment in P. globosa (Tang 2003), supporting the

assumption that microzooplankton graze on the single
cells but not the colonies. However, some of the
reported grazing rates in laboratory studies were low,
with or without alternative prey present (Table 3).
Also, in several incubation experiments with natural
plankton the microzooplankton community grazing
rates were very low (·0.1 d¡1) during dominance of
Phaeocystis (Table 4). It is well known that some
microzooplankton feed selectively (e.g., Verity 1988;
González et al. 1990; Strom and Loukos 1998; Archer
et al. 2000), and it was recently shown that copepod
nauplii ingest some clones and cell morphotypes of P.
globosa at low rates (Dutz and Koski 2006). Results
showing selection against single cells by microzoo-
plankton in the sea was obtained in recent dilution
experiments in the English Channel (Table 8). These
experiments yielded zero or close to zero microzoo-
plankton grazing rates on single-celled P. globosa, but
high microzooplankton grazing rates on diatoms based
on cell counts, while bulk measurements of chlorophyll
a (as used in most of the experiments in Table 4) indi-
cated intermediate grazing values. This suggests that
microzooplankton feeding on Phaeocystis may be
highly variable in the sea, and reliable grazing rate
measurements will therefore require taxon-speciWc
quantitative methods, rather than bulk measurements
(see further discussion under Future challenges).

Cell-type and life-stage-speciWc interactions 
with grazers

In the species P. globosa, three solitary, Xagellated
cell types (micro-, meso, and macroXagellates)

Table 8 Microzooplankton grazing on Phaeocystis globosa solitary cells during blooms in the English Channel oV northen France
May 2003 and April 2004 (JC Nejstgaard, AF Sazhin and LF Artigas unpubl.)

Dilution experiments were performed and analyzed as decribed in Nejstgaard et al. (2001). SpeciWc phytoplankton growth rate (�),
microzooplankton grazing coeYcient (g), grazing impact (percentage of average standing stock removed d¡1 ). §SE for the mean.
* p < 0.05, ** p < 0.01, and *** p < 0.001 for � or g = 0. Prey types are given with equivalent spherical diameter size ranges (�m)

Date Prey type (�m) r2 � (d¡1) G (d¡1) Grazing impact 
(% SS d¡1)

Apr 2003 Chl a (>0.45) 0.58 0.24 § 0.07** 0.61 § 0.14 *** 46

Diatoms (5-99) 0.45 1.34 § 0.18*** 1.24 § 0.40** 71

Phaeocystis (2-8) 0.04 0.08 § 0.16 ns 0.21 § 0.30 ns 19

May 2004 Chl a (>0.45) 0.13 ¡1.17 § 0.12*** 0.18 § 0.18 ns 17

Diatoms (5-99) 0.18 0.16 § 0.09 ns 0.19 § 0.13 ns 18

Phaeocystis (2-8) 0.04 ¡1.14 § 0.20 *** ¡0.23 § 0.34 ns 0
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diVering in size and morphology have been described
(Kornmann 1955; Peperzak et al. 2000). The ecologi-
cal roles of these diVerent cell types are largely
unknown, partly due to diYculties in the identiWca-
tion and quantiWcation of the Xagellated cell type in
Weld samples (Rousseau et al. 1994; Peperzak et al.
2000; Schoemann et al. 2005; Rousseau et al. this
volume). A recent study showed that the grazing mor-
tality of single cells may depend on the cell type, with
moderate to high ingestion by Temora longicornis
nauplii on non-Xagellated cell types, but rejection of a
Xagellate type (Dutz and Koski 2006). This rejection
was ascribed to the production of chitinous threads
and the cohesion of threads into pentagonal star-like
structures which are a typical feature of mesoXagel-
lates (Chretiennot-Dinet et al. 1997; Peperzak et al.
2000).

The variable cell-type-speciWc grazing mortality of
P. globosa oVers important insight into the natural
history of this phytoplankton species. Although Xag-
ellated and non-Xagellated cell types co-occur
throughout the year, blooms of Phaeocystis in tem-
perate waters are generally dominated by the colonial
cell type and by colonies (Peperzak et al. 2000; Rous-
seau et al. this volume). At the end of such blooms,
single cells are released from the colonies presumably
due to nutrient deWciency or irradiance limitation. The
liberated cells appear to suVer a high mortality due to
microzooplankton grazing, cell lysis and/or perhaps
sedimentation (van Boekel et al. 1992; Brussaard
et al. 1995; Riebesell et al. 1995; Brussaard et al. this
volume; Reigstad & Wassmann this volume). Con-
current to the liberation and disappearance of single
cells, an increasing abundance of micro/mesoXagel-
lates has been observed in mesocosms and in the Weld
(Veldhuis et al. 1986; Peperzak et al. 2000; Escara-
vage et al. 1995; Nejstgaard et al. 2006). The forma-
tion of intracolonial Xagellated cells may bridge the
disappearance of colonial cells and the appearance of
Xagellated cells (Peperzak et al. 2000). These haploid
micro/mesoXagellates probably function as gametes
or spores to survive unfavourable conditions during
the warm summer months (Veldhuis et al. 1986;
Peperzak et al. 2000). Reduced vulnerability of these
cells to microzooplankton grazing could explain the
accumulation of single Xagellated cells despite a high
grazing pressure at the end of Phaeocystis blooms,
and be part of these phytoplankters’ strategy to
increase survival and foster bloom formation when

favorable conditions return. Future studies should
investigate the relevance of cell type- and life-stage-
speciWc selection on wider range of zooplankton
organisms.

Colony formation and its potential role
in morphological defense

The presence of the two distinctly diVerent morpho-
types in Phaeocystis has long intrigued scientists, and
much remains unknown about their respective biolog-
ical roles and regulation of transition between mor-
photypes (Rousseau et al. 1994; Lancelot et al. 1998;
Rousseau et al. this volume). The prevalence of both
morphotypes in natural Phaeocystis blooms in con-
trasting water types prompts the idea that Phaeocystis
colony development is regulated by common factors
(Lancelot and Rousseau 1994) and contributes to the
success of the genus in marine systems (Rousseau
et al. 1994; Lancelot et al. 1998; Rousseau et al. this
volume). The production of the mucilaginous struc-
ture represents a substantial energy investment by the
cells; the mucilaginous matrix may account for >50%
of the total organic carbon of a Phaeocystis popula-
tion (Rousseau et al. 1990; Mathot et al. 2000). The
large colony size may also pose a problem of diVu-
sion limitation to nutrient and oxygen uptake,
although a modeling study shows that the colonies are
unlikely to be limited by diVusion (Ploug et al. 1999).
Thus, compared to solitary Phaeocystis cells, it is
likely that the formation of colonies involves some
additional costs, but that the drastic increase in size
may be an eVective defense mechanism against (rela-
tively) small grazers, not unlike the highly successful
freshwater colonial chlorophyte Scenedesmus (Lür-
ling 2003; e.g., Lürling and Van Donk 1997), cyano-
bacteria Microcystis aeruginosa and Sphaerocystis
sp. (e.g., De Bernardi and Giussani 1990), and for
diVerent copepods feeding on the large colony-form-
ing diatom Thalassiosira partheneia (Schnack 1983).

Some studies suggest that microzooplankton prefer
and perform better on single cells than on colonies.
When incubated with a mixture of Phaeocystis glob-
osa single cells and colonies, microzooplankton
reduced the single cells to very low abundance, and
the grazer population subsequently declined even
when colonies were abundant, presumably due to
starvation (Jakobsen and Tang 2002). When restricted
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to a single diet of either single cells or colonies, the
ciliate Euplotes grew three times faster on single cells
(Long 2004). In contrast, the copepod Acartia tonsa
and mixed mesozooplankton had higher feeding rates
on colonies compared to single cells (Long and Hay
2006). The diVerential susceptibility of morphologies
to grazers could allow Phaeocystis to use transforma-
tions as an adaptive, inducible response towards graz-
ers. Two recent studies tested the role of chemical
cues for inducing transformations using either incuba-
tors separated by a permeable membrane (Tang 2003)
or Wltrate experiments (Long 2004). In one study
chemical cues from grazers triggered colony enlarge-
ment (Tang 2003). In the other study microzooplank-
ton cues enhanced colony formation while cues from
macrozooplankton suppressed colony formation
(Long 2004). These observations point to the involve-
ment of a grazing-related chemical signal in morpho-
logical defense, but the chemical characteristics of
this signal remain unknown (Long and Hay 2006;
Tang 2003). Colony formation by Phaeocystis could
aVect grazing even after the demise of a bloom. For
example, the degrading colony matrix, making the
surrounding water gelatinous, may continue to pre-
vent grazing losses of single cells by microzooplank-
ton (Seuront et al. this volume), and similarly,
transparent exopolymer particles formed by coagula-
tion of colony-derived carbohydrates could also
inhibit copepod grazing (Dutz et al. 2005).

Chemical defense

Macroalgae commonly use chemical defense against
grazers (Hay and Fenical 1988; Pohnert 2004), and
similar examples may exist in phytoplankton (see
review by Pohnert 2004; and further examples in
Yoshida et al. 2004; Pohnert 2005). A few observa-
tions suggest that chemical defense could be impor-
tant for survival of Phaeocystis during exponential
growth (Weisse et al. 1994; Estep et al. 1990; Long
and Hay 2006). Recently, a number of toxins have
been isolated from Phaeocystis (reviewed by van
Rijssel et al. this volume), and Phaeocystis is report-
edly toxic to some aquatic organisms, including phy-
toplankton, sea urchin and cod larvae (Table 2).
However, speciWc chemical zooplankton feeding
deterrents from Phaeocystis have not yet been iso-
lated and characterized so their existence is still

hypothetical. Several of the reported toxic eVects
were obtained using organisms (or even extracts) that
do not interact in nature, and the ecological relevance
of such results is unknown.

Does DMS aVect grazing on Phaeocystis?

Phaeocystis is a prominent producer of the secondary
metabolite dimethylsulphoniopropionate (DMSP)
that can be enzymatically cleaved to acrylate and the
volatile trace gas dimethyl sulphide (DMS; Keller
et al. 1989; Schoemann et al. 2005; Stefels et al. this
volume). DMSP is a multifunctional compound that
probably assists several physiological processes
related to salinity-, temperature- and light-stress in
algal cells (Stefels 2000). This compound and its
cleavage products have also been suggested to func-
tion as grazing deterrents (Strom et al. 2003; Wolfe
et al. 1997) and it is possible that they provide a com-
petitive advantage to Phaeocystis when non-DMSP-
producing alternative prey are available to potential
predators. Microzooplankton grazing greatly
increases the production of DMS in Emiliania huxleyi
(Wolfe and Steinke 1996) and microzooplankton are
suspected to have caused the conversion of Phaeocys-
tis-DMSP to DMS in the southern North Sea (Archer
et al. 2003). The grazing-induced production of DMS
may be analogous to the production of volatile info-
chemicals during herbivore grazing on terrestrial
plants that utilize such trace gases to attract carni-
vores (Dicke and Sabelis 1988; Steinke et al. 2002;
Hay et al. 2004). Such indirect defense mechanisms
involve interactions on three trophic levels that
include plants, herbivores and carnivores. Seabirds
are attracted by gradients of DMS in the atmosphere
(Nevitt et al. 1995; Nevitt and Bonadonna 2005), and
copepods are chemosensitive to DMS and react with
search behavior when encountering plumes of this
compound (Steinke et al. 2006). If DMS produced
during grazing makes the microzooplankton grazers
more susceptible to predation by copepods, then
investment into such an indirect defense mechanism
could be beneWcial for the phytoplankton.

However, the ecological consequences of the
production of DMS and associated compounds are
controversial and explicit tests of possible defensive
functions for Phaeocystis are required. For example,
Tang and Simó (2003) did not observe negative
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eVects when the heterotrophic dinoXagellate Gyrodi-
nium dominans grazed on P. globosa single cells, and
the grazers retained >40% of the ingested DMSP.
Furthermore, the grazing-induced production of DMS
by unicellular phytoplankton is a result of grazing on
individual cells and, as a consequence, these ingested
cells will not directly beneWt from the potential sig-
naling to carnivorous enemies of the microzooplank-
ton. It is possible that such indirect defense
mechanisms are beneWcial for Phaeocystis popula-
tions but they would also be of beneWt to other mem-
bers of the phytoplankton community that may not
invest in chemical defenses (the cheater problem:
Lewis 1986). One may argue that the cheater problem
does not exist within a bloom of genetically closely
related cells. However, molecular studies have shown
that the genetic variation in phytoplankton popula-
tions is high, even within a monospeciWc diatom
bloom (Rynearson and Armbrust 2005). It is impossi-
ble to predict functional diversity from such molecu-
lar data and there is very little information on the
eVect of genetic variation on the ecophysiological
Wtness in Phaeocystis.

Evidence is accumulating that chemical communi-
cation inXuences the composition and dynamics of
pelagic communities (Pohnert 2004). The production
of DMSP in Phaeocystis is probably only one exam-
ple where a secondary metabolite beneWts the physi-
ology of individual cells and its catabolic products
could aVect the structure and function of Phaeocystis-
dominated food webs. This is a complex research area
that needs to be addressed with more detailed studies
in the future.

Does nutritional value aVect grazing on 
Phaeocystis?

Copepods may feed selectively based on nutritional
quality of the prey (e.g., Houde and Roman 1987).
However, it is not clear how food quality of the diVer-
ent forms of Phaeocystis aVects zooplankton grazing.
It has been suggested that Phaeocystis spp. are of low
nutritional value due to their low content of polyun-
saturated fatty acids (PUFA) (Al-Hasan et al. 1990;
Claustre et al. 1990; Rogers and Lockwood 1990;
Nichols et al. 1991; Cotonnec et al. 2001; Tang et al.
2001; Turner et al. 2002). This contrasts with the high
survival and development rates observed in other

studies (Verity and Smayda 1989), at least for some
strains of P. globosa (Dutz and Koski 2006). High
amounts of C18-PUFA were detected in a P. globosa
bloom in the North Sea (Hamm and Rousseau 2003)
and in a P. pouchetii bloom in Balsfjorden in northern
Norway (Hamm et al. 2001). The mucus produced by
colonies is generally considered to be of low nutri-
tional value, refractory (Thingstad and Billen 1994),
and of low carbohydrate content (van Rijssel et al.
1997). However, the composition of the mucus mate-
rial may vary during a bloom cycle (Alderkamp et al.
2006), and colonization of this material by pennate
diatoms and other organisms on and inside older colo-
nies (Hamm and Rousseau 2003; Sazhin et al. this
volume) may increase its nutritional value. Besides
PUFA and carbohydrates, the eVects of other impor-
tant nutritional components of Phaeocystis such as
amino acids, sterols and vitamins, on copepod feeding
and reproduction are still poorly known.

Survival of gut passage?

Some phytoplankton can survive gut passage, a trait
that is often overlooked in zooplankton studies. For
instance, large fractions of the chlorophytes Chla-
mydomonas reinhardtii and Selenastrum capricornu-
tum survive passing the guts of Daphnia. This is
considered a defense mechanism by the algae to
reduce grazing pressure when their growth rates are
low (van Donk et al. 1997). Further, the colonial chlo-
rophyte Sphaerocystis schroeteri survives gut passage
in Daphnia and beneWts from grazer-released nutri-
ents. This interaction is hypothesized to aVect bloom
formation in this species (Porter 1976). If cells of
Phaeocystis may survive gut passage of zooplankton,
this would have signiWcant implications for the under-
standing of the grazing interactions. Because, net
removal rates of the prey from the population will
decrease, and if cells may produce defense chemicals
upon predation and surviving gut passage it would
aVect the chemical antipredatory mechanisms sug-
gested above. But, to our knowledge there are no such
studies for Phaeocystis or any other haptophyte phyto-
plankton. However, small intact colonies of P. pouch-
etii have been observed Xuorescing inside copepod
pellets in the Barents Sea (P. Verity and P. Wassmann,
personal communication) suggesting that surviving
gut passage might be possible for Phaeocystis.
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Conclusions and future challenges

Although over 100 publications have examined zoo-
plankton grazing on Phaeocystis spp., more than 90%
report on copepods or other crustacean grazers, so
quantitative data for other grazers are limited. Graz-
ing on Phaeocystis was often determined by feeding
on only single types of cultured phytoplankton in the
laboratory. Field reports often do not provide enough
information to evaluate even some of the most basic
factors known to aVect zooplankton grazing simulta-
neously, such as predator-to-prey size ratio, food con-
centration and feeding rates on alternative prey.
Further, most reports on crustacean grazing in the
Weld are based on non-prey-speciWc grazing estima-
tions such as bulk gut pigments, that cannot be used to
determine speciWc feeding on Phaeocystis in the
mixed natural plankton assemblages.

Nevertheless, our analysis of the present literature
suggests that: (1) laboratory-derived crustacean graz-
ing rates on monocultures of Phaeocystis may have
been overestimated compared to feeding in natural
plankton communities, and should be treated with
caution; (2) formation of colonies by P. globosa
appeared to reduce predation by small copepods (e.g.,
Acartia, Pseudocalanus, Temora and Centropages),
whereas large copepods (e.g., Calanus spp.) were
able to feed on colonies of Phaeocystis pouchetii; (3)
physiological diVerences between diVerent growth
states, species, strains, cell types, and laboratory cul-
ture versus natural assemblages may explain most of
the variations in reported feeding rates; (4) chemical
signaling between predator and prey may be a major
factor controlling grazing on Phaeocystis; (5) it is
unclear to what extent diVerent zooplankton, espe-
cially protozooplankton, feed on the diVerent life
forms of Phaeocystis in situ.

In the present literature there is a dichotomy
between data showing high feeding rates on both sin-
gle cells and colonies of Phaeocystis pouchetii by
larger copepods, especially in the laboratory studies,
and avoidance of colonies of Phaeocystis globosa by
other smaller copepods in the Weld. This imbalance in
basic quantitative data could initially be remedied by
applying classical bottle incubation methods with a
range of predators, preferably using natural plankton
in situ, analyzed with methods that resolve the feed-
ing rates on the diVerent life forms (and prey sizes) of
diVerent species of Phaeocystis from alternative prey

types. Such analyses could be done by microscopy
(Verity and PaVenhöfer 1996; Båmstedt et al. 2000)
corrected for food web cascades (Nejstgaard et al.
2001), and/or possibly analyzed by a combination of
more recent methods such as Xow cytometry (Collier
and Campbell 1999; Jonker et al. 2000), computer/
video-aided plankton counting devices (See et al.
2005), and speciWc molecular probing (Caron 2005)
to increase the taxonomic precision. However, the
ability of chemical cues to rapidly alter colony forma-
tion indicates that grazing estimates based on cell
counts could grossly misrepresent actual grazing
rates.

For example, zooplankton grazing may induce or
suppress colony formation and enlargement (Tang
2003; Long 2004; Long and Hay 2006), and accumu-
lating data suggests that chemical signaling between
diVerent levels of predators of prey can play an
important role inXuencing the dynamics in pelagic
communities (e.g., reviewed by Pohnert 2004; Yosh-
ida et al. 2004). This suggests that chemical signaling
in artiWcially increased grazer densities over long
incubations could confound data from bottle experi-
ments by changing the relative abundance of diVerent
life forms in the grazing bottle due to factors other
than direct ingestion of the cells. Further, recent
results suggesting that feeding on Phaeocystis may
even be cell type- or life-stage-speciWc (Dutz and
Koski 2006), and that new methods accounting for
such diVerences are necessary.

Thus, the ideal way to assess feeding on Phaeo-
cystis would be a direct quantiWcation of feeding
rates on speciWc prey by assessing individual preda-
tors that have been feeding undisturbed in situ.
Molecular quantitative analysis of the prey in the
guts and faecal pellets of the predators could poten-
tially achieve this. Such approaches are already com-
mon in studies of e.g., terrestrial arthropods
(Sheppard and Harwood 2005; Symondson 2002),
and it has been shown that prey DNA from hapto-
phyte phytoplankton can be detected in copepod guts
and fecal pellets by standard polymerase chain reac-
tion (PCR) targeting 18S ribosomal DNA (Nejstg-
aard et al. 2003). More recently, it was also shown
that carnivorous diet may be inferred from the con-
tent of copepod fecal pellets using standard PCR
(Vestheim et al. 2005), and that diVerent phytoplank-
ton DNA, including Phaeocystis, may be quantiWed
in guts and fecal pellets from both appendicularians
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and copepods using quantitative real-time PCR
(Nejstgaard et al. 2005; Troedsson et al. 2007).

Thus the rapidly developing molecular approaches
may help us obtain more-realistic ingestion rates of
Phaeocystis and other live prey in situ. However, to
further reveal and quantify mechanisms controlling
the complex trophic interactions between Phaeocystis
and its predators, new approaches need to be devel-
oped. In concert with the recent review by Pohnert
(2004) we conclude that such development will prob-
ably be as complex as the interactions it tries to
reveal. Developing successful innovative approaches
and better quantitative analytical tools will depend
largely upon multidisciplinary eVorts between chem-
ists, molecular biologists and plankton ecologists.
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