
ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Sanchez, Daniel, and Christos Kozyrakis. “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems.”
Proceedings of the 40th Annual International Symposium on
Computer Architecture - ISCA ’13 (2013), Tel-Aviv, Israel, June
23-27, 2013, ACM, p.475-486.

As Published http://dx.doi.org/10.1145/2485922.2485963

Publisher Association for Computing Machinery

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/90820

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90820
http://creativecommons.org/licenses/by-nc-sa/4.0/

ZSim: Fast and Accurate Microarchitectural Simulation
of Thousand-Core Systems

Daniel Sanchez
Massachusetts Institute of Technology

sanchez@csail.mit.edu

Christos Kozyrakis
Stanford University

christos@ee.stanford.edu

ABSTRACT

Architectural simulation is time-consuming, and the trend
towards hundreds of cores is making sequential simulation
even slower. Existing parallel simulation techniques either
scale poorly due to excessive synchronization, or sacrifice ac-
curacy by allowing event reordering and using simplistic con-
tention models. As a result, most researchers use sequential
simulators and model small-scale systems with 16-32 cores.
With 100-core chips already available, developing simulators
that scale to thousands of cores is crucial.

We present three novel techniques that, together, make
thousand-core simulation practical. First, we speed up de-
tailed core models (including OOO cores) with instruction-
driven timing models that leverage dynamic binary trans-
lation. Second, we introduce bound-weave, a two-phase
parallelization technique that scales parallel simulation on
multicore hosts efficiently with minimal loss of accuracy.
Third, we implement lightweight user-level virtualization
to support complex workloads, including multiprogrammed,
client-server, and managed-runtime applications, without
the need for full-system simulation, sidestepping the lack
of scalable OSs and ISAs that support thousands of cores.

We use these techniques to build zsim, a fast, scalable,
and accurate simulator. On a 16-core host, zsim models a
1024-core chip at speeds of up to 1,500 MIPS using simple
cores and up to 300 MIPS using detailed OOO cores, 2-3 or-
ders of magnitude faster than existing parallel simulators.
Simulator performance scales well with both the number
of modeled cores and the number of host cores. We vali-
date zsim against a real Westmere system on a wide variety
of workloads, and find performance and microarchitectural
events to be within a narrow range of the real system.

1. INTRODUCTION
Computer architects rely extensively on simulation to ex-

plore and evaluate future architectures. Unfortunately, ac-
curate microarchitectural simulation is time-consuming, and
the trend towards chip-multiprocessors with a large number
of cores is making conventional sequential simulators even

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

slower. For example, gem5, Flexus, and MARSS [4, 29, 51]
achieve simulation speeds of about 200 KIPS. At this speed,
it takes around eight hours to simulate one core for a second.
Simulating a thousand-core chip for one second would take
almost a year.
Ideally, a simulator should satisfy four desirable proper-

ties: it should be accurate, fast, execute a wide range of
workloads, and be easy to use and modify. Sequential soft-
ware simulators are not fast enough for large-scale multi-core
chips. The two main alternatives, FPGA-based simulators
and parallel software simulators, make different trade-offs,
but none of them satisfies all four requirements. FPGA-
based simulation frameworks are fast and accurate [12, 47],
but they take significant effort to develop and use. Paral-
lel simulation seems a natural fit for highly parallel chips,
but poses significant difficulties as well. Simulators based on
parallel discrete event simulation (PDES) [10, 34] suffer from
poor scalability due to frequent synchronization. Other par-
allel simulators [8, 27] relax synchronization requirements
to achieve scalability. In doing so, they allow microarchitec-
tural events to occur out of order, sacrificing accuracy and
making it difficult to model the actual behavior of contented
resources such as shared caches and memory controllers. As
a result, most researchers still use sequential simulators and
limit their studies to architectures with 16-32 cores. With
chips that feature hundreds of threads and cores already on
the market [45, 48], developing simulation techniques that
scale efficiently into the thousands of cores is critical.
In this paper, we introduce three techniques that, to-

gether, enable fast, accurate, and scalable simulation:
1. We speed up sequential simulation by 1-2 orders of magni-

tude by developing instruction-driven timing models that
leverage dynamic binary translation (DBT) to perform
most of the work in a core’s timing model during program
instrumentation, reducing the overheads of conventional
cycle-driven or event-driven core models. As a result,
we can simulate a Westmere-class OOO core including
features such as branch prediction, limited fetch and is-
sue widths, and µop fission, at 20 MIPS, 10-100× faster
than conventional simulators. We can also run a simpler
IPC = 1 core model at up to 90 MIPS.

2. We introduce bound-weave, a two-phase parallelization al-
gorithm that scales parallel simulation without significant
overheads or loss of accuracy. We observe that, over small
intervals of a few hundreds to thousands of cycles, instruc-
tions from different cores interact timing-wise on shared
resources, but their interactions rarely affect the microar-
chitectural components accessed by each instruction (e.g.,
the caches accessed to serve a miss). We exploit this in-

1

Simulator Engine Parallelization Detailed core Detailed uncore Full

system

Multiprocess

apps

Managed

apps

gem5/MARSS Emulation Sequential OOO Yes Yes Yes Yes
CMPSim DBT Limited skew No MPKI only No Yes No
Graphite DBT Limited skew No Approx contention No No No

Sniper DBT Limited skew Approx OOO Approx contention No Trace-driven only No
HORNET Emulation PDES (p) No Yes No Trace-driven only No
SlackSim Emulation PDES (o+p) OOO Yes No No No

ZSim DBT Bound-weave DBT-based OOO Yes No Yes Yes

Table 1: Comparison of microarchitectural simulators: techniques, timing models, and supported workloads.

sight by dividing parallel simulation in two phases. We
first simulate cores in parallel for an interval of a few thou-
sand cycles, ignoring contention and using zero-load (i.e.,
minimum) latencies for all memory accesses, and record
a trace of memory accesses (including caches accessed,
invalidations, etc.). In the second phase, we perform par-
allel, event-driven simulation of the interval to determine
the actual latencies. Since the possible interactions be-
tween memory accesses are known from the first phase,
this timing simulation incurs much lower synchronization
overheads than conventional PDES techniques, while still
being highly accurate.

3. Due to the lack of scalable OS or ISA support beyond tens
of cores, thousand-core simulations must be user-level
for now. However, user-level simulators support a lim-
ited range of workloads. We implement lightweight user-
level virtualization, a technique that uses DBT to give
user processes a virtualized system view, enabling sup-
port for multiprogrammed, managed-runtime, and client-
server workloads that are beyond the realm of conven-
tional user-level simulators.
We use these three techniques to build zsim, a parallel

multicore simulator designed from the ground up to lever-
age the capabilities of current multicore systems. ZSim is
fast, accurate, and scalable. It can model in-order and out-
of-order cores, heterogeneous systems with arbitrarily con-
figured memory hierarchies, includes detailed timing mod-
els, and can run a wide range of x86 workloads. On a 16-
core Xeon E5 host, zsim simulates a 1024-core chip at up
to 1,500 MIPS with simple timings models, and up to 300
MIPS with detailed, validated core and uncore models. This
is about 2-3 orders of magnitude faster than existing paral-
lel simulators like Graphite and Sniper [8, 27], and around
4 orders of magnitude faster than sequential simulators like
gem5 and MARSS [4, 29]. ZSim’s performance scales well
with the number of simulated and host cores. We validate
zsim against existing systems and find its performance and
microarchitectural events, such as MPKI, to be commonly
within 10% of Westmere-class chips.

The rest of the paper is organized as follows. Section 2
presents an overview of simulation techniques. Section 3
describes the three techniques underpinning zsim. Section 4
presents a comprehensive evaluation of zsim’s accuracy and
performance. Finally, Section 5 concludes the paper.

2. SIMULATION TECHNIQUES
Despite recent progress on fast and general FPGA-based

simulators [12, 19, 31, 47], these frameworks require sub-
stantial investment in specialized multi-FPGA boards [50]
and are difficult to use for architectural exploration as they
involve complex FPGA toolchains with hours-long compiles.
Consequently, we focus on software-based simulation.

Simulation techniques can be classified along many dimen-
sions: user-level vs full-system; functional vs timing; trace-
driven vs execution-driven; cycle-driven vs event-driven [26].
We focus on execution-driven, timing simulators, which are
the preeminent tool for evaluation of future designs [1]. With
the goals of high sequential performance, scalability, accuracy
and usability in mind, we categorize simulation techniques
along the axes discussed in the following paragraphs. We
focus on techniques instead of simulators; each simulator
implements a different mix or variation of these techniques.
Table 1 compares the key characteristics and features of rep-
resentative, current simulators.
Emulation vs instrumentation: The choice between em-
ulation and instrumentation is a crucial factor for simulation
performance. An emulation-based simulator decodes each
instruction and invokes both functional and timing models
with some coordination between the two [26]. Emulation is
the natural choice when the simulated ISA is different from
the host’s, and many simulators choose it to be portable.
gem5 [4, 5, 25], Flexus [51] and MARSS [29] are current
representative emulation-based systems. They can simulate
up to 200 KIPS with detailed core and memory models and
up to few MIPS with simpler timing models.
An instrumentation-based or direct-execution simulator

adds instrumentation calls to the simulated binary, e.g. in-
strumenting every basic block and memory operation to
drive the timing model. Instrumentation leverages the host
machine it runs on to perform functional simulation, and can
be much faster than emulation if the timing models are also
fast. Moreover, it eliminates the need for a functional model,
which can be difficult for complex ISAs. Early instrumenta-
tion-based simulators such as WWT [33] used static binary
translation, while Embra [52] was the first to leverage more
powerful dynamic binary translation. Since x86 is preva-
lent in the desktop and server segments, and the impact of
ISA is less relevant due to sophisticated CISC to RISC µop
decoding [6], several recent simulators use instrumentation.
CMPSim [18] (unreleased) and Graphite [27] achieve about
10 MIPS with simple timing models. Instrumentation-based
systems are often extended with capabilities such as magic
NOPs to model new instructions [25] and memory shadow-
ing to simulate speculative techniques (OOO cores or trans-
actional memory) and fault injection [27, 42].
Parallelization strategies: Given the widespread avail-
ability of multicore hosts, parallel simulation is an attractive
way to improve performance. However, parallelizing a sim-
ulator without sacrificing its accuracy is challenging. Paral-
lel microarchitectural simulators are specialized parallel dis-
crete event simulators (PDES) [14]. In PDES, events are dis-
tributed among host cores and executed concurrently while
maintaining the illusion of full order. PDES algorithms are
either pessimistic, synchronizing every time an ordering vi-
olation may happen, or optimistic, executing speculatively

2

and rolling back on ordering violations. HORNET is a pes-
simistic PDES simulator [34], while SlackSim (unreleased)
uses both pessimistic and optimistic PDES [10].

Multicore timing models are extremely challenging to par-
allelize using pessimistic PDES, as cores and caches are a
few cycles away and interact often. Hence, preserving full
accuracy adds significant overheads. Pessimistic PDES only
scales when the timing models for each component are so
detailed that simulation is very slow to begin with [34]. Op-
timistic PDES simulators are hard to develop as timing mod-
els need to support abort and rollback, and incur large exe-
cution time overheads [9]. As a result, PDES simulators are
not competitive with performant sequential simulators.
Approximation strategies: Since accurate PDES is hard,
a scalable alternative is to relax accuracy and allow order vi-
olations. Graphite [27] simulates cores in parallel allowing
memory accesses to be reordered, keeping their slack limited
to a few thousand simulated cycles. HORNET and SlackSim
can also operate in this mode. Unfortunately, contention
cannot be modeled using accurate microarchitectural models
because events arrive out of order. Graphite simulates con-
tention using queuing theory models, which prior research
has shown to be inaccurate [46], as will we in Section 4.

Approximation techniques are also used to accelerate the
simulation of individual components. For instance, archi-
tects often use IPC=1 core models instead of detailed OOO
core models to evaluate caching optimizations. Sniper ex-
tends Graphite with an OOO model using interval simula-
tion, an approximate technique that only models ROB stalls
due to misses and mispredictions. Sniper achieves 1-2 MIPS
on an 8-core host [8]. CMPSim reaches up to 10 MIPS on a
1-core P4, but it simulates cache MPKIs [18], not timing.
Sampling: Robust statistical sampling [51, 53] and auto-
mated techniques to simulate a small, representative por-
tion of execution [44] are also widely used to reduce simula-
tion time of long-running workloads. These techniques are
complementary and orthogonal to the need for fast simu-
lation. Even with sampling, conventional simulators would
take months to warm up and simulate a thousand-core chip
for tens of millions of cycles, the typical sample length.
Concurrent simulations: Architects scale out to parallel
clusters using sequential simulators by running independent
simulations. This is often insufficient, much like running
multiple slow sequential programs does not eliminate the
need for fast parallel programs. Concurrent simulations are
practical for large design space explorations or sensitivity
studies, but the design process often relies on running one
or a few latency-critical simulations at a time.
Full-system vs user-level simulation: Full-system sim-
ulators model features such as privileged modes and emulate
peripheral devices in order to support an OS. They can run
complex multithreaded and multiprocess workloads, and ap-
plications that exercise networking and I/O. gem5, Flexus,
and MARSS take this approach.

User-level simulators model faithfully only the user por-
tion of applications. They are much easier to develop and
use as there is no need for device timing models, large disk
images, or booting an OS. However, they typically only
support basic workloads. For example, Graphite can only
simulate a single multithreaded application. Sniper sup-
ports multiple single-threaded applications but only in trace-
driven mode. Applications often need to be modified or com-
piled against special libraries (e.g., Graphite). Apart from

not faithfully modeling workloads with significant OS time,
many user-level simulators cannot run workloads that barely
use the OS. For example, they cannot run applications that
launch more threads than cores, common in managed run-
times such as the JVM, or workloads that are sensitive to
system time, e.g., client-server workloads would time out as
simulated time advances much more slowly than real time.
Since zsim targets simulation of thousand-core chips, it

has to be a user-level simulator for now. No current main-
stream OS scales to thousands of cores, and ISAs also limit
the number of cores. For example, x86’s xAPIC only sup-
ports up to 256 cores. To achieve full-system simulation
at that scale, we would first need to perform significant re-
search on the OS and develop custom ISA modifications. In-
stead, we use virtualization techniques that allow us to run
a much wider set of workloads than existing frameworks, in-
cluding multithreaded, multiprogrammed, managed (Java,
Scala, Python), and client-server applications.
Several trends suggest that user-level simulation is suf-

ficient for many experiments with thousand-core systems.
First, a prevailing approach for multicore OSes is to assign
groups of cores to each application [7, 21], having user-level
runtimes schedule work within each group [28, 40]. OS tasks
execute on a separate group of cores to minimize interfer-
ence with other workloads [32]. Second, user-level network-
ing stacks [49] are increasingly popular due to their lower
overheads, allowing user-level simulators to capture most
networking effects. For example, the PARSEC suite [3] fea-
tures workloads with user-level TCP/IP. Finally, important
system-related performance effects such as TLB misses and
page table walks can be modeled without running an OS.

3. ZSIM TECHNIQUES
We now present the three simulation techniques that allow

zsim to achieve high speed and high accuracy when mod-
eling thousand-core chips. First, we accelerate the simu-
lation of processor cores using dynamic binary translation
and instruction-driven timing models. Next, we parallelize
multicore simulation using the two-phase bound-weave al-
gorithm, which breaks the trade-off between accuracy and
scalability. Finally, we describe lightweight user-level virtu-
alization, which allows us to accurately simulate most of the
workloads that full-system simulators can handle.

3.1 Fast Sequential Simulation using DBT
To make modeling thousand-core chips practical, we need

a 100-1,000× speedup over existing simulators. Paralleliza-
tion alone is insufficient to reach such speedups, as current
hosts have a few tens of cores. Fortunately, we can also
speed up sequential simulation by 10-100×. ZSim uses an
instrumentation-based approach to eliminate the need for
functional modeling of x86. Specifically, we use Pin [22] to
perform dynamic binary translation (DBT). With DBT, we
can push most of the work done by timing models to the
instrumentation phase, doing it once per instrumented in-
struction instead of every time the instruction is simulated.
Our insight is to structure detailed timing models for OOO
cores in a manner that maximizes this opportunity.
Simple core model: For a simple core model (IPC=1 for
all but load/store instructions), we instrument each load,
store, and basic block to call into the core’s timing model.
The timing model simply keeps a cycle count, instruction
count, and drives the memory hierarchy. Instruction fetches,

3

4052db:

mov -0x38(%rbp),%rcx

lea -0x2040(%rbp),%rdx

add %rax,%rbx

mov %rdx,-0x2068(%rbp)

cmp $0x1fff,%rax

jne 40530a

BasicBlock(DecodedBBL)

Load(addr = -0x38(%rbp))

mov -0x38(%rbp),%rcx

lea -0x2040(%rbp),%rdx

add %rax,%rdx

mov %rdx,-0x2068(%rbp)

Store(addr = -0x2068(%rbp))

cmp $0x1fff,%rax

jne 10840530a

Decoded BBL uops

Type Src1 Src2 Dst1 Dst2 Lat PortMsk

Load rbp rcx 001000

Exec rbp rdx 3 110001

Exec rax rdx rdx rflgs 1 110001

StAddr rbp S0 1 000100

StData rdx S0 000010

Exec rax rip rip rflgs 1 000001

Instrumented code Original code (1 basic block) OOO Simulation Load, Store: Record address

BasicBlock: Simulate the previous BBL

(1) IFetch + BPred: Adjust fetchClock

(2) For each uop:

(1) Account decoder stalls, adjust decodeClock

(2) Find minimum dispatch cycle using scoreboard

(3) Account issue width and limited RRF width for non-

captured operands, adjust issueClock

(4) Schedule in first cycle > dispatchCycle that has a free

port compatible with uop ports

(5) If load or store uop, find request cycle, simulate access

(6) Set scoreboard’s dst regs to execCycle + uop latency

(7) Retire, account for ROB width, adjust retireClock

Figure 1: OOO core modeling in zsim using µop decoding at instrumentation time and instruction-driven timing simulation.

loads, and stores are simulated at their appropriate cycles by
calling into the cache models, and their delays are accounted
in the core’s cycle count. This model can achieve up to 90
MIPS per simulated core (see Section 4).
OOO core model: Unfortunately, the simple core model is
not representative of the OOO cores used in server, desktop,
and mobile chips. Hence, we developed an OOO core model
that closely follows the Westmere microarchitecture. We
model branch prediction, instruction fetch including wrong-
path fetches due to mispredictions; instruction length pre-
decoder and decoder stalls, instruction to µop decoding,
macro-op fusion; issue stalls, limited issue window width and
size, register renaming with limited bandwidth; dataflow
execution with accurate µop to execution port mappings,
µop latencies, and functional unit contention; load-store or-
dering and serialization including load forwarding, fences,
and TSO; and a reorder buffer of limited size and width.
In the interest of speed, we do not model some features,
mainly mispredicted instruction execution beyond instruc-
tion fetches. Since Westmere recovers from mispredictions
in a fixed number of cycles and seems to cancel in-flight
data misses, we can model the primary effect of mispredic-
tions without executing wrong-path instructions. We also
do not model a few components that would not add major
overheads, but that seem to have a minor performance effect
in Westmere for most or all of the workloads we have stud-
ied: the BTB, the loop stream detector, an RRF of limited
size, and micro-sequenced instructions. To closely match
the Westmere core, we used Fog’s microarchitectural analy-
sis [13] and an extensive suite of microbenchmarks that use
performance counters to pinpoint inaccuracies and derive
exact instruction-µop decodings, ports, and latencies. After
extensive validation (see Section 4), we believe that most of
the small discrepancies between the modeled core and the
real core stem from unknown Westmere details, such as the
branch predictor organization or the exact decoder organi-
zation. Note that the parameters of the OOO model can be
configured to simulate other existing or proposed cores.

Conventional simulators with detailed OOO core models
execute at around 100 KIPS [4, 8]. ZSim accelerates OOO
core models by pushing most of the work into the instru-
mentation phase, as shown in Figure 1. We perform in-
struction-µop decoding at instrumentation time, and create
a basic block descriptor that includes a µop representation
in a format optimized for the timing model. The format
includes µop type, feasible execution ports, dependencies,
and latency. For simplicity, we produce a generic, approxi-
mate decoding of x86 instructions that are barely used (e.g.,
x87). These are 0.01% of dynamic instructions in our bench-
marks. Additionally, we find the delays introduced by the
in-order frontend (instruction length predecoder and 4-1-1-1

decoders) at instrumentation time. We interface with Pin’s
translation cache so that, when Pin invalidates a code trace,
we free the corresponding translated basic blocks.
Moreover, we structure the OOO core model in an in-

struction-driven manner. We call the core model once per
µop, simulating all stages for the µop. Each stage (fetch,
decode, issue, retire) maintains a separate clock. As each
µop passes through each stage, it alters the stage clocks.
To model OOO execution, we maintain a window of future
cycles relative to the issue clock, keeping track of the exe-
cution ports used by previously scheduled µops. Accuracy
is maintained by tracking interdependencies between stage
clocks. For example, when a µop fills the ROB, the issue
stage clock is increased to the cycle when the head-of-line
µop is retired. We essentially stall the next µop at the is-
sue stage until an ROB entry is available. We track similar
dependencies between stage clocks to model mispredictions,
I-cache misses, decoder stalls, and issue stalls.
The instruction-driven approach uses the µop stream to

drive the timing model directly, avoiding the overheads of
conventional cycle-driven models, where each pipeline stage
maintains its per-cycle microarchitectural state and is sim-
ulated every cycle to advance its state. It also avoids the
overheads of event-driven models, where cores or individual
stages control their timing by enqueuing timestamped events
into a priority queue. The combination of DBT and instruc-
tion-driven models allows us to achieve 20 MIPS per simu-
lated core, and slowdowns of about 200×. This is faster than
Sniper [8], which uses approximate OOO models (though
slower memory system simulation likely plays a role in the
difference), and is comparable to FastSim, a cycle-accurate
OOO model based on pipeline state memoization [42]. How-
ever, FastSim is significantly more complex: pipeline state
must be carefully encoded to make memoization practical,
requiring a domain-specific language to do so with reason-
able effort [43].

The instruction-driven approach imposes only two restric-
tions. First, the schedule of a given µop must not depend on
future µops. In other words, we assume that the instruction
window prioritizes the µop that comes first in program order,
which is what OOO cores typically do. Second, the execu-
tion time of every µop must be known in advance. This is not
the case for memory accesses, due to cache misses and con-
tention on shared caches. For now, we assume uncontended
memory accesses, and address contention in Section 3.2.

3.2 Scalable and Accurate Parallel Simulation
Even though parallel simulation is a natural fit for mod-

eling multi-core chips, conventional parallelization schemes
suffer from limited scalability or limited accuracy, depending
on how they model the interactions between concurrent ac-

4

10-6

10-5

10-4

10-3

10-2

Fr
ac

tio
n
of
 a
cc
es
se
s

1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K 1K 10
K

10
0K

barnes blkscholes canneal fft fldanimate lu ocean radix swaptions water

Figure 2: Fraction of memory accesses that cause path-altering interference for 1, 10 and 100 Kcycle intervals. The simulated
system has 64 cores, private split 32KB L1s, an unified private L2, and a 16-bank 16-way shared L3. Note the log scale.

cesses from different cores. We present an event-driven par-
allelization technique that breaks this trade-off. Our main
insight is that, at a small timescale (∼1,000 cycles), most
concurrent accesses happen to unrelated cache lines. When
accesses are unrelated, simulating them approximately and
out of order first, then simulating their detailed timing in
order, is equivalent to simulating them completely in order.
Characterizing interference: We categorize concurrent
interfering accesses in two classes. Two accesses suffer from
path-altering interference if simulating them out of order
changes their paths through the memory hierarchy. For ex-
ample, two writes to the same line from different cores suffer
from path-altering interference, as simulating them out of
order affects the misses and invalidations simulated. Path-
altering interference occurs when either (a) two accesses ad-
dress the same line, except if they are both read hits, or (b)
the second access, if simulated out of order, evicts the first
access’s line, causing it to miss. In contrast, two accesses
suffer from path-preserving interference if simulating them
out of order changes their timing, but does not affect their
paths through the memory hierarchy, including the resulting
messages and transitions such as evictions and invalidations.
For example, two accesses to different cache sets in the same
bank suffer from path-preserving interference.

Our insight is that, if we allow reorderings only within
a small interval, e.g., within 1,000 cycles, path-altering in-
terference is exceedingly rare. Figure 2 shows the fraction
of accesses that suffer from path-altering interference when
simulating a 64-core chip with private L2s and a shared 16-
way L3, using intervals of 1K, 10K, and 100K cycles on
PARSEC and SPLASH-2 applications, many with frequent
read-write sharing and contended critical sections. Path-al-
tering interference is negligible with small intervals (note the
logarithmic scale). Practically all path-altering interference
is due to same-line accesses; interference due to evictions is
extremely rare unless we use shared caches with unrealisti-
cally low associativity (1 or 2 ways). Finally, only a subset
of the accesses with path-altering interference can affect the
functionality of the simulated program (e.g., by altering the
lock acquisition order). Consequently, this functional inter-
ference is also rare. Prior work has observed this effect, and
exploited it to e.g., speed up deterministic replay [15].
Bound-weave overview: Since path-altering interference
is rare, we maintain accuracy only on path-preserving in-
terference. To this end, we develop the bound-weave algo-
rithm, which operates in two phases. The simulation pro-
ceeds in small intervals of a few thousand cycles each. In
the bound phase of the interval, each core is simulated in
parallel assuming no interference at all, injecting zero-load
latencies into all memory accesses and recording their paths

through the memory hierarchy. The bound phase places a
lower bound on the cycle of each microarchitectural event.
The second phase, called the weave phase, performs parallel
microarchitectural event-driven simulation of these accesses,
weaving together the per-core traces from the bound phase,
and leveraging prior knowledge of the events to scale effi-
ciently. Figure 3 gives an overview of this scheme. We also
profile accesses with path-altering interference that are in-
correctly reordered. If this count is not negligible, we (for
now, manually) select a shorter interval.

3.2.1 Bound Phase

In the bound phase, zsim uses one host thread per simu-
lated core. For each thread, it instruments all loads, stores
and basic blocks to drive the timing models. Threads exe-
cute in parallel and sync on an interval barrier when their
cores’ simulated cycles reach the interval length (e.g., 10K
cycles). The barrier serves three purposes:
1. Limit the skew between simulated cores: Barriers are the

simplest and most common approach to bound the skew
between cores [11, 33]. While Graphite uses peer-to-peer
synchronization to limit skew [27], this is only advanta-
geous for simulations spread across loosely coupled clus-
ters, where synchronization is much more expensive. On
a multicore host, barriers barely constrain parallelism.

2. Moderate parallelism: The barrier only lets as many
threads as host hardware threads run concurrently. For a
1024-core simulation on a host with 32 hardware threads,
the barrier only wakes up 32 threads at the beginning
of each interval. When a thread finishes its interval, it
wakes up the next available thread for that interval, until
no more threads are left. This greatly improves scalability
since it avoids overwhelming the host OS scheduler.

3. Avoid systematic bias: At the end of each interval, the
barrier randomly shuffles the thread wake-up order. This
avoids consistently prioritizing a few threads, which in
pathological cases can cause small errors that add up to
significant inaccuracies. It is also a natural way to add
non-determinism, which improves robustness [2].

Memory hierarchy: While the bound phase allows skews
among cores, we still need a model for the memory hierar-
chy that maintains coherence in the presence of concurrent
accesses to potentially conflicting addresses. Other parallel
simulators use message passing between concurrent timing
models to address this issue [27, 33]. We develop a shared-
memory approach that is better suited to multicore hosts.
Each cache model contains a fully decoupled associative

array, replacement policy, coherence controller, and weave
timing model. This sacrifices some performance, but en-
hances modularity and ease of use. We maintain coherence

5

Core 1

L1I

Core 0 … Core 14 Core 15

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

Domain 0

Cores 0-3

L3 Bank 0

Mem Ctrl 0

Domain 3

Cores 12-15

L3 Bank 3

Mem Ctrl 1

Domain 1

Cores 4-7

L3 Bank 1

Domain 2

Cores 8-11

L3 Bank 2

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3
Core 0

Core 3

Core 14

Core 15

Core 7

Core 11

Core 1

Core 9

Core 10

Core 2

Core 8

Core 4

Core 7

Core 5

Core 12

Core 6

Bound Phase: Zero-load latency simulation until cycle

1000, gather traces

Domain 0

Domain 1

Domain 2

Domain 3

Weave Phase: Parallel event-driven simulation of
gathered traces until actual cycle 1000

Feedback: Adjust core cycles

Core 0 Core 3

Core 14

Core 15

Core 7

Core 5

Core 12

Core 6

Bound Phase

(until cycle 2000)

…

Host

thread 0
Host

thread 1
Host

thread 2
Host

thread 3

Figure 3: Bound-weave simulation of a 16-core chip using 4 host cores. Microarchitectural components (shown left) are divided
across four domains. In the bound phase of each interval, cores are simulated in parallel assuming no contention. The weave
phase uses one thread per domain to simulate detailed timing. At the end of the interval, the cycle counts of each core are
adjusted to account for the additional latency modeled in the weave phase (which is always ≥ 0).

in the order we simulate the accesses in the bound phase.
This is inaccurate only for requests to the same line, which
we have shown are rare. On an access, the core first calls into
its L1, which, on a miss, calls into the next level of the hierar-
chy. Each cache level can trigger invalidations to lower levels
and evictions to upper levels. Because accesses go both up
and down the hierarchy, conventional locking schemes that
rely on maintaining a fixed order for lock acquisitions are
not applicable, and would deadlock. Instead, we develop a
custom protocol that relies on the communication patterns
through the memory hierarchy. Each cache has two locks,
one for accesses up (fetches and writebacks), and another
for accesses down (invalidations and downgrades). Accesses
acquire these locks using a scheme similar to spider locking
that prioritizes accesses down over accesses up. Accesses up
are exposed to only one kind of race, receiving an invalida-
tion while traversing cache levels. This scheme is deadlock-
and livelock-free, and avoids global or coarse-grained locks,
allowing accesses to different caches and banks to proceed
concurrently.
Tracing: As accesses are simulated, each core, cache and
memory controller model records an event trace to be used
in the weave phase. We only record accesses that miss be-
yond the private levels of the cache hierarchy. Contention
in those levels is predominantly due to the core itself, so it
is modeled in the bound phase. Events are generated fre-
quently and dynamically, so we use per-core slab allocators
and recycle slabs in LIFO order as soon as their interval
is fully simulated to avoid the performance overheads and
scalability issues of generic dynamic memory allocation.

3.2.2 Weave Phase

The weave phase performs parallel event-driven simula-
tion of the per-core event traces from the bound phase,
dividing events among parallel event queues, and simulat-
ing them in full order. The basic problem of conventional
PDES-based engines is the need for very frequent synchro-
nization between event queues, as any event may in principle
produce an event for another queue, for a time only a few
cycles ahead. By exploiting prior knowledge about event
dependencies, we synchronize only when needed.
Events: Figure 4 shows an example event trace for core 0,
including events from different L3 banks and memory con-
trollers. Each event is associated with a specific component
(e.g., a cache bank), and its dependencies are fully speci-
fied: each event has one or more parents, and zero or more
children. An event cannot be executed until all its parents
have finished. When the last parent finishes, the event is

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

Core0 @ 290

L3b3 @ 270

HIT

Recorded Core 0 event trace

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

L3b3 @ 270

HIT

Core0 @ 290

Domain 1

Domain 3

Domain 0

Legend

Trace with domain crossing events and crossing dependencies

Object event

Event dependency

Domain crossing event

Req –resp crossing dependency Same-domain crossing dependency

Figure 4: Example event trace from bound phase (of core
0 in Figure 3), and its division in domains with domain
crossing events inserted for simulation in the weave phase.

enqueued into a priority queue, to be executed at its appro-
priate cycle, determined by the parent’s finish cycle and a
fixed delay between the parent and child. Once the event is
dequeued for execution, it can either be requeued at a later
cycle, or marked as completed. At that point, it notifies
all its children, which may become available for execution.
Each timing model defines its own events. This is simi-
lar to a conventional event-driven framework, except that
all events and dependencies are pre-specified in the bound
phase, and each event has a lower bound on the cycle it can
be executed.
Domains: We partition all simulated components (caches,
cores, memory controllers) and their events in multiple do-
mains. Currently, this assignment is static, and simply par-
titions the system in vertical slices. Figure 3 shows an ex-
ample partitioning of a chip with 16 cores, four L3 banks
and two memory controllers in four domains. We parallelize
event-driven execution across domains: each domain has its
own event priority queue, and is driven by a separate thread.
Each thread simply executes the events in its domain’s pri-
ority queue, enqueuing their children when they terminate.
Domain crossings: Domains synchronize when a parent
and a child are in different domains (e.g., a core in one do-

6

main issued a request to a cache bank in a different domain).
When this happens, we introduce a domain crossing event
and enqueue it in the child’s domain. Figure 4 shows the
original trace augmented with domain crossing events (red
X’s). When the crossing is executed in the child’s domain,
it checks whether the parent has finished. If so, the crossing
just enqueues the child, which can now be run. Otherwise,
the crossing requeues itself on a later cycle, the current cycle
of the parent’s domain plus the delay between parent and
child. Since we have lower bounds on the execution times
of all events, this is accurate, as we are guaranteed that the
child will never be available before the crossing runs and
checks for the parent again. This way, delays introduced by
contention propagate across domains only when there is an
actual dependency.

To improve performance, we introduce dependencies be-
tween crossings, delaying when they become executable to
avoid premature synchronization between domains. Figure 4
shows example dependencies with red and purple arrows.
First, for request-response traffic, we make the response’s
crossing depend on the event that generates the request. In
our example, when the L3’s bank 0 (L3b0, domain 0) pro-
duces a read request for memory controller 1 (Mem1, domain
3), we insert crossing events for the request (0→3) and the
response (3→0), and make the response crossing a child of
the miss event. If, due to contention, domain 0 gets delayed
to the point where L3b0’s miss happens after cycle 250, by
doing this we avoid needlessly executing the response’s cross-
ing starting at cycle 250. Second, we insert dependencies on
crossings in the same domain caused by serialized accesses
from the same core. In our example, this introduces a de-
pendency between Mem1’s and L3b3’s crossings. If core 0
suffers a large delay, this avoids having multiple domain 3
crossings synchronizing with domain 0 at the same time.
Termination and feedback: Each domain terminates the
current interval when the first event in its queue is over
the interval’s limit (e.g., 1K cycles). Domains stop at the
limit instead of running through their event queue. Because
events are lower-bounded, no domain runs out of events, and
in the next interval, the bound phase cannot produce events
for a clock cycle that precedes the stopping point. When the
interval ends, the core’s internal cycle counters are adjusted
to account for the delay caused by contention simulation,
i.e., the difference between the initial lower bound on the
execution cycle of the last simulated event at each core and
its actual execution cycle. In our example, if the last con-
sumed event from core 0 was simulated at cycle 750 in the
bound phase, and at cycle 900 in the weave phase, we ad-
vance its clock 150 cycles.
Models: We develop detailed event-driven weave models
for memory controllers (including DDR3 timings, access
scheduling, and conflicts), pipelined caches (including ad-
dress and data port contention, and limited MSHRs), and
IPC1 and OOO core models that account for increased la-
tencies due to contention to retime their accesses. The only
component without a weave phase model is the network,
since well-provisioned NoCs can be implemented at mod-
est cost, and zero-load latencies model most of their perfor-
mance impact in real workloads [41]. We leave weave phase
NoC models to future work.
Limitations: Bound-weave relies on path-altering interfer-
ence being rare. While this is true for cores that communi-
cate implicitly through the cache hierarchy, other communi-

cation styles, e.g., extremely fine-grain message passing, will
require significant changes or a new parallelization scheme.

3.3 Simulating Complex Workloads
As explained in Section 2, developing a full-system simu-

lator for thousand-core chips would run into limitations of
current mainstream OSes and ISAs. This leaves user-level
simulation as the only viable choice. However, conventional
user-level simulators cannot support many modern work-
loads, such as client-server workloads, multiprocess applica-
tions, or managed language runtimes that use more threads
than the number of simulated cores. We extend zsim with a
set of mechanisms that collectively provide lightweight user-
level virtualization, enabling most workloads to run unmod-
ified on zsim, bridging the gap with full-system simulators.
Multiprocess simulation: ZSim naturally supports mul-
tithreaded programs. To support multiple processes, each
process attaches to a shared memory segment, and uses it
as a global heap. All simulation state is allocated in this
heap, and we align the mappings of both the shared heap
and the library code segments across all processes. With this
technique, zsim can still be programmed as a single mul-
tithreaded application, even though the simulated threads
come from different processes. We also instrument fork()
and exec() system calls to capture full process hierarchies
(e.g., bash executing a Java program that launches several
other commands).
Scheduler: Many applications launch more threads than
cores, but are well tuned and do not rely on the OS sched-
uler for performance. For instance, the JVM runs garbage
collection on a different set of threads, but does not over-
commit the system. We implement a simple round-robin
scheduler that supports per-process and per-thread affini-
ties, allowing applications to launch an arbitrary number of
threads [16].
Avoiding simulator-OS deadlock: Barrier synchroniza-
tion alone may cause deadlock if the thread takes a syscall
that blocks on the kernel waiting on another thread (such as
futex wait). All other threads will block on the interval bar-
rier, waiting for the OS-blocked thread to return. The typ-
ical approach is to avoid those syscalls, often by modifying
the workload [27]. Instead, we identify the small subset of
blocking syscalls, and change our interval barrier to support
join and leave operations. Threads that execute a blocking
syscall leave the interval barrier, and join when they return
to user-level code. Meanwhile, the simulation can advance.
Non-blocking syscalls appear to execute instantaneously.
Timing virtualization: Many applications depend on ac-
curate timing. These include self-profiling adaptive algo-
rithms (e.g., adaptive back-off locks) or client-server appli-
cations with protocols that rely on timeouts. We virtual-
ize the rdtsc (read timestamp counter) instructions, the few
kernel interfaces (syscalls and vsyscalls) that return timing
information, as well as sleep syscalls and syscalls with time-
outs. Together, these isolate the timing of the instrumented
process from the host, linking it to simulated time.
System virtualization: Even when we isolate their tim-
ing, instrumented processes can still see the host’s hardware
configuration. This is problematic for applications that self-
tune to the system’s resources (e.g., gcc’s OpenMP and Ora-
cle’s JVM tune to the number of cores; Intel’s MKL tunes to
SSE extensions). We virtualize the process’s system view by
redirecting /proc and /sys open() syscalls to a pre-generated

7

tree, and virtualizing the CPUID instruction and the few
syscalls that give system-specific information, like getcpu().
Fast-forwarding and control: We use DBT to perform
per-process fast-forwarding at close-to-native speeds, run-
ning trillions of instructions before starting the simulation.
As in GEMS [25], simulated code can communicate with
zsim via magic ops, special NOP sequences never emitted
by compilers that are identified at instrumentation time.
Discussion: These virtualization mechanisms allow us to
run a wide range of modern workloads. For example, we
have used zsim to simulate JVM workloads like SPECJBB;
h-store, a multiprocess, client-server workload that includes
Java, C++ and Python components; and memcached with
user-level TCP/IP. The remaining shortcoming of our ap-
proach is accounting for OS execution time. As we dis-
cussed in Section 2, large system time is mostly caused by ei-
ther OS scalability artifacts (e.g., the VM subsystem), poor
scheduling decisions (addressed with user-level scheduling
and coarser-grain OS management [21]), or frequent net-
working (easily modeled with user-level networking stacks).

3.4 Flexibility and Usability
We architected zsim to be modular, highly configurable,

and support heterogeneous systems. We support multiple
core types running at the same time, with heterogeneous,
multi-level cache hierarchies. For instance, we can model
a multi-core chip with a few large OOO cores with private
L1s and L2 plus a larger set of simple, Atom-like cores with
small L1 caches, all connected to a shared L3 cache. We are
currently working on fixed-function core models.

To help usability, we keep the code small by leveraging
external infrastructure: Pin for DBT, XED2 for program-
matic x86 instruction decoding, and HDF5 for stats. ZSim
consists of 15K lines of C++, fewer than other simulators [4,
27]. While usability is hard to quantify, we have successfully
used zsim in two computer architecture courses at Stanford,
and students had little trouble using and modifying it.

4. EVALUATION

4.1 Accuracy
Methodology: We validate zsim against a real Westmere
system. Table 2 shows the real system’s configuration and
the corresponding zsim configuration. We developed a pro-
filer that uses ptrace and libpfm4 to run each application
multiple times, record several relevant performance coun-
ters, and compute microarchitectural metrics (e.g., IPC,
µops per cycle, cache MPKIs, etc.). We then compare these
metrics against zsim’s results. We execute profiling runs and
simulations multiple times until every relevant metric has a
95% confidence interval of at most 1%. Since our infrastruc-
ture can only reliably profile one application at a time, we
validate zsim using single- and multi-threaded applications.
Single-threaded validation: We validate zsim’s OOO
core model with the full SPEC CPU2006 suite. We run
each application for 50 billion instructions using the refer-
ence (largest) input set. Figure 5 shows both real and simu-
lated IPCs with applications sorted by absolute performance
error, where perf

error
= (IPCzsim − IPCreal)/IPCreal. A pos-

itive error means zsim is overestimating the performance of
the real system. As we can see, IPC differences are small:
the average absolute perf

error
is 9.7%, and in 18 out of the

29 benchmarks, zsim is within 10% of the real system.

HW Xeon L5640 (6-core Westmere), 24GB DDR3-
1333, no hyperthreading, turbo/DVFS disabled

SW Linux 3.5 x86-64, gcc 4.6.2, Pin 2.12

Bound-weave 1000-cycle intervals, 6 weave threads
Cores 6 x86-64 OOO cores at 2.27GHz

L1I caches 32KB, 4-way, LRU, 3-cycle latency
L1D caches 32KB, 8-way, LRU, 4-cycle latency
L2 caches 256KB, 8-way, LRU, 7-cycle latency, private
L3 cache 12MB, 16-way, hashed, 6 2MB banks, 14-cycle

bank lat, shared, inclusive, MESI coherence w/
in-cache directory, 16 MSHRs

Network Ring, 1-cycle/hop, 5-cycle injection latency
Mem ctrl 1 controller, 3 DDR3 channels, closed page,

FCFS scheduling, fast powerdown with thresh-
old timer = 15 mem cycles [17]

DRAM 24GB, DDR3-1333, 2 4GB RDIMMs per channel

Table 2: Hardware and software configuration of the real
system, and corresponding zsim configuration.

Figure 5 also shows scatter plots of MPKI errors for all
the cache levels (MPKI = misses per thousand instructions).
We define MPKIerror = MPKIzsim − MPKIreal. Each
dot represents the (MPKIreal, MPKIerror) of a single ap-
plication. Note that the y-axis scale is much smaller than
the x-axis. We observe that simulated cache MPKIs closely
track the real MPKIs at all levels. Moreover, errors decrease
as we move up in the hierarchy: while the L1D has an av-
erage |MPKIerror| of 1.14, the L3 error is 0.30 MPKI. The
few non-trivial errors are easily explained: all the workloads
with L2 or L3 errors ≥ 0.1 MPKI have a non-negligible num-
ber of TLB misses, which we do not currently model. Page
table walk accesses are also cached, affecting the reference
stream and producing these errors. These results provide
strong evidence for the correctness of our cache models.
Overall, while IPC errors are small, zsim has a certain

tendency to overestimate performance. This is due to two
main factors: the lack of TLB and page table walker models
(which we will add soon), and inaccuracies in the frontend
model. The modeled 2-level branch predictor with an ideal-
ized BTB has significant errors in some cases (see Figure 5),
and we do not model the loop stream detector. Fortunately,
these issues explain the larger errors: all applications with
perf

error
≤ −10% either have TLB MPKI ≥ 1.0 or lose

≥ 30% of cycles to frontend stalls.
Finally, we observe that most instructions are decoded

accurately: on average, only 0.01% of executed instructions
have an approximate dataflow decoding, and the average ab-
solute µop

error
= (µopszsim − µopsreal)/µopsreal is 1.3%. This

shows that implementing decoding for the most used op-
codes and ignoring micro-sequenced instructions is accurate,
as modern compilers only produce a fraction of the x86 ISA.
Multi-threaded validation: We use 23 multithreaded ap-
plications from multiple benchmark suites to validate the
bound-weave algorithm and the coherence aspects of our
cache hierarchy: 6 from PARSEC [3], 7 from SPLASH2,
9 from SPEC OMP2001, and the STREAM memory band-
width benchmark. For SPLASH2 and PARSEC, we run with
the configuration that takes closest to 20 billion instructions.
For SPEC OMP, we run workloads for 100 billion instruc-
tions using the reference input sets. STREAM is run with
N = 108 (a 2.2GB footprint). Figure 6 shows the difference
between real and zsim performance. In this experiment, we
run most workloads with 6 threads (fully loading the real
system), but those that need a power-of-two threads run
with 4 threads. We measure perf = 1/time (not IPC [2])

8

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

gob
mk

+2%

calc
ulix

-2%

ton
to

+2%

libq
uan

tum

-2%

per
lben

ch

-3%

om
net

pp

+4%

zeu
smp

-4%

bwa
ves

+5%

Gem
sFD

TD

-6%

pov
ray

+6%

gcc

-6%

milc

-7%

sjen
g

-7%

gam
ess

-8%

h26
4re

f

-9%

bzip
2

+9%

dea
lII

+9%

nam
d

+9%

hm
me

r

-11%

sph
inx3

+11%

gro
ma

cs

+12%

mcf

+13%

wrf

+13%

cac
tusA

DM

+13%

sop
lex

+15%

lesl
ie3d

-16%

asta
r

-18%

xala
ncb

mk

-21%

lbm

+24%

Real
Simulated

0 2 4 6 8 10 12 14
Real L1I MPKI

−4

−2

0

2

4

L1
I M

PK
I E

rro
r

Avg abs L1I err = 0.32 MPKI

0 20 40 60 80 100
Real L1D MPKI

−4

−2

0

2

4
L1

D
M

PK
I E

rro
r

Avg abs L1D err = 1.14 MPKI

0 10 20 30 40 50 60 70 80
Real L2 MPKI

−4

−2

0

2

4

L2
 M

PK
I E

rro
r

Avg abs L2 err = 0.59 MPKI

0 5 10 15 20 25 30 35
Real L3 MPKI

−4

−2

0

2

4

L3
 M

PK
I E

rro
r

Avg abs L3 err = 0.30 MPKI

0 10 20 30 40 50
Real Branch MPKI

−4
−2

0
2
4
6
8

10

Br
an

ch
 M

PK
I E

rro
r

Avg abs Branch err = 1.35 MPKI

Figure 5: Validation of the OOO core model against a real Westmere machine on SPEC CPU2006: Simulated vs real IPC,
and scatter plots of per-application MPKI errors (simulated - real MPKI) for all the caches and the branch predictor.

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Pe
rf

Er
ro

r

swim_m-6t
lu-6t

applu_m-6t

freqmine-6t
radix-4t

ocean-4t
art_m

-6t

swaptions-6t

wupwise_m-6t

mgrid_m-6t
fft-4

t

stre
amcluster-6t

stre
am-6t

fluidanimate-4t

fma3d_m-6t

equake_m-6t
water-6t

apsi_m
-6t

canneal-6t
fmm-6t

blacksch
oles-6t

ammp_m-6t

barnes-6t

1 2 3 4 5 6
Threads

1

2

3

4

5

6

PA
RS

EC
 S
pe
ed
up

blkschls
canneal
fldanimte
freqmine
strclustr
swptions

REAL
ZSIM

1 2 3 4 5 6
Threads

1

2

3

4

5

6

ST
RE

AM
 S
pe
ed
up

No contention
Anl cont (MD1)
Ev-driven cont
DRAMSim cont
Real

Figure 6: Validation of zsim with multithreaded apps: performance difference between zsim and the real system, real and sim-
ulated speedups of PARSEC benchmarks, and speedup of bandwidth-saturating STREAM with different contention models.

Tiles 16 cores/tile, 4/16/64 tiles (64/256/1024 cores)
Cores x86 IPC1/OOO cores at 2GHz

L1I caches 32KB, 4-way, LRU, 3-cycle latency
L1D caches 32KB, 8-way, LRU, 4-cycle latency
L2 caches 4MB, 8-way, LRU, 8-cycle latency, shared per tile

(16 cores), MESI coherence w/ in-cache directory
L3 cache 8MB bank/tile (32/128/512MB), 16-way, hashed,

12-cycle bank lat, fully shared, inclusive, MESI
coherence w/ in-cache directory, 16 MSHRs

Network Mesh, 1 router/tile, 1-cycle/hop, 2-stage routers
Mem ctrl 1 controller/tile , 2 DDR3 channels, same as Ta-

ble 2 (assumes optical off-chip links as in [20])

Table 3: Parameters of the simulated tiled multicore chip.

and plot perf
error

= (perfzsim − perfreal)/perfreal with appli-
cations sorted by performance error. Accuracy is similar
to the single-threaded case: the average absolute perferror
is 11.2%, and 10 out of the 23 workloads are within 10%.
Cache MPKI errors are also small, with L1I, L1D, L2, and
L3 errors of 0.08, 1.18, 0.34, and 0.28 MPKI, respectively.

Much like in the single-threaded case, performance errors
are mainly due to the lack of TLBs and frontend inaccura-
cies. Fortunately, these two effects often remain constant
with the number of threads, so we can accurately predict
parallel speedups. Figure 6 shows the speedups of all the
PARSEC workloads from 1 to 6 threads. We observe an
accurate match both when their scalability is limited due to
lock contention (e.g., swaptions) or sequential portions (e.g.,
freqmine).
Contention models: The bound-weave algorithm allows

for accurate modeling of contention using detailed microar-
chitectural models. Figure 6 illustrates this by showing
STREAM’s scalability on the real machine, as well as when
simulated under several timing models: fully ignoring con-
tention, an approximate queuing theory model, our detailed
event-driven memory controller model, and DRAMSim2’s
model [35]. STREAM saturates memory bandwidth, scal-
ing sublinearly. Ignoring contention makes STREAM scale
almost linearly. The queuing theory model, which com-
putes latency in the bound phase using the current load and
the M/D/1 load-latency profile, tolerates reordered accesses
but is still inaccurate. This matches the findings of prior
work [46]. In contrast, using either our event-driven model
or DRAMSim2 in the weave phase closely approximates the
real machine, since both model details such as bank con-
flicts and DRAM timing constraints. Finally, note that the
bound-weave algorithm makes it easy to integrate zsim with
existing timing models. We integrated zsim with DRAM-
Sim2 with 110 lines of glue code. In fact, we interfaced with
DRAMSim2 before deciding to develop our own model for
faster simulations. DRAMSim2 is cycle-driven, and limits
zsim’s performance to about 3 MIPS even with workloads
that do not stress memory.
Comparison with other simulators: M5, the prede-
cessor of gem5, was validated against an Alpha 21264 [5].
MARSS, a PTLSim-based simulator with a cycle-accurate
OOO x86 model, has performance differences that range
from -59% to +50% on SPEC CPU2006, with only 5 bench-
marks being within 10% [30, Slide 32]. Sniper, which has an

9

blac
ksch

oles

water flui
dan

imate

can
nea

l
wupw

ise
m

swim
m

stre
am

app
lu m

bar
nes

oce
an

fft rad
ix

mgrid
m

avg

IPC1-NC MIPS
Slowdown

1585.6
49×

1336.2
74×

825.2
120×

169.4
147×

777.6
160×

87.7
218×

67.7
245×

307.5
270×

470.0
318×

109.6
394×

286.6
406×

358.0
487×

111.1
524×

197.8
246×

IPC1-C MIPS
Slowdown

1123.3
70×

936.0
106×

629.7
158×

97.8
255×

400.2
311×

27.8
687×

27.7
600×

191.0
435×

403.4
371×

69.7
620×

117.4
991×

231.1
755×

75.0
776×

95.2
512×

OOO-NC MIPS
Slowdown

351.9
224×

347.1
287×

288.1
346×

122.4
203×

316.8
393×

79.3
241×

62.6
265×

189.0
440×

229.7
651×

77.0
561×

194.6
598×

206.5
846×

81.4
715×

138.3
352×

OOO-C MIPS
Slowdown

293.9
268×

314.2
317×

215.1
464×

37.9
657×

162.7
767×

12.2
1567×

9.7
1713×

79.6
1044×

191.6
781×

42.2
1024×

89.7
1298×

111.3
1570×

38.9
1498×

41.1
1186×

Table 4: ZSim performance on the simulated 1024-core chip. Each row shows a different set of models: IPC1 or OOO cores, with
and without contention (-C and -NC). We report both simulated MIPS and slowdown vs (parallel) native workload execution on
our host machine. The last column summarizes average MIPS (hmean) and slowdown (hmean(MIPShost)/hmean(MIPSzsim)).

0 5 10 15 20 25 30
Application

0
10
20
30
40
50
60
70
80
90

ZS
im

 M
IP
S

IPC1-NC
IPC1-C
OOO-NC
OOO-C

Figure 7: Performance distribution of
single-thread zsim on SPEC CPU2006,
using four models: IPC1 or OOO cores,
with and without contention (C/NC).

5 10 15 20 25 30
Host threads

2
4
6
8
10
12
14
16

ZS
im
 s
pe
ed
up

1 socket 2 sockets 2 threads/core

IPC1-NC
IPC1-C
OOO-NC
OOO-C

Figure 8: Average zsim speedup on the
workloads in Table 4, as we increase the
host threads from 1 to 32. The host has
16 cores and 2 hardware threads/core.

64c 256c 1024c
Simulated cores

0

50

100

150

200

ZS
im

 h
m
ea

n(
M
IP
S)

IPC1-NC
IPC1-C
OOO-NC
OOO-C

Figure 9: Average zsim performance
(hmean(MIPS)) over the workloads in
Table 4, with simulated CMPs of 4, 16,
and 64 tiles (64, 256 and 1024 cores).

approximate OOO model, was compared against a real x86
machine using SPLASH2, with errors over ±50% [8, Fig-
ure 5]. Graphite, HORNET, and SlackSim have not been
validated as far as we know.

4.2 Performance
Methodology: We run zsim on a 2-socket Xeon E5-2670
to evaluate its performance. This 2.6GHz Sandy Bridge-EP
system has 16 cores, 32 threads, and 64 GB of DDR3-1600
memory over 8 channels. For single-thread performance,
we use the same configuration and benchmarks as in Sec-
tion 4.1. For parallel performance and scalability, we use a
tiled architecture with a 3-level cache hierarchy, detailed in
Table 3. Each tile has 16 cores, and we use 4 to 64 tiles
to simulate chips with 64 to 1024 cores. We use PARSEC,
SPLASH2 and SPECOMP workloads, and simulate parallel
regions only. For SPLASH2 and PARSEC, we run with the
configuration that takes closest to 100 billion instructions.
We drop the workloads with an average core utilization be-
low 50% on the 1024-core chip. We report performance in
MIPS, and use harmonic means to report aggregate perfor-
mance. For multithreaded workloads, we also report esti-
mated slowdown = MIPShost/MIPSzsim, where MIPShost is
the aggregate MIPS the host achieves on the parallel region
when using 32 application threads (i.e., the host is not over-
committed).
Single-thread performance: Figure 7 plots zsim’s per-
formance distribution on the 29 SPEC CPU workloads. We
plot performance for four sets of models: IPC1 or OOO
cores, with and without contention (-C and -NC, respec-
tively). Models without contention only run the bound
phase. Models with contention run the full bound-weave
algorithm with event-driven simulation of the core, L3, and
memory controller. The most detailed model, OOO-C, is
the one used in Section 4.1. More detailed models impose
heavier overheads. Performance ranges between 6.7 MIPS

(leslie3d, OOO-C) and 89.9 MIPS (namd, IPC1-NC). The
harmonic means are 40.2 MIPS on IPC1-NC, 25.1 MIPS on
IPC1-C, 14.8 MIPS on OOO-NC, and 12.4 MIPS on OOO-
C. The main factor affecting performance is memory inten-
sity: applications with very frequent L1 and L2 misses take
longer to simulate. These results show that, by leveraging
DBT and building timing models for performance from the
ground up, we can achieve high simulation speed without
sacrificing accuracy.
Thousand-core performance: Table 4 shows simulation
performance (MIPS and slowdown vs fully loaded host) for
the 1024-core chip with each of the four timing models: IPC1
or OOO cores, with and without contention. ZSim achieves
1,585 MIPS with the simplest models (blackscholes, IPC1-
NC), and 314 MIPS with the most detailed (water, OOO-
C). ZSim achieves lower MIPS on memory-intensive appli-
cations, especially swim and stream, which have > 50 L2
and L3 MPKIs. Nevertheless, memory-intensive applica-
tion slowdowns are not that different from compute-bound
applications, since the host also achieves lower MIPS on
these workloads. Memory-intensive workloads both stress
the weave phase and take more simulated cycles with con-
tention models, so they show the highest performance dif-
ferences between C and NC models. Since we use harmonic
means to summarize performance, these slower simulations
have a larger weight, so we see that simulating detailed core
models without contention is on average more efficient than
simulating IPC1 cores with contention. To put these results
in context, a single system running these workloads in se-
quence simulates 1.32 trillion instructions, taking anywhere
from 1.8 hours (IPC1-NC) to 8.9 hours (OOO-C) to simulate
the whole suite.
Host scalability: Figure 8 shows scalability of the four
different timing models simulating the 1024-core chip when
using 1 to 32 host threads. To isolate simulator scalability
from the host’s Turbo gains, we disable Turbo in this exper-

10

iment. With Turbo, clock frequency ranges from 2.6GHz to
3.3GHz, introducing a 27% speedup with one or few cores
active. As we can see, the no-contention models scale al-
most linearly up to 16 cores, while the contention models
somewhat reduce scalability because the weave phase scales
sublinearly. However, scalability is overall good, ranging
from 10.1× to 13.6× at 16 threads. Using 32 threads yields
an extra 16% speedup due to SMT. Note that we’re not fully
exploiting weave phase parallelism. In future work, we will
pipeline the bound and weave phases and use better schedul-
ing algorithms to assign multiple domains across host cores.
Target scalability: Figure 9 shows average simulation
performance as the simulated chip scales from 64 to 1024
threads for models with and without contention. Without
contention, the trade-offs are simple. On one hand, larger
chips have more parallelism, reducing memory system con-
tention in the simulation (e.g., due to concurrent same-bank
L3 accesses), as well as more work per interval. On the
other hand, larger chips also increase the simulator’s work-
ing set, hurting locality. The second effect completely domi-
nates in conventional simulators, which step through all the
cores at almost cycle-by-cycle granularity. This is one of the
main reasons conventional simulators scale poorly — with
hundreds of cores, not even the simulated core’s registers
fit in the host’s L2, resulting in poor locality. In contrast,
zsim simulates each core for several hundred cycles, largely
sidestepping this issue. Consequently, the first effect is more
important at 64 cores (with just 4 L3 banks), and simula-
tion performance peaks at 256 cores and slightly decreases at
1024 cores. With contention models, each domain has more
components (cores, L3 banks, memory controllers) when go-
ing from 64 to 1024 cores, so the weave phase has more
parallelism, and zsim speeds up with system size.
Sensitivity to interval length: The interval length al-
lows us to trade off accuracy for performance. We run the
1024-core workloads in Table 4 with 1K, 10K and 100K cy-
cles/interval. Compared with the 1Kcycle results, runs with
10Kcycle intervals show an average absolute error in simu-
lated performance of 0.45% (max 1.9%, fluidanimate), and
are on average 42% faster. Runs with 100Kcycle intervals
show an average absolute error in simulated performance
of 1.1% (max 4.7%, fft), and are on average 53% faster.
Other architectural events (e.g., L3 misses) show similar de-
viations. Overall, an interval of 1-10K cycles causes small
errors, but gives somewhat higher performance. In contrast,
intervals beyond 10Kcycles yield little benefit and may in-
troduce excessive error.
Comparison with other simulators: As discussed Sec-
tion 2, parallel simulators typically report best-case perfor-
mances of 1–10 MIPS and typical-case performances of hun-
dreds of KIPS [8, 10, 18, 27]. Based on our results, zsim
is 2-3 orders of magnitude faster than other simulators, de-
pending on the timing models used. Since many factors
affect simulator performance (host, workloads, and metrics
used), we refrain from making exact comparisons, and leave
such task to potential users.

5. CONCLUSIONS
We presented three techniques that break the trade-off

between speed and accuracy for parallel simulators with de-
tailed architectural models: DBT-based instruction-driven
core timing models, the bound-weave parallelization algo-
rithm, and lightweight virtualization for complex workload

support. We used these techniques to build zsim, a validated
simulator that reaches speeds up to 1,500 MIPS on thou-
sand-core simulations and supports a wide range of work-
loads. ZSim is currently used by several research groups,
has been used in multiple publications [36, 37, 38, 39, 23,
24], and is publicly available under a free software license.

6. ACKNOWLEDGMENTS
We thank Krishna Malladi for providing the initial version

of the detailed memory controller. We thank Xiao Zhang
and the Platforms Group at Google for allowing us to in-
corporate improvements to zsim developed as part of an in-
ternship. We are grateful to Nathan Beckmann, Christina
Delimitrou, Babak Falsafi, Harshad Kasture, Mikko Lipasti,
and the anonymous reviewers for their useful feedback on
earlier versions of this manuscript. This work was sup-
ported in part by the Stanford Pervasive Parallelism Lab-
oratory, DARPA contract HR0011-11-C-0007, and DARPA
PERFECT program contract HR0011-13-2-0005. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the Defense Advanced Research Projects
Agency.

7. REFERENCES

[1] Computer architecture simulation and modeling. IEEE
Micro Special Issue, 26(4), 2006.

[2] A. Alameldeen and D. Wood. IPC considered harmful
for multiprocessor workloads. IEEE Micro, 26(4), 2006.

[3] C. Bienia, S. Kumar, J. P. Singh, et al. The PARSEC
benchmark suite: Characterization and architectural
implications. In PACT-17, 2008.

[4] N. Binkert, B. Beckmann, G. Black, et al. The gem5
simulator. SIGARCH Comp. Arch. News, 39(2), 2011.

[5] N. Binkert, R. Dreslinski, L. Hsu, et al. The M5 simula-
tor: Modeling networked systems. IEEE Micro, 26(4),
2006.

[6] E. Blem, J. Menon, and K. Sankaralingam. Power
Struggles: Revisiting the RISC vs CISC Debate on Con-
temporary ARM and x86 Architectures. In HPCA-19,
2013.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, et al. Corey: An
operating system for many cores. In OSDI-8, 2008.

[8] T. Carlson, W. Heirman, and L. Eeckhout. Sniper: Ex-
ploring the level of abstraction for scalable and accurate
parallel multi-core simulation. In Supercomputing, 2011.

[9] S. Chandrasekaran and M. D. Hill. Optimistic simula-
tion of parallel architectures using program executables.
In PADS, 1996.

[10] J. Chen, L. K. Dabbiru, D. Wong, et al. Adaptive and
speculative slack simulations of CMPs on CMPs. In
MICRO-43, 2010.

[11] M. Chidester and A. George. Parallel simulation of chip-
multiprocessor architectures. TOMACS, 12(3), 2002.

[12] D. Chiou, D. Sunwoo, J. Kim, et al. FPGA-accelerated
simulation technologies (FAST): Fast, full-system, cy-
cle-accurate simulators. In MICRO-40, 2007.

[13] A. Fog. Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA
CPUs, http://www.agner.org/optimize/.

[14] R. Fujimoto. Parallel discrete event simulation. CACM,
33-10, 1990.

[15] D. R. Hower, P. Montesinos, L. Ceze, et al. Two
hardware-based approaches for deterministic multipro-
cessor replay. CACM, 52-6, 2009.

[16] X. Huang, J. Moss, K. McKinley, et al. Dynamic sim-
plescalar: Simulating java virtual machines. Technical

11

http://www.agner.org/optimize/

report, UT Austin, 2003.
[17] Intel. Intel Xeon E3-1200 Family. Datasheet, 2011.
[18] A. Jaleel, R. Cohn, C. Luk, and B. Jacob. CMPSim:

A Pin-based on-the-fly multi-core cache simulator. In
MoBS-4, 2008.

[19] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and
Arvind. Fast cycle-accurate modeling of a multicore
processor. In ISPASS, 2012.

[20] G. Kurian, J. Miller, J. Psota, et al. ATAC: A 1000-core
cache-coherent processor with on-chip optical network.
In PACT-19, 2010.

[21] R. Liu, K. Klues, S. Bird, et al. Tessellation: Space-
time partitioning in a manycore client os. In HotPar,
2009.

[22] C.-K. Luk, R. Cohn, R. Muth, et al. Pin: Building cus-
tomized program analysis tools with dynamic instru-
mentation. In PLDI, 2005.

[23] K. T. Malladi, B. C. Lee, F. A. Nothaft, et al. Towards
energy-proportional datacenter memory with mobile
DRAM. In ISCA-39, 2012.

[24] K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, et al. Re-
thinking DRAM power modes for energy proportional-
ity. In MICRO-45, 2012.

[25] M. Martin, D. Sorin, B. Beckmann, et al. Multi-
facet’s general execution driven multiprocessor simula-
tor (gems) toolset. Comp. Arch. News, 33-4, 2005.

[26] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. In SIGMETRICS conf., 2002.

[27] J. Miller, H. Kasture, G. Kurian, et al. Graphite: A
distributed parallel simulator for multicores. In HPCA-
16, 2010.

[28] H. Pan, B. Hindman, and K. Asanovic. Lithe: Enabling
efficient composition of parallel libraries. HotPar, 2009.

[29] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: A
full system simulator for multicore x86 CPUs. In DAC-
48, 2011.

[30] A. Patel, F. Afram, K. Ghose, et al. MARSS: Micro
Architectural Systems Simulator. In ISCA tutorial 6,
2012.

[31] M. Pellauer, M. Adler, M. Kinsy, et al. HAsim: FPGA-
based high detail multicore simulation using time-
division multiplexing. In HPCA-17, 2011.

[32] A. Pesterev, J. Strauss, N. Zeldovich, and R. Morris.
Improving network connection locality on multicore sys-
tems. In EuroSys-7, 2012.

[33] S. K. Reinhardt, M. D. Hill, J. R. Larus, et al. The
Wisconsin Wind Tunnel: virtual prototyping of parallel
computers. In SIGMETRICS conf., 1993.

[34] P. Ren, M. Lis, M. Cho, et al. HORNET: A Cycle-Level
Multicore Simulator. IEEE TCAD, 31(6), 2012.

[35] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAM-

Sim2: A Cycle Accurate Memory System Simulator.
CAL, 10(1), 2011.

[36] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling
Ways and Associativity. In MICRO-43, 2010.

[37] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
Efficient Fine-Grain Cache Partitioning. In ISCA-38,
2011.

[38] D. Sanchez and C. Kozyrakis. Scalable and Efficient
Fine-Grained Cache Partitioning with Vantage. IEEE
Micro’s Top Picks, 32(3), 2012.

[39] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coher-
ence Directory with Flexible Sharer Set Encoding. In
HPCA-18, 2012.

[40] D. Sanchez, D. Lo, R. Yoo, et al. Dynamic Fine-Grain
Scheduling of Pipeline Parallelism. In PACT-20, 2011.

[41] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An
Analysis of Interconnection Networks for Large Scale
Chip-Multiprocessors. TACO, 7(1), 2010.

[42] E. Schnarr and J. R. Larus. Fast out-of-order processor
simulation using memoization. In ASPLOS-8, 1998.

[43] E. C. Schnarr, M. D. Hill, and J. R. Larus. Facile: A
language and compiler for high-performance processor
simulators. In PLDI, 2001.

[44] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program be-
havior. In ASPLOS-10, 2002.

[45] J. Shin, K. Tam, D. Huang, et al. A 40nm 16-core 128-
thread CMT SPARC SoC processor. In ISSCC, 2010.

[46] S. Srinivasan, L. Zhao, B. Ganesh, et al. CMP Mem-
ory Modeling: How Much Does Accuracy Matter? In
MoBS-5, 2009.

[47] Z. Tan, A. Waterman, R. Avizienis, et al. RAMP Gold:
An FPGA-based architecture simulator for multipro-
cessors. In DAC-47, 2010.

[48] Tilera. TILE-Gx 3000 Series Overview. Technical re-
port, 2011.

[49] T. von Eicken, A. Basu, V. Buch, et al. U-net: a user-
level network interface for parallel and distributed com-
puting. In SOSP-15, 1995.

[50] J. Wawrzynek, D. Patterson, M. Oskin, et al. RAMP:
Research accelerator for multiple processors. IEEE Mi-
cro, 27(2), 2007.

[51] T. Wenisch, R. Wunderlich, M. Ferdman, et al. Sim-
flex: statistical sampling of computer system simula-
tion. IEEE Micro, 26(4), 2006.

[52] E. Witchel and M. Rosenblum. Embra: Fast and flex-
ible machine simulation. In SIGMETRICS Perf. Eval.
Review, volume 24, 1996.

[53] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In ISCA-30, 2003.

12

	Introduction
	Simulation Techniques
	ZSim Techniques
	Fast Sequential Simulation using DBT
	Scalable and Accurate Parallel Simulation
	Bound Phase
	Weave Phase

	Simulating Complex Workloads
	Flexibility and Usability

	Evaluation
	Accuracy
	Performance

	Conclusions
	Acknowledgments
	References

