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Abstract

JavaScript malware-based attacks account for a large

fraction of successful mass-scale exploitation happening

today. Attackers like JavaScript-based attacks because

they can be mounted against an unsuspecting user visit-

ing a seemingly innocent web page. While several tech-

niques for addressing these types of exploits have been

proposed, in-browser adoption has been slow, in part be-

cause of the performance overhead these methods incur.

In this paper, we propose ZOZZLE, a low-overhead so-

lution for detecting and preventing JavaScript malware

that is fast enough to be deployed in the browser.

Our approach uses Bayesian classification of hier-

archical features of the JavaScript abstract syntax tree

to identify syntax elements that are highly predictive

of malware. Our experimental evaluation shows that

ZOZZLE is able to detect JavaScript malware through

mostly static code analysis effectively. ZOZZLE has an

extremely low false positive rate of 0.0003%, which is

less than one in a quarter million. Despite this high ac-

curacy, the ZOZZLE classifier is fast, with a throughput of

over one megabyte of JavaScript code per second.

1 Introduction

In the last several years, we have seen mass-scale ex-

ploitation of memory-based vulnerabilities migrate to-

wards heap spraying attacks. This is because more tra-

ditional vulnerabilities such as stack- and heap-based

buffer overruns, while still present, are now often mit-

igated by compiler techniques such as StackGuard [7]

or operating system mechanisms such as NX/DEP and

ALSR [12]. While several heap spraying solutions have

been proposed [8, 9, 21], arguably, none are lightweight

enough to be integrated into a commercial browser.

However, a browser-based detection technique is still

attractive for several reasons. Offline scanning is often

used in modern browsers to check whether a particular

site the user visits is benign and to warn the user other-

wise. However, because it takes a while to scan a very

large number of URLs that are in the observable web,

some URLs will simply be missed by the scan. Offline

scanning is also not as effective against transient mal-

ware that appears and disappears frequently.

ZOZZLE is a mostly static JavaScript malware detec-

tor that is fast enough to be used in a browser. While

its analysis is entirely static, ZOZZLE has a runtime com-

ponent: to address the issue of JavaScript obfuscation,

ZOZZLE is integrated with the browser’s JavaScript en-

gine to collect and process JavaScript code that is cre-

ated at runtime. Note that fully static analysis is difficult

because JavaScript code obfuscation and runtime code

generation are so common in both benign and malicious

code.

Challenges: Any technical solution to the problem out-

lined above requires overcoming the following chal-

lenges:

• performance: detection is often too slow to be de-

ployed in a mainstream browser;

• obfuscated malware: because both benign and ma-

licious JavaScript code is frequently obfuscated,

purely static detection is generally ineffective;

• low false positive rates: given the number of URLs

on the web, while false positive rates of 5% are

considered acceptable for, say, static analysis tools,

rates even 100 times lower are not acceptable for

in-browser detection;

• malware transience: transient malware compro-

mises the effectiveness of offline-only scanning.

Because it works in a browser, ZOZZLE uses the Java-

Script runtime engine to expose attempts to obscure mal-

ware via uses of eval, document.write, etc. by hooking

the runtime and analyzing the JavaScript just before it

is executed. We pass this unfolded JavaScript to a static

classifier that is trained using features of the JavaScript



AST (abstract syntax tree). We train the classifier with a

collection of labeled malware samples collected with the

NOZZLE dynamic heap-spraying detector [21]. Related

work [4, 6, 14, 22] also classifies JavaScript malware us-

ing a combination of static and dynamic features, but re-

lies on emulation to deobfuscate the code and to observe

dynamic features. Because we avoid emulation, our anal-

ysis is faster and, as we show, often superior in accuracy.

Contributions: this paper makes these contributions:

• Mostly static malware detection. We propose

ZOZZLE, a highly precise, lightweight, mostly static

JavaScript malware detector. ZOZZLE is based on

extensive experience analyzing thousands of real

malware sites found while performing dynamic

crawling of millions of URLs using the NOZZLE

runtime detector.

• AST-based detection. We describe an AST-based

technique that involves the use of hierarchical

(context-sensitive) features for detecting malicious

JavaScript code. This context-sensitive approach

provides increased precision in comparison to naı̈ve

text-based classification.

• Fast classification. Because fast scanning is key to

in-browser adoption, we present fast multi-feature

matching algorithms that scale to hundreds or even

thousands of features.

• Evaluation. We evaluate ZOZZLE in terms of per-

formance and malware detection rates, both false

positives and false negatives. ZOZZLE has an ex-

tremely low false positive rate of 0.0003%, which is

less than one in a quarter million, comparable to five

commericial anti-virus products we tested against.

To obtain these numbers, we tested ZOZZLE against

a collection of over 1.2 million benign JavaScript

samples. Despite this high accuracy, the classifier is

very fast, with a throughput at over one megabyte

of JavaScript code per second.

Classifier-based tools are susceptible to being circum-

vented by an attacker who knows the inner workings of

the tool and is familiar with the list of features being

used, however, our preliminary experience with ZOZZLE

suggests that it is capable of detecting many thousands of

malicious sites daily in the wild. We consider the issue

of evasion in Section 6.

Paper Organization: The rest of the paper is organized

as follows. Section 2 gives some background informa-

tion on JavaScript exploits and their detection and sum-

marizes our experience of performing offline scanning

with NOZZLE on a large scale. Section 3 describes the

implementation of our analysis. Section 4 describes our

experimental methodology. Section 5 describes our ex-

perimental evaluation. Section 6 provides a discussion

<html>

<body>

<button id="butid" onclick="trigger();"

style="display:none"/>

<script>

// Shellcode

var shellcode=unescape(’\%u9090\%u9090\%u9090\%u9090...’);

bigblock=unescape(’\%u0D0D\%u0D0D’);

headersize=20;

shellcodesize=headersize+shellcode.length;

while(bigblock.length<shellcodesize){bigblock+=bigblock;}

heapshell=bigblock.substring(0,shellcodesize);

nopsled=bigblock.substring(0,

bigblock.length-shellcodesize);

while(nopsled.length+shellcodesize<0x25000){

nopsled=nopsled+nopsled+heapshell

}

// Spray

var spray=new Array();

for(i=0;i<500;i++){spray[i]=nopsled+shellcode;}

// Trigger

function trigger(){

var varbdy = document.createElement(’body’);

varbdy.addBehavior(’#default#userData’);

document.appendChild(varbdy);

try {

for (iter=0; iter<10; iter++) {

varbdy.setAttribute(’s’,window);

} catch(e){ }

window.status+=’’;

}

document.getElementById(’butid’).onclick();

}

</script>

</body>

</html>

Figure 1: Heap spraying attack example.

of the limitations and deployment concerns for ZOZZLE.

Section 7 discusses related work, and, finally, Section 8

concludes.

Appendices are organized as follows. Appendix A

discusses some of the hand-analyzed malware samples.

Appendix B explores tuning ZOZZLE for better precision.

Appendix C shows examples of non-heap spray malware

and also anti-virus false positives.

2 Background

This section gives overall background on JavaScript-

based malware, focusing specifically on heap spraying

attacks.

2.1 JavaScript Malware Background

Figure 1 shows an example of real JavaScript malware

that performs a heap spray. Such malware consists of

three relatively independent parts. The shellcode is the

portion of executable machine code that will be placed

on the browser heap when the exploit is executed. It is

typical to precede the shellcode with a block of NOP in-

structions (so-called NOP sled). The sled is often quite

large compared to the size of the subsequence shellcode,

so that a random jump into the process address space is

likely to hit the NOP sled and slide down to the start of

the shellcode. The next part is the spray, which allocates

many copies of the NOP sled/shellcode in the browser

heap. In JavaScript, this is easily accomplished using an

array of strings. Spraying of this sort can be used to de-



feat address space layout randomization (ASLR) protec-

tion in the operating system. The last part of the exploit

triggers a vulnerability in the browser; in this case, the

vulnerability is a well-known flaw in Internet Explorer 6

that exploits a memory corruption issue with function

addBehavior.

Note that the example in Figure 1 is entirely unob-

fuscated, with the attacker not even bothering to rename

variables such as shellcode, nopsled, and spray to make

the attack easier to spot. In practice, many attacks are

obfuscated prior to deployment, either by hand, or using

one of many available obfuscation kits [11]. To avoid de-

tection, the primary technique used by obfuscation tools

is to use eval unfolding, i.e. self-generating code that

uses the eval construct in JavaScript to produce more

code to run.

2.2 Characterizing Malicious JavaScript

ZOZZLE training is based on results collected with the

NOZZLE heap spraying detector. To gather the data we

use to train the ZOZZLE classifier and evaluate it, we em-

ployed a web crawler to visit many randomly selected

URLs and process them with NOZZLE to detect if mal-

ware was present.

Once we determine that JavaScript is malicious, we

invested a considerable effort in examining the code by

hand and categorizing in various ways. One of the in-

sights we gleaned from this process is that once unfolded,

most malware does not have that much variety, following

the traditional long tail pattern. We discuss some of the

hand-analyzed samples in Appendix A.

Any offline malware detection scheme must deal with

the issues of transience and cloaking. Transient mali-

cious URLs go offline or become benign after some pe-

riod of time, and cloaking is when an attack hides itself

from a particular user agent, IP address range, or from

users who have visited the page before. While we tried

to minimize these effects in practice by scanning from a

wider range of IP addresses, in general, these issues are

difficult to fully address.

Figure 2 summarizes information about malware tran-

sience. To compute the transience of malicious sites, we

re-scan the set of URLs detected by Nozzle on the previ-

ous day. This procedure is repeated for three weeks (21

days). The set of all discovered malicious URLs were

re-scanned on each day of this three week period. This

means that only the URLs discovered on day one were

re-scanned 21 days later. The URLs discovered on day

one happened to have a lower transience rate than other

days, so there is a slight upward slope toward the end of

the graph.

Any offline scanning technique will have difficulty

keeping up with malware exhibiting such a high rate of

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e

m
a

in
in

g
 M

a
li

ci
o

u
s 

U
R

Ls
 

Figure 2: Transience of detected malicious URLs after several days.

The number of days is shown of the x axis, the percentage of remaining

malware is shown on the y axis.
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Figure 3: Unfolding tree: an example. Rectangles are documents,

and circles are JavaScript contexts. Gray circles are benign, black are

malicious, and dashed are “co-conspirators” that participate in deob-

fuscation. Edges are labeled with the method by which the context or

document was reached. The actual page contains 10 different exploits

using the same obfuscation.

transience–Nearly 20% of malicious URLs were gone af-

ter a single day. We believe that in-browser detection

is desirable, in order to be able to detect new malware

before it has a chance to affect the user regardless of

whether the URL being visited has been scanned before.

2.3 Dynamic Malware Structure

One of the core issues that needs to be addressed when

talking about JavaScript malware is the issue of obfusca-
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Benign Malicious

Figure 4: Distribution of context counts for malware and benign code.

tion. In order to avoid detection, malware writers resort

to various forms of JavaScript code obfuscation, some of

which is done by hand, other with the help of many avail-

able obfuscation toolkits [11]. While many approaches

to code obfuscation exist, in our experience we see eval

unfolding as the most commonly used. The idea is to use

the eval language feature to generate code at runtime in

a way that makes the original code difficult to pattern-

match. Often, this form of code unfolding is used repeat-

edly, so that many levels of code are produced before the

final, malicious version emerges.

Example 1 Figure 3 illustrates the process of code un-

folding using a specific malware sample obtained from

a web site http://es.doowon.ac.kr. At the time of

detection, this malicious URL flagged by NOZZLE con-

tained 10 distinct exploits, which is not uncommon for

malware writers, who tend to “over-provision” their ex-

ploits: to increase the changes to successful exploitation,

they may include multiple exploits within the same page.

Each exploit in our example is pulled in with an <iframe>

tag.

Each of these exploits is packaged in a similar fashion.

The leftmost context is the result of an eval in the body of

the page that defines a function. Another eval call from

the body of the page uses the newly-defined function to

define another new function. Finally, this function and

another eval call from the body exposes the actual ex-

ploit. Surprisingly, this page also pulls in a set of benign

contexts, consisting of page trackers, JavaScript frame-

works, and site-specific code. �

Note, however, that the presence of eval unfolding

does not provide a reliable indication of malicious in-

tent. There are plenty of perfectly benign pages that also

perform some form of code obfuscation, for instance, as

a weak form of copy protection to avoid code piracy.

Many commonly used JavaScript library frameworks do

the same, often to save space through client-side code

generation.
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Figure 5: ZOZZLE training illustrated.

We instrumented the ZOZZLE deobfuscator to collect

information about which code context leads to other

code contexts, allowing us to collect information about

the number of code contexts created and the unfolding

depth. Figure 4 shows a distributions of JavaScript con-

text counts for benign and malicious URLs. The ma-

jority of URLs have only several JavaScript code con-

texts, however, many can be have 50 or more, created

through either <iframe> or <script> inclusion or eval un-

folding. Some pages, however, may have as many as 200

code contexts. In other words, a great deal of dynamic

unfolding needs to take place before these contexts will

“emerge” and will be available for analysis.

It is clear from the graph in Figure 4 that, contrary to

what might have been thought, the number of contexts is

not a good indicator of a malicious site. Context counts

were calculated for all malicious URLs from a week of

scanning with NOZZLE and a random sample of benign

URLs over the same period.

3 Implementation

In this section, we discuss the details of the ZOZZLE im-

plementation.

3.1 Overview

Much of ZOZZLE’s design and implementation has in ret-

rospect been informed by our experience with reverse

engineering and analyzing real malware found by NOZ-

ZLE. Figure 5 illustrates the major parts of the ZOZZLE



architecture. At a high level, the process evolves in three

stages: JavaScript context collection and labeling as be-

nign or malicious, feature extraction and training of a

naı̈ve Baysian classifier, and finally, applying the clas-

sifier to a new JavaScript context to determine if it is be-

nign or malicious. In the following section, we discuss

the details of each of these stages in turn.

3.2 Training Data Extraction and Labeling

ZOZZLE makes use of a statistical classifier to efficiently

identify malicious JavaScript. The classifier needs train-

ing data to accurately classify JavaScript source, and

we describe the process we use to get that training data

here. We start by augmenting the JavaScript engine in

a browser with a “deobfuscator” that extracts and col-

lects individual fragments of JavaScript. As discussed

above, exploits are frequently buried under multiple lev-

els of JavaScript eval. Unlike Nozzle, which observes

the behavior of running JavaScript code, ZOZZLE must

be run on an unobfuscated exploit to reliably detect ma-

licious code.

While detection on obfuscated code may be possible,

examining a fully unpacked exploit is most likely to re-

sult in accurate detection. Rather than attempt to deci-

pher obfuscation techniques, we leverage the simple fact

that an exploit must unpack itself to run.

Our experiments presented in this paper involved

instrumenting the Internet Explorer browser, but we

could have used a different browser such as Firefox or

Chrome instead. Using the Detours binary instrumenta-

tion library [13], we were able to intercept calls to the

Compile function in the JavaScript engine located in the

jscript.dll library. This function is invoked when eval

is called and whenever new code is included with an

<iframe> or <script> tag. This allows us to observe Java-

Script code at each level of its unpacking just before it is

executed by the engine. We refer to each piece of Java-

Script code passed to the Compile function as a code con-

text. For purposes of evaluation, we write out each con-

text to disk for post-processing. In a browser-based im-

plementation, context assessment would happen on the

fly.

3.3 Feature Extraction

Once we have labeled JavaScript contexts, we need to

extract features from them that are predictive of mali-

cious or benign intent. For ZOZZLE, we create features

based on the hierarchical structure of the JavaScript ab-

stract syntax tree (AST). Specifically, a feature consists

of two parts: a context in which it appears (such as a

loop, conditional, try/catch block, etc.) and the text (or

some substring) of the AST node. For a given JavaScript

context, we only track whether a feature appears or not,

and not the number of occurrences. To efficiently ex-

tract features from the AST, we traverse the tree from the

root, pushing AST contexts onto a stack as we descend

and popping them as we ascend.

To limit the possible number of features, we only ex-

tract features from specific nodes of the AST: expres-

sions and variable declarations. At each of the expression

and variable declarations nodes, a new feature record is

added to that script’s feature set.

If we use the text of every AST expression or variable

declaration observed in the training set as a feature for

the classifier, it will perform poorly. This is because most

of these features are not informative (that is, they are not

correlated with either benign or malicious training set).

To improve classifier performance, we instead pre-select

features from the training set using the χ2 statistic to

identify those features that are useful for classification.

A pre-selected feature is added to the script’s feature set

if its text is a substring of the current AST node and the

contexts are equal. The method we used to select these

features is described in the following section.

3.4 Feature Selection

As illustrated in Figure 5, after creating an initial fea-

ture set, ZOZZLE performs a filtering pass to select those

features that are likely to be most predictive. For this

purpose, we used the χ2 algorithm to test for correla-

tion. We include only those features whose presence is

correlated with the categorization of the script (benign or

malicious). The χ2 test (for one degree of freedom) is

described below:

A = malicious contexts with feature

B = benign contexts with feature

C = malicious contexts without feature

D = benign contexts without feature

χ2 =
(A ∗D − C ∗B)2

(A+ C) ∗ (B +D) ∗ (A+B) ∗ (C +D)

We selected features with χ2 ≥ 10.83, which corre-

sponds with a 99.9% confidence that the two values (fea-

ture presence and script classification) are not indepen-

dent.

3.5 Classifier Training

ZOZZLE uses a naı̈ve Bayesian classifier, one of the sim-

plest statistical classifiers available. When using naı̈ve

Bayes, all features are assumed to be statistically inde-

pendent. While this assumption is likely incorrect, the

independence assumption has yielded good results in the



past. Because of its simplicity, this classifier is efficient

to train and run.

The probability assigned to label Li for code fragment

containing features F1, . . . , Fn may be computed using

Bayes rule as follows:

P (Li|F1, . . . , Fn) =
P (Li)P (F1, . . . , Fn|Li)

P (F1, . . . , Fn)

Because the denominator is constant regardless of Li we

ignore it for the remainder of the derivation. Leaving

out the denominator and repeatedly applying the rule of

conditional probability, we rewrite this as:

P (Li|F1, . . . , Fn) = P (Li)

n∏

k=1

P (Fk|F1, . . . , Fk−1, Li)

Given that features are assumed to be conditionally inde-

pendent, we can simplify this to:

P (Li|F1, . . . , Fn) = P (Li)

n∏

k=1

P (Fk|Li)

Classifying a fragment of JavaScript requires travers-

ing its AST to extract the fragment’s features, multiply-

ing the constituent probabilities of each discovered fea-

ture (actually implemented by adding log-probabilities),

and finally multiplying by the prior probability of the la-

bel. It is clear from the definition that classification may

be performed in linear time, parameterized by the size

of the code fragment’s AST, the number of features be-

ing examined, and the number of possible labels. The

processes of collecting and hand-categorizing JavaScript

samples and training the ZOZZLE classifier are detailed in

Section 4.

3.6 Fast Pattern Matching

An AST node contains a feature if the feature’s text is a

substring of the AST node. With a naı̈ve approach, each

feature must be matched independently against the node

text. To improve performance, we construct a state ma-

chine for each context that reduces the number of charac-

ter comparisons required. There is a state for each unique

character occurring at each position in the features for a

given context.

A pseudocode for the fast matching algorithm is

shown in Figure 7. State transitions are selected based

on the next character in the node text. Every state has a

bit mask with bits corresponding to features. The bits are

set only for those features that have the state’s incom-

ing character at that position. At the beginning of the

matching, a bitmap is set to all ones. This mask is AND-

ed with the mask at each state visited during matching.

At the end of matching, the bit mask contains the set of

features present in the node. This process is repeated

for each position in the node’s text, as features need not

match at the start of the node.

Example 2 An example of a state machine used for fast

pattern matching is shown in Figure 6. This string match-

ing state machine can identify three patterns: alert,

append, and insert. Assume the matcher is running on

input text appert. During execution, a bit array of size

three, called the matched list, is kept to indicate the pat-

terns that have been matched up to this point in the in-

put. This bit array starts with all bits set. From the left-

most state we follow the edge labeled with the input’s

first character, in this case an a.

The match list is bitwise-anded with this new state’s

bit mask of 110. This process is repeated for the input

characters p, p, e. At this point, the match list contains 010

and the remaining input characters are r, t, and null (also

notated as \0). Even though a path to an end state exists

with edges for the remaining input characters, no patterns

will be matched. The next character consumed, an r,

takes the matcher to a state with mask 001 and match

list of 010. Once the match list is masked for this state,

no patterns can possibly be matched. For efficiency, the

matcher terminates at this point and returns the empty

match list.

The maximum number of comparisons required to

match an arbitrary input with this matcher is 17, ver-

sus 20 for naı̈ve matching (including null characters at

the ends of strings). The worst-case number of compar-

isons performed by the matcher is the total number of

distinct edge inputs at each input position. The sample

matcher has 19 edges, but at input position 3 two edges

consume the same character (’e’), and at input position 6

two edges consume the null character. In practice, we

find that the number of comparisons is reduced signifi-

cantly more than for this sample, due to the large number

of features because of the pigeonhole principle. �

For a classifier using 100 features, a single position in

the input text would require 100 character comparisons

with naı̈ve matching. Using the state machine approach,

there can be no more than 52 comparisons at each string

position (36 alphanumeric characters and 16 punctuation

symbols), giving a reduction of nearly 50%. In practice

there are even more features, and input positions do not

require matching against every possible input character.

Figure 8 clearly shows the benefit of fast pattern

matching over a naı̈ve matching algorithm. The graph

shows the average number of character comparisons per-

formed per-feature using both our scheme and a naive

approach that searches an AST node’s text for each pat-

tern individually. As can be seen from the figure, the

fast matching approach has far fewer comparisons, de-
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Figure 6: Fast feature matching illustrated.

matchList← 〈1, 1, . . . , 1〉
state← 0
for all c in input do

state← matcher.getNextState(state, c)
matchList← matchList ∧matcher.getMask(state)
if matchList〈0, 0, . . . , 0〉 then

return matchList

end if

end for

return matchList

Figure 7: Fast matching algorithm.

0

5

10

15

20

25

30

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
,0
0
0

1
,1
0
0

1
,2
0
0

1
,3
0
0

1
,4
0
0

1
,5
0
0

M
il

li
o

n
 C

o
m

p
a

ri
so

n
s 

p
e

r 
F
e

a
tu

re
 

Features 

Naïve Matching Fast Matching

Figure 8: Comparisons required per-feature with naı̈ve vs. fast pattern

matching. The number of features is shown on the x axis.

creasing asymptotically as the number of features ap-

proaches 1,500.

3.7 Future Improvements

In this section, we describe additional algorithmic im-

provements not present in our initial implementation.

3.7.1 Automatic Malware Clustering

Using the same features extracted for classification, it

is possible to automatically cluster attacks into groups.

There are two possible approaches that exist in this

space: supervised and unsupervised clustering.

Supervised clustering would consist of hand-

categorizing attacks, which has actually already been

done for about 1,000 malicious contexts, and assigning

new scripts to one of these groups. Unsupervised

clustering would not require the initial sorting effort,

and is more likely to successfully identify new, common

attacks. It is likely that feature selection would be an

ongoing process; selected features should discriminate

between different clusters, and these clusters will likely

change over time.

3.7.2 Substring Feature Selection

For the current version of ZOZZLE, automatic feature se-

lection only considers the entire text of an AST node as

a potential feature. While simply taking all possible sub-

strings of this and treating those as possible features as

well may seem reasonable, the end result is a classifier

with many more features and little (if any) improvement

in classification accuracy.

An alternative approach would be to treat certain types

of AST nodes as “divisible” when collecting candidate

features. If the entire node text is not a good discrimi-

native feature, its component substrings can be selected

as candidate features. This avoids introducing substring

features when the full text is sufficiently informative, but

allows for simple patterns to be extracted from longer

text (such as %u or %u0c0c) when they are more informa-

tive than the full string. Not all AST nodes are suitable

for subdivision, however. Fragments of identifiers don’t

necessarily make sense, but string constants and numbers

could still be meaningful when split apart.

3.7.3 Feature Flow

At the moment, features are extracted only from the text

of the AST nodes in a given context. This works well for

whole-script classification, but has yielded more limited

results for fine-grained classification (that is, to identify

that a specific part of the script is malicious). To prevent

a particular feature from appearing in a particularly infor-

mative context (such as COMMENT appearing inside a loop, a

component the Aurora exploit [19]) an attacker can sim-

ply assign this string to a variable outside the loop and

reference the variable within the loop. The idea behind

feature flow is to keep a simple lookup table for iden-

tifiers, where both the identifier name and its value are

used to extract features from an AST node.

By ignoring scoping rules and loops, we can get a rea-

sonable approximation of the features present in both the

identifiers and values within a given context with low

overhead. This could be taken one step further by em-

ulating simple operations on values. For example, if two

identifiers set to strings are added, the values of these

strings could be concatenated and then searched for fea-

tures. This would prevent attackers from hiding common

shellcode patterns using concatenation.



4 Experimental Methodology

In order to train and evaluate ZOZZLE, we created a col-

lection of malicious and benign JavaScript samples to use

as training data and for evaluation.

Gathering Malicious Samples: To gather the results

for Section 5, we first dynamically scanned URLs with

a browser running both NOZZLE and the ZOZZLE Java-

Script deobfuscator. In this configuration, when NOZZLE

detects a heap spraying exploit, we record the URL and

save to disk all JavaScript contexts seen by the deobfus-

cator. All recorded JavaScript contexts are then hand-

examined to identify those that contain any malware ele-

ments (shellcode, vulnerability, or heap-spray).

Malicious contexts can be sorted efficiently by first

grouping by their md5 hash value. This dramatically re-

duces the required effort because of the lack of exploit

diversity explained first in Section 2 and relatively few

identifier-renaming schemes being employed by attack-

ers. For exploits that do appear with identifier names

changed, there are still usually some identifiers left un-

changed (often part of the standard JavaScript API)

which can be identified using the grep utility. Finally,

hand-examination is used to handle the few remaining

unsorted exploits. Using a combination of these tech-

niques, 919 deobfuscated malicious contexts were iden-

tified and sorted in several hours.

Gathering Benign Samples: To create a set of benign

JavaScript contexts, we extracted JavaScript from the

Alexa.com top 50 URLs using the ZOZZLE deobfuscator.

The 7,976 contexts gathered from these sites were used

as our benign dataset.

Feature Selection: To evaluate ZOZZLE, we partition our

malicious and benign datasets into training and evalua-

tion data and train a classifier. We then apply this classi-

fier to the withheld samples and compute the false posi-

tive and negative rates. To train a classifier with ZOZZLE,

we first need a define a set of features from the code.

These features can be hand-picked, or automatically se-

lected (as described in Section 3) using the training ex-

amples. In our evaluation, we compare the performance

of classifiers built using hand-picked and automatically

selected features.

Feature

try : unescape
loop : spray
loop : payload
function : addbehavior
string : 0c

Figure 9: Examples of hand-picked fea-

tures used in our experiments.

The 89 hand-

picked features

were selected based

on experience and

intuition with many

pieces of malware

detected by NOZ-

ZLE and involved

collecting particu-

larly “memorable”

Feature Present M : B

function : anonymous X 1 : 4609

try : newactivexobject(”pdf.pdfctrl”) X 1309 : 1

loop : scode X 1211 : 1

function : $(this) X 1 : 1111

if : ”shel” + ”l.ap” + ”pl” + ”icati” + ”on” X 997 : 1

string : %u0c0c%u0c0c X 993 : 1

loop : shellcode X 895 : 1

function : collectgarbage() X 175 : 1

string : #default#userdata X 10 : 1

string : %u ✗ 1 : 6

Figure 10: Sample of automatically selected features and their dis-

criminating power as a ratio of likelihood to appear in a malicious or

benign context.

features frequently

repeated in malware samples.

Automatically selecting features typically yields many

more features as well as some features that are biased

toward benign JavaScript code, unlike hand-picked fea-

tures that are all characteristic of malicious JavaScript

code. Examples of some of the hand-picked features

used are presented in Figure 9.

For comparison purposes, samples of the automati-

cally extracted features, including a measure of their dis-

criminating power, are shown in Figure 10. The mid-

dle column shows whether it is the presence of the fea-

ture (X) or the absence of it (✗) that we are matching on.

The last column shows the number of malicious (M) and

benign (B) contexts in which they appear in our training.

In addition to the feature selection methods, we also

varied the types of features used by the classifier. Be-

cause each token in the Abstract Syntax Tree (AST) ex-

ists in the context of a tree, we can include varying parts

of that AST context as part of the feature. Flat features

are simply text from the JavaScript code that is matched

without any associated AST context. We should empha-

size that flat features are what are typically used in var-

ious text classification schemes. What distinguishes our

work is that, through the use of hierarchical features, we

are taking advantage of the contextual information given

by the code structure to get better precision.

Hierarchical features, either 1- or n-level, contain a

certain amount of AST context information. For exam-

ple, 1-level features record whether they appear within

a loop, function, conditional, try/catch block, etc. Intu-

itively, a variable called shellcode declared or used right

after the beginning of a function is perhaps less indica-

tive of malicious intent than a variable called shellcode

that is used with a loop, as is common in the case of a

spray. For n-level features, we record the entire stack of

AST contexts such as

〈a loop,within a conditional,within a function, . . .〉



Features Hand-Picked Automatic Features

flat 95.45% 99.48% 948

1-level 98.51% 99.20% 1,589

n-level 96.65% 99.01% 2,187

Figure 11: Classifier accuracy for hand-picked and automatically se-

lected features.

Features Hand-Picked Automatic

False Pos. False Neg. False Pos. False Neg.

flat 4.56% 4.51% 0.01% 5.84%

1-level 1.52% 1.26% 0.00% 9.20%

n-level 3.18% 5.14% 0.02% 11.08%

Figure 12: False positives and false negatives for flat and hierarchical

features using hand-picked and automatically selected features.

The depth of the AST context presents a tradeoff between

accuracy and performance, as well as between false pos-

itives and false negatives. We explore these tradeoffs in

detail in Section 5.

5 Evaluation

In this section, we evaluate the effectiveness of ZOZZLE

using the benign and malicious JavaScript samples de-

scribed in Section 4. To obtain the experimental results

presented in this section, we used an HP xw4600 work-

station (Intel Core2 Duo E8500 3.16 Ghz, dual proces-

sor, 4 Gigabytes of memory), running Windows 7 64-bit

Enterprise.

5.1 False Positives and False Negatives

Accuracy: Figure 11 shows the overall classification ac-

curacy of ZOZZLE when evaluated using our malicious

and benign JavaScript samples1. The accuracy is mea-

sured as the number of successful classifications divided

by total number of samples. In this case, because we have

many more benign samples than malicious samples, the

overall accuracy is heavily weighted by the effectiveness

of correctly classifying benign samples.

In the figure, the results are sub-divided first by

whether the features are selected by hand or using the au-

tomatic technique described in Section 3, and then sub-

divided by the amount of context used in the classifier

(flat, 1-level, and n-level).

1Unless otherwise stated, for these results 25% of the samples

were used for classifier training and the remaining files were used

for testing. Each experiment was repeated five times on a different

randomly-selected 25% of hand-sorted data.

ZOZZLE AV1 AV2 AV3 AV4 AV5

Samples 1,275,033 1,275,078

True pos. 5 3 0 3 1 3

False pos. 4 2 5 5 4 3

FP rate 3.1E-6 1.6E-6 3.9E-6 2.9E-6 3.1E-6 2.4E-6

Figure 13: False positive rate comparison.

The table shows that overall, automatic feature selec-

tion significantly outperforms hand-picked feature selec-

tion, with an overall accuracy above 99%. Second, we

see that while some context helps the accuracy of the

hand-picked features, overall, context has little impact on

the accuracy of automatically selected features. We also

see in the fourth column the number of features that were

selected in the automatic feature selection. As expected,

the number of features selected with the n-level classifier

is significantly larger than the other approaches.

Hand-picked vs. Automatic: Figure 12 expands on the

above results by showing the false positive and false neg-

ative rates for the different feature selection methods and

levels of context. The rates are computed as a fraction of

malicious and benign samples, respectively. We see from

the figure that the false positive rate for all configurations

of the hand-picked features is relatively high (1.5-4.5%),

whereas the false positive rate for the automatically se-

lected features is nearly zero. The best case, using au-

tomatic feature selection and 1-level of context, has no

false positives in any of the randomly-selected training

and evaluation subsets. The false negative rate for all

the configurations is relatively high, ranging from 1–11%

overall. While this suggests that some malicious contexts

are not being classified correctly, for most purposes, hav-

ing high overall accuracy and low false positive rate are

the most important attributes of a malware classifier.

Best classifier: In contrast to the lower false positive

rates, the false negative rates of the automatically se-

lected features are higher than they are for the hand-

picked features. The insight we have is that the automatic

feature selection selects many more features, which im-

proves the sensitivity in terms of false positive rate, but

at the same time reduces the false negative effectiveness

because extra benign features can sometimes mask mali-

cious intent. We see that trend manifest itself among the

alternative amounts of context in the automatically se-

lected features. The n-level classifier has more features

and a higher false negative rate than the flat or 1-level

classifiers. Since we want to achieve a very low false

positive rate with a moderate false negative rate, and the

1-level classifier provided the best false positive rate in

these experiments, in the remainder of this section, we

consider the effectiveness of the 1-level classifier in more

detail.



ZOZZLE JSAND AV1 AV2 AV3 AV4 AV5

9% 15% 24% 28% 34% 83% 42%

Figure 14: False negative rate comparison.

5.2 Comparison with AV & Other Techniques

Previous analysis has been performed on a relatively

small set of benign files. As a result, our 1-level clas-

sifier does not produce any false alarms on about 8,000

benign samples, but using a set of this size limits the pre-

cision of our evaluation. To fully understand the false

positive rate of ZOZZLE, we have obtained a large collec-

tion of over 1.2 million benign JavaScript contexts taken

from manually white-listed web sites.

Investigating false positives further: Figure 13 shows

the results of running both ZOZZLE and five state-of-the-

art anti-virus products on the large benign data set. Out

of the 1.2 million files, only 4 were incorrectly marked

malicious by ZOZZLE. This is fewer than one in a quar-

ter million false alarms. The four false positives flagged

by ZOZZLE fell into two distinct cases and both cases

were essentially a single large JSON-like data structure

that included many instances of encoded binary strings.

Adding a specialized JSON data recognizer to ZOZZLE

could eliminate these false alarms.

Even though anti-virus products attempt to be ex-

tremely careful about false positives, in our run, the

five anti-virus engines produced 29 alerts when applied

to 1,275,078 JavaScript samples.

Our of these, over half, 19 alerts turn out to be false

positives. We investigated these further and found sev-

eral reasons for these errors. The first is assuming that

some document.write of an unescaped string could be ma-

licious when they in fact were not. The second reason

is flagging unpackers, i.e. pieces of code that convert

a string into another one through character code trans-

lation. Clearly, these unpackers alone are not malicious.

We show examples of these mistakes in Appendix B. The

third reason is overly aggressively flagging phishing sites

that insert links into the current page; this is because the

anti-virus is unable to distinguish between them and mal-

ware. The figure also shows cases where we found true

malware in the large data set (listed as true positives),

despite the fact that the web sites that the JavaScript was

taken from were white-listed. We see that ZOZZLE was

also better at finding true positives than the anti-virus de-

tectors, finding a total of five out of the 1.2 million sam-

ples. We also note that the number of samples used in the

anti-virus and ZOZZLE results in this table are slightly dif-

ferent due to the fact that on some of the samples either

the anti-virus or ZOZZLE aborts due to ill-formed Java-

Script syntax and those samples are not included in the

total.

In summary, ZOZZLE has a false positive rate

of 0.0003%, which is comparable to the five anti-virus

tools in all cases and is better than some of them.

Investigating false negatives further: Figure 14 shows

a comparison of ZOZZLE and the five anti-virus engines

discussed above. We fed the anti-virus engines the 919

hand-labeled malware samples used in the previous eval-

uation of ZOZZLE.2 Additionally, we include JSAND [6],

a recently published malware detector that has a public

web interface for malware upload and detection. In the

case of JSAND, we only used a small random sample

of 20 malicious files due to the difficulty of automat-

ing the upload process, apparent rate limiting, and the

latency of JSAND evaluation. The figure demonstrates

that all of the other products have a higher false negative

rate compared to ZOZZLE. JSAND is the closest, produc-

ing a false negative rate of 15%. We feel that these high

false negative rates for the anti-virus products are likely

caused by the tendency of such products to be conserva-

tive and trade low false positives for higher false nega-

tives. This experiment illustrates the difficulty that tradi-

tional anti-virus techniques have classifying JavaScript,

where self-generated code is commonplace. We feel that

ZOZZLE excels in both dimensions.

5.3 Classifier Performance

Figure 15 shows the classification time as a function of

the size of the file, ranging up to 10 KB. We used auto-

matic feature selection, a 1-level classifier trained on .25

of the hand-sorted dataset with no hard limit on feature

counts to obtain this chart. This evaluation was per-

formed on a classifier with over 4,000 features, and rep-

resents the worst case performance for classification. We

see that for a majority of files, classification can be per-

formed in under 4 ms. Moreover, many contexts are in

fact eval contexts, which are generally smaller than Java-

Script files downloaded from the network. In the case of

eval contexts such as that, the classification overhead is

usually 1 ms and below.

Figure 16 displays the overhead as a function of the

number of classification features we used and compares

it to the average parse time of .86 ms. Despite the fast

feature matching algorithm presented in Section 3, hav-

ing more features to match against is still quite costly. As

a result, we see the average classification time grow sig-

nificantly, albeit linearly, from about 1.6 ms for 30 fea-

tures to over 7 ms for about 1,300 features. While these

numbers are from our unoptimized implementation, we

believe that ZOZZLE’s static detector has a lot of potential

for fast on-the-fly malware identification.

2The ZOZZLE false negative rate listed in Figure 14 is taken on

our cross-validation experiment in Figure 12.
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Figure 15: Classification time as a function of JavaScript file size. File size in bytes is shown on the x axis and the classification time in ms is

shown on the y axis.
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Figure 16: Classifier throughput and accuracy as a function of the

number of features, using 1-level classification with .25 of the train-

ing set size.

6 Discussion

Caveats and limitations: All classifier-based malware

detection tools will fail to detect some attacks, such as

exploits that do not contain any of the features present

in the training examples. More importantly, attackers

who have a copy of ZOZZLE as an oracle can devise vari-

ants of malware that are not detected by it. For example,

they might rename variables, obscure strings by encod-

ing them or breaking them into pieces, or substitute dif-

ferent APIs that accomplish the same task.

Evasion is made somewhat more difficult because any

exploit that uses a known CVE must eventually make

the necessary JavaScript runtime calls (e.g., detecting

or loading a plugin) to trigger the exploit. If ZOZZLE

is able to statically detect such calls, it will detect the

attempted exploit. To avoid such detection, an attacker

might change the context in which these calls appear by

creating local variables that reference the desired run-

time function, an approach already employed by some

exploits we have collected.

In the future, for ZOZZLE to continue to be effective,

it has to be adaptive against attempts to avoid detec-

tion. This adaptation takes two forms: improving its

ability to reason about the malware, and adapting the

feature set used to detect malware as it evolves. To im-

prove ZOZZLE’s detection capability, it needs to incorpo-

rate more semantic information about the JavaScript it

analyzes. For example, as described in Section 3, feature

flow could help ZOZZLE identify attempts to obfuscate

the use of APIs necessary for malware to be success-

ful. Adapting ZOZZLE’s feature set requires continuous

retraining based on collecting malware samples detected

by deploying other detectors such as NOZZLE. With such

adaptation, ZOZZLE would dramatically reduce the effec-

tiveness of the copy-and-pasted attacks that make up the

majority of JavaScript malware today. In combination

with complementary detection techniques, such as NOZ-

ZLE, an updated feature set can be generated frequently

with no human intervention.

Just as with anti-virus, we believe that ZOZZLE is one

of several measures that can be used as part of a defense-

in-depth strategy. Moreover, our experience suggests that

in many cases attackers are slow to adapt to the changing

landscape. Despite the wide availability of obfuscation

tools, in our NOZZLE detection experiments we still find

many sites not using any form of obfuscation at all. We

also see little diversity in the exploits collected. For ex-

ample, the top five malicious scripts account for 75% of

the malware detected.

Deployment: The most attractive deployment strategy

for ZOZZLE is in-browser deployment. ZOZZLE has been

designed to require only occasional offline re-training so

that classifier updates can be shipped off to the browser

every several days or weeks. Figure 17 shows a proposed

workflow for ZOZZLE in-browser deployment.

The code of the in-browser detector does not need to

change, only the list of features and weights needs to

be sent, similarly to updating signatures in an anti-virus

product. Note that our detector is designed in a way that

can be tightly integrated into the JavaScript parser, mak-
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Figure 17: In-browser ZOZZLE deployment: workflow.

ing malware “scoring” part of the overall parsing pro-

cess; the only thing that needs to be maintained as the

parse tree (AST) is being constructed is the set of match-

ing features. This, we believe, will make the incremental

overhead of ZOZZLE processing even lower than it is now.

Another way to deploy ZOZZLE is as a filter for a more

heavy-weight technique such as NOZZLE or some form

of control- or dataflow integrity [1, 5]. As such, the ex-

pected end-user overhead will be very low, because both

the detection rate of ZOZZLE and the rate of false posi-

tives is very low; we assume if an attack is prevented, the

user will not object to additional overhead in that case.

Finally, ZOZZLE is suitable for offline scanning, ei-

ther in the case of dynamic web crawling using a web

browser, or in the context or purely static scanning that

exposes some part of the JavaScript code to the scanner.

7 Related Work

Several recent papers focusing on static detection tech-

niques for malware, specifically implemented in Java-

Script. None of the existing techniques propose integrat-

ing malware classification with JavaScript execution in

the context of a browser, as ZOZZLE does.

7.1 Closely-related Malware Detection Work

A quantitative comparison with closely related tech-

niques is presented in Figure 18. It shows that ZOZZLE is

heavily optimized for an extremely low rate of false pos-

itives — about one in quarter million — with the closest

second being CUJO [22] with six times as many false

positives.

ZOZZLE is generally faster than other tools, since the

only runtime activity it performs is capturing JavaScript

Project Citation FP rate FN rate Static Dynamic

ZOZZLE 3.1E-6 9.2E-2 X -3

JSAND [6] 1.3E-5 2E-3 X X

Prophiler [4] 9.8E-2 7.7E-3 X X

CUJO [22] 2.0E-5 5.6E-2 X X

Figure 18: Quantitative comparison to closely related work.

code. In its purely static mode, Cujo is also potentially

quite fast, with running times ranging from .01 to 10 ms

per URL, however, our rates are not directly comparable

because URLs and code contexts are not one-to-one.

Canali et al. [4] present Prophiler, a lightweight static

filter for malware. It combines HTML-, JavaScript-, and

URL-based features into one classifier that quickly fil-

ters non-malicious pages so that malicious pages can be

examined more extensively. While their approach has

elements in common with ZOZZLE, there are also dif-

ferences. First, ZOZZLE focuses on classifying pages

based on unobfuscated JavaScript code by hooking into

the JavaScript engine entry point, whereas Prophiler ex-

tracts its features from the obfuscated code. Second,

ZOZZLE automatically extracts hierarchical features from

the AST, whereas Prophiler relies on a variety of sta-

tistical and lexical hand-picked features present in the

HTML and JavaScript. Third, the emphasis of ZOZZLE

is on very low false positive rates, whereas Prophiler, be-

cause it is intended as a fast filter, allows higher false

positive rates in order to reduce the false negative rate.

Rieck et al. [22] describe Cujo, an system that com-

bines static and dynamic features in a classifier frame-

work based on support vector machines. They pre-

process the source code into tokens and pass groups of

tokens (Q-grams) to automatically extract Q-grams that

are predictive of malicious intent. Unlike ZOZZLE, Cujo

is proxy-based and uses JavaScript emulation instead of

hooking into the JavaScript runtime in a browser. This

emulation adds runtime overhead, but allows Cujo to use

static as well as dynamic Q-grams in their classification.

ZOZZLE differs from Cujo in that it uses the existing Java-

Script runtime engine to unfold JavaScript contexts with-

out requiring emulation reducing the overhead.

Similarly, Cova et al. present a system JSAND that

conducts classification based on static and dynamic fea-

tures [6]. In JSAND, potentially malicious JavaScript is

emulated to determine runtime characteristics around de-

obfuscation, environment preparation, and exploitation,

such as the number of bytes allocated through string op-

erations. These features are trained and evaluated with

known good and bad URLs. Like Cujo, JSAND uses em-

ulation to combine a collection of static and dynamic

features in their classification, as compared to ZOZZLE,

3The only part of ZOZZLE that requires dynamic intervention is

unfolding.



which extracts only static features automatically. Also,

because ZOZZLE leverages the existing JavaScript en-

gine unfolding process, JSAND performance is signifi-

cantly slower than ZOZZLE.

7.2 Other Projects

Karanth et al. identify malicious JavaScript using a

classifier based on hand-picked features present in the

code [14]. Like us, they use known malicious and be-

nign JavaScript files and train a classifier based on fea-

tures present. They show that their technique can detect

malicious JavaScript with high accuracy and they were

able to detect a previously unknown zero-day vulnerabil-

ity. Unlike our work, they do not integrate their classifier

into the JavaScript engine, and so do not see the unfolded

JavaScript as we do.

High-interaction client honeypots have been at the

forefront of research on drive-by-download attacks.

Since they were first introduced in 2005, various stud-

ies have been published [15, 20, 25, 30–32]. High-

interaction client honeypots drive a vulnerable browser

to interact with potentially malicious web page and mon-

itor the system for unauthorized state changes, such as

new processes being created. The detection of drive-by-

download attacks can also occur through the analysis of

the content retrieved from the web server. When cap-

tured at the network layer or through a static crawler,

the content of malicious web pages is usually highly

obfuscated opening the door to static feature based

exploit detection [10, 20, 24, 27, 28]. While these ap-

proaches, among others, consider static JavaScript fea-

tures, ZOZZLE is the first to utilize hierarchical features

extracted from ASTs.

Besides static features focusing on HTML and Java-

Script, shellcode injection exploits also offer points for

detection. Existing techniques such as Snort [23] use

pattern matching to identify attacks in a database. Poly-

morphic attacks that vary shellcode on each exploit at-

tempt can avoid pattern-based detection unless improb-

able properties of shellcode are used to detect such at-

tacks, as in Polygraph [17]. Like ZOZZLE, Polygraph uti-

lizes a naı̈ve bayes classifier, but only applies it to the

detection of shellcode.

Abstract Payload Execution (APE) by Toth and

Kruegel [29], STRIDE by Akritidis et al. [2, 18], and

NOZZLE by Ratanaworabhan, Livshits and Zorn [21] all

focus on analysis of the shellcode and NOP sled used by

a heap spraying attack. Such techniques can detect heap

sprays with low false positive rates, but incur higher run-

time overhead than is acceptable for always-on deploy-

ment in a browser (10-15% is farily common).

Dynamic features have been the focus of several

groups. Nazario, Buescher, and Song propose systems

that detect attacks on scriptable ActiveX components [3,

16, 26]. They capture JavaScript interactions and use

vulnerability specific signatures to detect attacks. This

method is effective in detecting attacks due to the rela-

tive homogeneous characteristic of the attack landscape.

However, while they are effective in detecting known ex-

isting attacks on ActiveX components, they fail to iden-

tify attacks that do not involve ActiveX components,

which ZOZZLE is able to detect.

8 Conclusions

This paper presents ZOZZLE, a highly precise, mostly

static detector for malware written in JavaScript. ZOZZLE

is a versatile technology that is suitable for deployment

in a commercial browser, staged with a more costly run-

time detector like NOZZLE. Designing an effective in-

browser malware detector requires overcoming techni-

cal challenges that include achieving high performance,

generating precise results, and overcoming attempts at

obfuscating attacks. Much of the novelty of ZOZZLE

comes from its hooking into the the JavaScript engine

of a browser to get the final, expanded version of Java-

Script code to address the issue of deobfuscation. Com-

pared to other classifier-based tools, ZOZZLE uses contex-

tual information available in the program abstract syntax

tree (AST) to perform fast, scalable, yet precise malware

detection.

This paper contains an extensive evaluation of our

techniques. We evaluated ZOZZLE in terms of perfor-

mance and malware detection rates (both false posi-

tives and false negatives) using over 1.2 million pre-

categorized code samples. ZOZZLE has an extremely low

false positive rate of 0.0003%, which is less than one in

a quarter million. Despite this high accuracy, the ZOZZLE

classifier is fast, with a throughput at over one megabyte

of JavaScript code per second.
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Shellcode obfuscation strategy Spray CVE

unescape X 2009-0075

unescape X 2009-1136

unescape X 2010-0806

unescape X 2010-0806

none ✗ 2010-0806

hex, unescape X none

replace, unescape ✗ none

unescape X 2009-1136

replace, hex, unescape X 2010-0249

custom, unescape X 2010-0806

unescape X none

replace, array X 2010-0249

unescape X none

unescape X 2009-1136

replace, unescape ✗ none

replace, unescape X none

unescape X 2010-0249

unescape X 2010-0806

hex, unescape X 2008-0015

unescape ✗ none

replace, unescape ✗ none

unescape, array X 2010-0249

replace, unescape X 2010-0806

replace, unescape X 2010-0806

replace, unescape X none

replace, unescape ✗ none

Figure 19: Malware samples dissected and categorized.
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Figure 20: Classification accuracy as a function of training set size for

hand-picked and automatically selected features.

A Hand-Analyzed Samples

In the process of training the ZOZZLE classifier, we hand-

analyzed a number of malware samples. While there is a

great deal of duplication, there is a diversity of malware

writing strategies found in the wild.

Figure 19 provides additional details about each

unique hand-analyzed sample. Common Vulnerabilities

and Exposures (CVEs) are assigned when new vulnera-

bilities are discovered and verified, and these identifiers

are listed for all the exploits in Figure 19 that target some

vulnerability. Shellcode and nopsled type describe the

method by which JavaScript or HTML values are con-

verted to the binary data that is sprayed throughout the

heap. Most shellcode and nopsleds are written as hex-

adecimal literals using the \x escape sequence. These

cases are denoted by “hex” in Figure 19.

Many scripts use the %u encoding and are converted

to binary data with the JavaScript unescape function. Fi-

nally, some samples include short fragments inserted re-

peatedly (such as the string CUTE, which appears in sev-

eral examples) that are removed or replaced by a call to

the JavaScript replace function.

In a few cases, the exploit sample does not contain

one or more of the components of a heap spray attack

(shellcode, spray, and vulnerability). In these cases, the

script is delivered with one or more of the other samples

for which it may provide shellcode, perform a spray, or

trigger a vulnerability.

B Additional Experimental Data

Training set size: To understand the impact of training

set size on accuracy and false positive/negative rates, we

trained classifiers using between 1% and 25% of our be-

nign and malicious datasets. For each training set size,

ten classifiers were trained using different randomly se-

lected subsets of the dataset for both hand-picked and au-

tomatic features. These classifiers were evaluated with

respect to overall accuracy in Figure 20 and false posi-

tives/negatives in Figure 21a.

The figures show that training set size does have an

impact on the overall accuracy and error rates, but that

a relative small training set (< 5% of the overall data

set) is sufficent to realize most of the benefit. The false

positive negative rate using automatic feature selection

benefits the most from additional training data, which is

explained by the fact that this classifier has many more

features and benefits from more examples to fully train.

Feature set size: To understand the impact of feature set

size on classifier effectiveness, we trained the 1-level au-

tomatic classifier, sorted the selected features by their χ2

value, and picked only the top N features. For this ex-

periment (due to the fact that the training set used is ran-

domly selected), there were a total of 1,364 features orig-

inally selected during automatic selection.

Figure 21b shows how the false positive and false neg-

ative rates vary as we change the size of the feature set to

contain 500, 300, 100, and 30 features, respectively.

The figures show that the false positive rate remains

low (and drops to 0 in some cases) as we vary the feature

set size. Unfortunately, the false negative rate increases
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Figure 21: False positive and false negative rates.

function dF(s)

{

var s1 = unescape(s.substr(0,s.length - 1)),

t = "";

for(i = 0; i < s1.length; i++)

t += String.fromCharCode(

s1.charCodeAt(i) -

s.substr(s.length - 1,1));

document.write(unescape(t))

}

Figure 22: Code unpacker detected by anti-virus tools.

steadily with smaller feature set sizes. The implication

is that while a small number of features can effectively

identify some malware (probably the most commonly

observed malware), many of the most obscure malware

samples will remain undetected if the feature set is too

small.

C Additional Code Samples

Figure 22 shows a code unpacker that is incorrectly

flagged by overly eager anti-virus engines. Of course,

the unpacker code itself is not malicious, even though the

contents it may unpack could be malicious. Finally, Fig-

ure 23 shows an example of code that anti-virus engines

overeagerly deem as malicious.

document.write(unescape(’%3C%73%63...’));

dF(’%264Dtdsjqu%264Fepdvnfou/xsjuf%2639

%2633%264Dtdsjqu%2631tsd%264E%266D%2633%2633

%2C%2633iuuq%264B00jutbmmcsfbltpgu/ofu0uet0jo/

dhj%264G3%2637tfpsfg%264E%2633

%2CfodpefVSJDpnqpofou%2639epdvnfou/sfgfssfs

%263%3A%2C%2633%2637qbsbnfufs%264E

%2635lfzxpse%2637tf%264E%2635tf%2637vs

%264E2%2637IUUQ%60SFGFSFS%264E%2633%2C

%2631fodpefVSJDpnqpofou%2639epdvnfou/VSM

%263%3A%2C%2633%2637efgbvmu%60lfzxpse

%264Eopuefgjof%2633%2C%2633%266D%2633

%264F%264D%266D0tdsjqu%264F%2633%263%3A

%264C%264D0tdsjqu%264F%261B%264Dtdsjqu%264F

%261Bjg%2639uzqfpg%2639i%263%3A%264E

%264E%2633voefgjofe%2633%263%3A%268C%261

%3A%261B%261%3Aepdvnfou/xsjuf%2639%2633

%264Djgsbnf%2631tsd%264E%2638iuuq

%264B00jutbmmcsfbltpgu/ofu0uet0jo/dhj%264G4

%2637tfpsfg%264E%2633%2CfodpefVSJDpnqpofou

%2639epdvnfou/sfgfssfs%263%3A%2C%2633

%2637qbsbnfufs%264E%2635lfzxpse%2637tf

%264E%2635tf%2637vs%264E2%2637IUUQ%60SFGFSFS

%264E%2633%2C%2631fodpefVSJDpnqpofou

%2639epdvnfou/VSM%263%3A%2C%2633%2637efgbvmu

%60lfzxpse%264Eopuefgjof%2638%2631xjeui

%264E2%2631ifjhiu%264E2%2631cpsefs%264E1

%2631gsbnfcpsefs%264E1%264F%264D0jgsbnf

%264F%2633%263%3A%264C%2631%261B%268E%261Bfmtf

%2631jg%2639i/joefyPg%2639%2633iuuq

%264B%2633%263%3A%264E%264E1%263%3A%268C%261B%261

%3A%261%3Axjoepx/mpdbujpo%264Ei%264C%261B

%268E%261B%264D0tdsjqu%264F1’)

Figure 23: Anti-virus false positive. A portion of the file after

unescape is removed to avoid triggering AV on the final PDF of this

paper.


