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Live, attenuated Oka/Merck varicella-zoster virus (VZV) vaccine (zoster vaccine) protects immunocompetent adults from

herpes zoster and its complications. Success of zoster vaccine in preventing the clinical manifestations of latent VZV reac-

tivation contrasts with the failure to achieve similar results with vaccination to prevent recurrent herpes simplex. This reflects

major differences in the pathophysiology of latency and reactivation of these 2 alphaherpesviruses. The Shingles Prevention

Study and many others have demonstrated that VZV-specific cell-mediated immunity, but not VZV antibody, plays a critical

role in limiting reactivation and replication of latent VZV and, thus, in preventing herpes zoster and its complications.

Consequently, induction of VZV-specific cell-mediated immunity and not antibody should be used as a proxy for the clinical

efficacy of new formulations and uses of zoster vaccine. Prospects for improved zoster vaccines and their use in immuno-

compromised patients are discussed, and questions related to zoster vaccine use are addressed.

BACKGROUND

Natural history and epidemiology. Varicella-zoster virus

(VZV) causes 2 distinct diseases [1–4].

Primary VZV infection causes varicella (ie, chickenpox), a

highly contagious febrile illness characterized by a generalized

pruritic vesicular rash. In the United States (before widespread

varicella vaccination), varicella occurred predominantly in chil-

dren, with annual epidemics in winter and spring. Conse-

quently, 199% of US adults aged �40 years are now immune

to VZV [5]. One episode of varicella results in lifelong immu-

nity to the disease, and second episodes are rare, even among

immunocompromised patients [6–10].

Herpes zoster (ie, shingles) is a disease of the sensory gan-

glion, nerves, and skin caused by reactivation and replication

of VZV that has remained latent in sensory neurons after var-

icella. Herpes zoster is characterized by unilateral radicular pain

and a vesicular rash generally limited to a single dermatome,

corresponding to the sensory ganglion in which latent VZV

reactivated [11]. Segmental neuralgia, with pain and paresthesia

in the involved dermatome, often precedes the herpes zoster

rash by several days and occasionally by �1 week. This presents
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a diagnostic dilemma, because herpes zoster cannot be clinically

diagnosed until the characteristic rash appears [11]. Pain usu-

ally accompanies the rash, and neuropathic pain and discomfort

(eg, allodynia and severe pruritus) may persist for weeks,

months, or even years after the rash has healed, a debilitating

complication known as postherpetic neuralgia (PHN). Herpes

zoster is sporadic without seasonal prevalence, but its frequency

and severity increase with age [12–17]. In the United States,

the incidence of herpes zoster exceeds 1% per year among

persons �60 years of age. More than 1 million new cases occur

each year, and one-third of the current US population will

experience herpes zoster during their lifetime—figures destined

to increase with the increasing age of the population [16–19].

VZV. VZV, like herpes simplex virus (HSV), is an alpha-

herpesvirus [20]. The VZV genome is smaller than that of HSV,

but most VZV genes have HSV homologs. Nevertheless, the 2

viruses differ markedly in their biology and the pathophysiology

of latency and reactivation [21–23], resulting in significant clin-

ical and epidemiological differences with important implica-

tions for disease control and prevention.

The genomes of many wild-type strains of VZV, the atten-

uated Oka vaccine strain, and its wild-type Oka parent have

been sequenced [22, 24–28]. Although there is only 1 VZV

serotype, there are multiple genotypes that display geographic

segregation, as well as recombination [25–29].

The live, attenuated Oka VZV vaccine. The Oka strain of

VZV was isolated from a healthy Japanese child with varicella

and attenuated by serial passage in cell culture (Table 1). Clin-

ical studies in Japan and the United States demonstrated the

safety, immunogenicity, and clinical efficacy of Oka vaccine in
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Table 1. Live, Attenuated Oka Varicella-Zoster Virus (VZV) Vaccines

Characteristic Description References

History The Oka strain of VZV was isolated from a healthy Japanese child

with varicella and attenuated by serial passage at 34�C in hu-

man and guinea pig cells

[30–32]

Properties Mixture of genotypically distinct VZV strains [24, 33–40]

Forty-two SNPs distinguish the Oka vaccine from the wild-type

Oka parent strain of VZV

Twenty of the 42 SNPs specify amino acid changes

Although each is genotypically unique, all strains of VZV in the

Oka vaccine share a subset of the 42 SNPs

Three SNPs (at positions 106262, 107252 and 108111 in open

reading frame 62, which encodes a transactivator of viral genes

required for VZV replication) distinguish the Oka vaccine from all

wild-type strains of VZV

Differences in strain content are observed among Oka vaccines

produced by different manufacturers and even between differ-

ent batches from the same manufacturer

Varicella vaccine Clinical studies in Japan demonstrated the safety, immunogenicity

and clinical efficacy of Oka vaccine, which protected susceptible

immunocompetent and immunocompromised children against

varicella, even when administered shortly after exposure

[41–62]

Vaccine virus establishes latency and reactivates to cause HZ, but

at a lower frequency than wild-type VZV

Oka vaccine also boosted VZV-specific cell-mediated immunity in

immunocompetent and immunocompromised adults

In the United States, the safety and efficacy of Oka vaccine was

documented in healthy children and adults and in several groups

of immunocompromised children and adolescents

Varicella vaccine (Varivax; Merck) was licensed by the FDA in

1995

Routine childhood vaccination has markedly reduced the incidence

of varicella in the United States

Zoster vaccine Same preparation of live, attenuated Oka/Merck VZV as used in

varicella vaccine

[18, 63]

Minimum potency at least 14 times greater than that of varicella

vaccine (higher potency is necessary to induce a significant in-

crease in VZV-specific cell-mediated immunity in older adults,

who are already immune to varicella)

Zoster vaccine safety and efficacy The Shingles Prevention Study demonstrated the safety and effi-

cacy of zoster vaccine in immunocompetent adults �60 years

of age: reduced the burden of illness caused by HZ by 61% (Ta-

ble 3); reduced the incidence of HZ by 51% (Table 3); reduced

the incidence of clinically significant postherpetic neuralgia by

67% (Table 4); and neither caused nor induced HZ

[18, 19, 63–66]

(Merck, per-

sonal

communica-

tion)

Zoster vaccine (Zostavax; Merck) was licensed by the FDA in

2005

Recommended for routine use in immunocompetent adults aged

�60 years

As of March 2010, ∼6 million doses have been distributed in the

United States, sufficient to immunize ∼12% of the population of

�60 year-old persons for whom it is recommended

Recent developments Genetic analysis of VZV Oka strains isolated from vaccine-associ-

ated rashes and cases of HZ may help identify specific SNPs

that differentiate Oka vaccine from wild-type strains of VZV, and

which contribute to the attenuation of the vaccine and the path-

ogenicity of wild-type VZV

[62, 67–78]

NOTE. FDA, US Food and Drug Administration; HZ, herpes zoster; SNP, single nucleotide polymorphism.
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immunocompetent and immunocompromised children and

adults (Table 1). Oka vaccine also boosted VZV-specific cell-

mediated immunity (VZV-CMI) in immunocompetent and im-

munocompromised adults (Table 1). Routine childhood im-

munization has markedly reduced the incidence of varicella in

the United States [59–62].

Live, attenuated Oka vaccines consist of a mixture of distinct

VZV genotypes, which share several nucleotide substitutions

that distinguish them from all wild-type strains of VZV (Table

1). Differences in strain content are observed among Oka vac-

cines produced by different manufacturers, and even among

different batches from the same manufacturer (Table 1). This

underlines the importance of genotyping VZV strains from

vaccine-associated illnesses, including herpes zoster.

Pathogenesis. During primary infection, VZV, like HSV,

establishes lifelong latent infections in sensory neurons without

ganglionic pathology, likely by centripetal axonal transport

from mucocutaneous sites of virus replication. In varicella, in-

fection at the oropharyngeal portal of entry is silent; VZV in-

fects tonsillar T cells, which transport virus to the skin, where

innate immune responses delay VZV replication and rash for-

mation (Table 2). Latent infection of sensory neurons is estab-

lished by retrograde axonal transport from lesions in the skin

or by infected T cells that reach the sensory ganglia hemato-

genously (Table 2). There are also major differences between

VZV and HSV in the nature and control of latency and re-

activation that have important implications for the develop-

ment of effective preventive measures (Table 2).

During VZV latency, a restricted set of immediate early and

early VZV genes are transcribed and the corresponding proteins

are synthesized in latently infected neurons (Table 2). During

HSV latency, transcription is restricted to latency-associated

transcripts (LATs); no HSV proteins are synthesized (Table 2).

In VZV latency, symptomatic reactivation is infrequent, and

there is no evidence that asymptomatic virus shedding con-

tributes to VZV transmission. VZV reactivation results in a

productive lytic infection that spreads within the ganglion, in-

fecting and destroying many neurons (Figure 1 and Table 2).

Consequently, the herpes zoster rash usually involves a large

portion of the dermatome, and ganglionic pathology results in

severe prodromal pain, sensory abnormalities, and PHN. It is

not known whether VZV-CMI can prevent reactivation of latent

VZV. However, subsequent replication and spread of VZV

within the ganglion provides ample opportunity for VZV-CMI

to inhibit the process before the development of herpes zoster

(Table 2 and Figure 1).

HSV reactivation is frequent, with frequent virus shedding

from sensory nerve endings at the dermal-epidermal junction.

The small area of epithelium involved, usually limited to the

sensory field of a single neuron, indicates that reactivation is

restricted to individual neurons (Figure 1). The high frequency

of recurrences without sensory loss or PHN indicates that HSV

reactivates repeatedly without permanently damaging or de-

stroying the latently infected neuron, or causing ganglionic pa-

thology (Table 2 and Figure 1). In contrast to VZV, multiple

symptomatic HSV recurrences occur in immunocompetent per-

sons, and asymptomatic shedding is frequent, playing a major

role in HSV transmission (Table 2).

RATIONALE FOR A VACCINE AGAINST HERPES

ZOSTER

On the basis of his observation that the frequency and severity

of herpes zoster and PHN increase with advancing age, Hope-

Simpson [12] hypothesized that immunity to VZV, induced by

varicella, prevents the development of herpes zoster. He further

hypothesized that this immunity gradually decreases over time,

but is periodically boosted by exogenous exposure to varicella

and by subclinical reactivations of endogenous latent VZV that

are contained by host immunity. Eventually, however, VZV

immunity falls below some critical level, permitting latent VZV

to reactivate, proliferate within the sensory ganglion, and cause

herpes zoster. Noting the relative rarity of second episodes of

herpes zoster, Hope-Simpson concluded that virus replication

during herpes zoster boosted immunity to VZV, effectively im-

munizing against a second episode. He calculated that 50% of

persons who lived to 85 years of age would experience an

episode of herpes zoster, but only 1% would experience another

episode. In the Shingles Prevention Study, there were only 2

second episodes of herpes zoster among the 642 placebo re-

cipients who developed herpes zoster [18], indicating that the

risk of developing a second episode of herpes zoster was at

least 10-fold lower than the risk of developing the first episode.

When Hope-Simpson formulated his remarkable hypothesis,

CMI and humoral immunity were not clearly differentiated,

but we now recognize that the essential component responsible

for protection against herpes zoster is VZV-CMI, which declines

progressively with advancing age. It thus seemed possible that

if we could mimic the boost in VZV-CMI induced by herpes

zoster with a VZV vaccine, we might be able to protect older

adults from herpes zoster and PHN.

THE CHALLENGE OF VACCINATING

AGAINST HERPES ZOSTER

Varicella vaccine, like other vaccines against common child-

hood viral diseases, such as measles, mumps, and rubella, is

administered to susceptible persons prior to exogenous expo-

sure to the virus, inducing immunity that prevents primary

infection and disease. We expect such vaccines to have �95%

efficacy and induce herd immunity.

Vaccination against herpes zoster is directed at persons who

have already experienced primary VZV infection in whom dis-

ease prevention requires changing the host-virus relationship.
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Figure 1. Herpes simplex virus (HSV) and varicella-zoster virus (VZV) latency and reactivation in the sensory ganglion. Neurons with black nuclei

are latently infected. Red indicates reactivation and, in the case of VZV, spread of infection within the ganglion.

Zoster vaccine acts by boosting declining levels of preexisting

CMI to VZV in older adults, thereby reducing the frequency

and severity of a disease caused by reactivation and multipli-

cation of endogenous latent VZV. We do not expect vaccines

against such endogenous infections to approach 95% efficacy

or to induce herd immunity. The natural history of herpes

zoster described by Hope-Simpson [12] provides a model for

successful “vaccination” of older adults against herpes zoster

[138]. There is no comparable natural resistance to recurrent

herpes simplex, which occurs repeatedly in immunocompetent

persons [21, 23, 79–81, 145, 146].

EVIDENCE OF EFFICACY: EARLY STUDIES

Oka strains of live, attenuated VZV vaccine have been shown

to boost VZV-CMI in older adults (Table 1). In addition, heat-

inactivated Oka VZV vaccines were shown to boost VZV-CMI

and reduce the frequency and severity of herpes zoster in bone

marrow transplant recipients [155, 156]. These and Hope-

Simpson’s [12] seminal observations provided the impetus for

a large-scale efficacy trial of live, attenuated Oka/Merck VZV

vaccine (zoster vaccine) in older adults, the VA Cooperative

Study 403: “The Shingles Prevention Study.”

THE SHINGLES PREVENTION STUDY

Preliminary studies. Pain, the major cause of herpes zoster’s

morbidity in older persons, is subjective. Consequently, herpes

zoster–specific assessment tools, the Zoster Brief Pain Inventory

and Zoster Impact Questionnaire, were developed and validated

to quantify pain and discomfort (eg, allodynia and severe pru-

ritus) due to herpes zoster and to assess the impact of herpes

zoster on activities of daily living and health-related quality of

life [157, 158]. It was also necessary to accurately diagnose mild

and atypical cases of herpes zoster, both to guarantee a valid

natural history study among placebo recipients and to avoid

biasing the study in favor of zoster vaccine by missing cases of

modified herpes zoster among vaccine recipients [159]. Prelim-

inary studies were conducted to establish the safety and im-

munogenicity of higher doses of Oka vaccine, select a dose that

would boost VZV-CMI with minimal side effects, and verify

its safety and efficacy in older subjects with the common co-

morbidities of diabetes mellitus and chronic obstructive pul-

monary disease.

The Shingles Prevention Study. The Shingles Prevention

Study was a placebo-controlled, double-blind trial in which

38,546 adults aged �60 years were randomized to receive either

Oka/Merck VZV vaccine (zoster vaccine) or placebo. Random-

ization was stratified by study site and age group (60–69 vs

�70 years of age). Subjects were actively observed for herpes

zoster with the aid of an automated telephone response system.

Details of the study design were published elsewhere [18, 63].

The primary end point was the burden of illness due to herpes

zoster (HZ BOI), a severity-by-duration measure representing
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the total herpes zoster–associated pain and discomfort in a

population of subjects. The secondary end point was the in-

cidence of clinically significant PHN. The incidence of herpes

zoster was also determined. Minimum potency of zoster vaccine

used in the Shingles Prevention Study was at least 14 times the

minimum potency of varicella vaccine [18].

Results. Zoster vaccine reduced the HZ BOI by 61.1%, the

incidence of PHN by 66.5%, and the incidence of herpes zoster

by 51.3% (Table 3). Zoster vaccine also reduced the negative

impact of herpes zoster on activities of daily living and health-

related quality of life to a degree comparable to its reduction

in HZ BOI (Figure 2) [160, 161], providing independent evi-

dence that HZ BOI is a valid measure of the total adverse impact

of herpes zoster on the older adults in the Shingles Prevention

Study.

In the younger age stratum, most of the benefit of zoster

vaccine resulted from a reduction in the incidence of herpes

zoster. In the older age stratum, much of the benefit of zoster

vaccine resulted from a reduction in the severity of the disease

and in the incidence of PHN (Table 4). However, because of

the greater incidence and severity of herpes zoster and PHN

in the older age stratum, the absolute benefit of zoster vaccine

was greater in these older subjects.

Zoster vaccine was well tolerated and neither induced nor

caused herpes zoster [18, 63]. A more detailed analysis of ad-

verse events confirmed the safety of zoster vaccine in the entire

Shingles Prevention Study population, including subjects �80

years of age [64]. Zoster vaccine was also safe and well tolerated

when administered to 384 placebo recipients who had docu-

mented herpes zoster during the Shingles Prevention Study (M.

N. Oxman, G. R. Johnson, M. J. Levin, Shingles Prevention

Study Group; unpublished data).

Long-term follow-up of a subset of Shingles Prevention

Study vaccine recipients continues to determine the duration

of zoster vaccine efficacy. Results to date indicate that efficacy

is maintained for at least 6 years after vaccination [162].

LABORATORY CORRELATES OF CLINICAL

EFFICACY

In the Shingles Prevention Study, analysis of immune responses

at baseline demonstrated that the previously well-documented

age-related decline in VZV-CMI continued in our older Shin-

gles Prevention Study population, and confirmed that levels of

VZV antibody did not decline with age (Table 5 and Figure 3).

The VZV-CMI responses to zoster vaccine 6 weeks after vac-

cination also decreased with age and were significantly lower

in the older age stratum. In contrast, there was no significant

difference in the VZV antibody response to zoster vaccine in

the 2 age strata [154].

Higher levels of VZV-CMI were associated with a reduced

risk of herpes zoster in both vaccine and placebo recipients.

Although VZV-CMI responses were clearly protective, no

threshold level providing protection from herpes zoster was

identified [154].

The results of the 2 assays of VZV-CMI (the responder cell

frequency assay and the interferon-g enzyme-linked immu-

nospot assay) were correlated with each other at baseline and

at all time points after zoster vaccine or placebo administration

(Spearman rank correlations, 0.38 to 0.61), whereas the levels

of antibody to VZV (measured by VZV glycoprotein enzyme-

linked immunosorbent assay) did not correlate with the results

of either VZV-CMI assay at any time point (Spearman rank

correlations, �0.05 to 0.13) [154]. This is not surprising, since

CMI and antibodies to VZV are induced by different VZV

epitopes [22, 149].

In Shingles Prevention Study subjects who developed herpes

zoster, higher levels of VZV-CMI at rash onset were associated

with reduced herpes zoster severity and decreased occurrence

of PHN, whereas increased levels of antibody to VZV correlated

with more severe herpes zoster and increased risk of PHN [163].

Of note, herpes zoster and zoster vaccine appeared to induce

similar levels of VZV-CMI [163].

The critical dichotomy in the roles of VZV-CMI and anti-

body to VZV is underlined by experience in immunocompro-

mised patients (Table 5). Diseases and treatments causing sig-

nificant decrements in VZV-CMI are associated with marked

increases in the incidence of herpes zoster and in herpes zoster

severity, and in the magnitude and duration of VZV replication

(Table 5). Substantial decrements in VZV-CMI are also asso-

ciated with multiple recurrences, chronic atypical cutaneous

lesions, cutaneous and visceral dissemination, and the selection

of VZV mutants resistant to antiviral agents [22, 190, 191]. In

contrast, congenital and acquired agammaglobulinemias are

not associated with increased risk or severity of herpes zoster

and its complications, and administration of antibody to VZV

does not ameliorate the marked increase in the frequency and

severity of herpes zoster in bone marrow allograft recipients

and other patients with severely compromised VZV-CMI (Ta-

ble 5).

THE FALLACY OF USING ANTIBODY TO VZV

AS A PROXY FOR ZOSTER VACCINE EFFICACY

The data summarized above and in Table 5 indicate that in-

creased levels of VZV-CMI provide protection against herpes

zoster and are associated with less severe disease and a lower

risk of PHN. Increased levels of antibody to VZV do not confer

protection against herpes zoster or PHN. In fact, increased

levels of antibody to VZV after the onset of herpes zoster are

associated with more severe disease and greater risk of PHN,

probably because they reflect more extensive VZV replication

[163]. Thus, the use of VZV antibody response as a proxy for

zoster vaccine efficacy is clearly unjustified.
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Figure 2. Zoster vaccine efficacy for herpes zoster (HZ) burden of ill-

ness (BOI) and activities of daily living (ADL) interference end points

among 38,501 subjects. AUC, area under the curve. From [160]

Therefore, in the absence of efficacy trials, decisions regard-

ing new zoster vaccine formulations and use should be based

on evidence of the induction of immune responses in humans

that are physiologically relevant to herpes zoster—namely,

VZV-CMI (Table 5). Attempts to assess the efficacy of vaccines

against herpes zoster using VZV antibody assays may provide

erroneous information.

POTENTIAL IMPROVEMENTS IN ZOSTER

VACCINES AND THEIR USE

Current recommendations. The Centers for Disease Control

and Prevention (CDC) Advisory Committee on Immunization

Practices (ACIP) recommends zoster vaccine for all persons

aged �60 years who have no contraindications, including per-

sons reporting a previous episode of herpes zoster or who have

chronic medical conditions [19]. However, in December 2009,

the US Food and Drug Administration approved a revision to

the Zostavax (Merck) package insert stating that “ZOSTAVAX�

and PNEUMOVAX 23� should not be given concurrently be-

cause concomitant use resulted in reduced immunogenicity of

ZOSTAVAX�” [192, p 1]. This unwarranted decision (the only

measure of immunogenicity was antibody to VZV measured

by VZV glycoprotein enzyme-linked immunosorbent assay)

[193] complicates efforts to follow CDC/ACIP recommenda-

tions to administer zoster vaccine to all persons �60 years of

age without contraindications [19].

Increased efficacy in immunocompetent persons. The cur-

rent zoster vaccine provides substantial protection against her-

pes zoster and PHN [18, 63], but a vaccine with greater efficacy

would be desirable. This might be accomplished by adminis-

tering �1 dose of a higher-potency vaccine [163, 194]. Safety

and tolerability of a zoster vaccine containing 18 times the

median potency of the zoster vaccine used in the Shingles Pre-

vention Study have been reported [195]. Other approaches

might include the design of live attenuated VZV vaccines that

selectively express or over-express epitopes that stimulate VZV-

CMI [149, 151], the incorporation of those epitopes into other

vectors, such as vaccinia, an attenuated cytomegalovirus vac-

cine, or yellow fever vaccines, and the use of toll-like receptor

ligands and cytokines as adjuvants.

Vaccination of immunocompromised patients. Oka vac-

cine is the most attenuated of all currently licensed live, atten-

uated virus vaccines, and it has been safely administered to

VZV-susceptible and VZV-seropositive children and adults, in-

cluding susceptible children with human immunodeficiency vi-

rus 1 (HIV-1) infection and leukemia [19]. The biology of

primary VZV infection provides an additional margin of safety

for zoster vaccine; even highly immunocompromised persons

with a history of natural varicella rarely develop a second ep-

isode when exposed to exogenous virus [6–11, 181, 183–185,

190]. Most cases presumed to be second episodes of varicella

in immunocompromised patients have been cases of dissemi-

nated herpes zoster, sometimes occurring before or in the ab-

sence of a typical dermatomal herpes zoster rash. Thus, it ap-

pears that the current zoster vaccine could be safely adminis-

tered to several groups of adult patients who are moderately

immunosuppressed, such as VZV-seropositive HIV-1 infected

patients with CD4+ T cell counts �200 cells/mL, or to patients

with rheumatoid arthritis or psoriasis receiving moderate doses

of methotrexate, corticosteroids, or tumor necrosis factor in-

hibitors [19, 196–199]. A trial of safety and immunogenicity

of zoster vaccine in HIV-1–infected patients who are receiving

antiretroviral therapy is underway, but studies involving other

immunocompromised patient populations are warranted. The

Oka vaccine strain of VZV is fully susceptible to acyclovir,

famciclovir, and valacyclovir; thus, effective antiviral therapy is

available if complications involving vaccine virus replication

occur.

Inactivated zoster vaccines for administration to immu-

nocompromised patients. Heat-inactivated VZV vaccine has

been safely administered to autologous bone marrow trans-

plant recipients, in whom it accelerated recovery of VZV-CMI

and reduced the occurrence of herpes zoster [155, 156]. En-

couraged by these results, several groups are exploring the de-

velopment of inactivated VZV vaccines, with and without ad-

juvants, to permit immunization of profoundly immunosup-

pressed patients.

SPECIAL CONSIDERATIONS

AND UNANSWERED QUESTIONS

Immunization with zoster vaccine before immunosuppression.

Administration of zoster vaccine is recommended 2 weeks (pref-

erably 4 weeks) before planned therapeutic immunosuppression
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Table 4. Efficacy of Zoster Vaccine for the Incidence of Postherpetic Neuralgia (PHN) in the Shingles Prevention

Study, by Duration of Pain after Onset of Herpes Zoster (HZ) Rash

Definition of PHN by

duration of pain

after HZ rash onset

Zoster vaccine Placebo

Zoster vaccine

efficacy, %

(95% CI)

No. of

confirmed cases

of HZ with PHN

Incidence of

PHN per 1000

person-years
a

No. of

confirmed cases

of HZ with PHN

Incidence of

PHN per 1000

person-years
a

130 days 81 1.39 196 3.39 58.9 (46.6–68.7)

160 days 45 0.77 113 1.96 60.4 (43.6–72.6)

190 days 27 0.46 80 1.38 66.5 (47.5–79.2)

1120 days 17 0.29 54 0.93 68.7 (45.2–83.0)

1182 days 9 0.16 33 0.57 72.9 (42.1–88.6)

NOTE. For the Shingles Prevention Study end point, postherpetic neuralgia (PHN) was defined as HZ-associated pain and discomfort

rated as �3, on a scale ranging from 0 (no pain) to 10 (pain as bad as you can imagine), using the Zoster Brief Pain Inventory, that

persisted or appeared more than 90 days after HZ rash onset. Efficacy analyses were performed with the use of a follow-up interval

that excluded the first 30 days after vaccination and the modified intention-to-treat population, which excluded persons who withdrew

or in whom a confirmed case of herpes zoster developed, within the first 30 days after vaccination. Of the 3 persons who developed

11 confirmed case of HZ, only the first case was included. For additional analyses, PHN was defined as HZ-associated pain and

discomfort rated as �3, on a scale ranging from 0 (no pain) to 10 (pain as bad as you can imagine), using the Zoster Brief Pain Inventory,

that persisted or appeared more than 30, 60, 120, or 182 days after the HZ rash onset. Used with permission from [18]. CI, confidence

interval.
a

The incidence of PHN in each treatment group (vaccine or placebo) was the weighted average of the observed incidence of PHN,

with weights proportional to the total number of person-years of follow-up.

[19]. Although the efficacy of zoster vaccine under these circum-

stances in unknown, the risk is minimal and the potential ad-

vantages obvious.

Administration of zoster vaccine to household contacts of

immunocompromised patients. Transmission of vaccine virus

from recipients of zoster vaccine to susceptible household con-

tacts has not been documented. Thus immunocompetent older

adults in contact with immunosuppressed patients should re-

ceive zoster vaccine to reduce the risk that they will develop

herpes zoster and transmit wild-type VZV to their susceptible

immunosuppressed contacts [19]. For the same reasons, adult

contacts of susceptible pregnant women and infants should

receive zoster vaccine [19]. Eligible residents and personnel in

nursing homes and other facilities housing older adults should

also be vaccinated against herpes zoster. However, VZV-sero-

negative persons (eg, health care workers from tropical coun-

tries who have not had varicella) should be vaccinated against

varicella.

Donation of blood and blood products by recipients of zoster

vaccine. There is little evidence of significant or prolonged

viremia following administration of zoster vaccine [19, 22].

Consequently, it should be considered safe for immunocom-

petent zoster vaccine recipients to donate blood and blood

products, including platelets, within 3–6 weeks after vaccina-

tion. The risk of transmitting vaccine virus is likely far lower

than the risk of reactivation and transmission of latent wild-

type VZV by older donors.

Administration of zoster vaccine to persons aged !60 years.

Currently, zoster vaccine is not licensed for persons aged !60

years [19, 192]. Nevertheless, zoster vaccine would almost cer-

tainly be safe and effective in persons aged !60 years [200],

although such persons might require a booster dose at a youn-

ger age than do persons who are vaccinated at �60 years of

age.

Effect on herpes zoster epidemiology of universal childhood

immunization with varicella vaccine. Recipients of varicella

vaccine have a substantially lower incidence of herpes zoster

than persons infected with wild-type VZV [201–204]. If this

persists throughout adulthood, recipients of varicella vaccine

may be expected to have a lower lifetime risk of herpes zoster

than persons who experienced natural varicella.

Second “breakthrough” episodes of varicella are not uncom-

mon in recipients of varicella vaccine, whereas they are very

rare in persons with a history of varicella caused by wild-type

VZV [59]. Thus, varicella vaccine recipients who later become

immunosuppressed may be susceptible to second episodes of

varicella.

If exogenous exposure to VZV is important in delaying the

age-dependent decline in VZV-CMI, we may expect an increase

in the incidence of herpes zoster in younger adults because

widespread vaccination against varicella will markedly reduce

their exogenous exposure to VZV. Since herpes zoster is less

severe in younger adults, this might reduce the total adverse

impact of herpes zoster in the population already latently in-

fected with wild-type VZV. However, if the protection against

second episodes of herpes zoster is not long lasting, the net

result could be many more second episodes of herpes zoster

in older adults. The answer to this complex set of related un-

knowns will only come from careful long-term epidemiological

observations of the sort that have been initiated by Jane Seward

and her colleagues at the CDC [19, 204]. The availability of
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Figure 3. Baseline levels of immunity to varicella-zoster virus in the Shingles Prevention Study. Varicella-zoster virus–specific immune responses

are shown at baseline (ie, prior to vaccination), according to age group. Error bars, 95% confidence intervals for the geometric mean. N, number of

subjects who had blood samples collected in the age group. P values for differences between age groups are shown below the graphs. Adapted from

[154]. ELISPOT, interferon-g enzyme-linked immunospot assay; gpELISA, VZV glycoprotein enzyme-linked immunosorbent assay; PBMC, peripheral blood

mononuclear cell; RCF, responder cell frequency.

effective zoster vaccines should enable us to mitigate any ad-

verse consequences of this changing epidemiology.

BARRIERS TO IMMUNIZATION OF OLDER

ADULTS WITH ZOSTER VACCINE

Need to maintain zoster vaccine at temperatures of 515�C

or lower. Lyophilized zoster vaccine must be maintained at

temperatures of �15�C or lower and reconstituted and ad-

ministered �30 min after removal from the freezer [19, 192].

This presents a significant problem, because physicians caring

for older adults often lack ready access to freezers. Fortunately,

a refrigerator-stable product appears to be on the horizon [205].

Additional barriers. There are a number of additional bar-

riers to immunization of older adults with zoster vaccine and

other recommended vaccines [206–211]. The most important

determinant is the health care provider’s attitude toward vac-

cination. If the provider recommends the vaccine, most patients

are vaccinated; if not, few are. Reasons for lack of provider

advocacy include doubts (shared by many older patients) about

vaccine efficacy, related to the fact that, like most vaccines
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recommended for adults, zoster vaccine provides only partial

protection, in contrast to the almost complete protection pro-

vided by most vaccines administered to children. Failure of

both physicians and patients to recognize that herpes zoster

and PHN cause a significant burden of disease in older adults

leads to the conclusion that zoster vaccine is not needed. Lack

of information on the duration of protection adds further un-

certainty, as do concerns about safety and side effects. Lack of

reimbursement for vaccine administration and concerns re-

garding out-of-pocket costs for the patient, both related to

coverage by Medicare Part D, rather than Part B, are additional

negative factors. Another concern, reduced immunogenicity

and efficacy in older patients, should be offset by the realization

that the incidence and severity of herpes zoster, especially PHN,

are markedly increased in these older patients. Consequently,

despite a relative reduction in vaccine efficacy, the absolute

benefit of vaccination for very elderly persons may be com-

parable or even greater than that obtained by younger vaccine

recipients. Finally, the lack of opportunities to immunize older

patients can be mitigated by concomitant administration of �2

vaccines during a single encounter.

FUTURE DIRECTIONS

The immediate future should see the extension of safety and

immunogenicity testing of the currently licensed zoster vaccine

to populations of moderately immunocompromised patients,

hopefully with the inclusion of assays of VZV-CMI to assess

physiologically relevant immunogenicity. Also, assessment of

the safety and immunogenicity of higher-titer zoster vaccine

should occur without delay. Another priority should be the

evaluation of inactivated VZV vaccines (with and without ad-

juvants) in more profoundly immunocompromised patients.

Hopefully, adjuvants containing selected toll-like receptor li-

gands and cytokines will target VZV more specifically and in-

crease relevant immune responses. The next step should be the

development of new classes of vaccines and vectors incorpo-

rating selected VZV epitopes that induce VZV-CMI rather than

antibodies to VZV. The end result should be the virtual elim-

ination of herpes zoster caused by wild-type VZV.
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