
ZSTAD: Zero-Shot Temporal Activity Detection

Lingling Zhang1,2, Xiaojun Chang3∗, Jun Liu1,4, Minnan Luo1,4, Sen Wang5,

Zongyuan Ge3, Alexander Hauptmann6

1School of Computer Science and Technology, Xi’an Jiaotong University, Xian, China
2Ministry of Education Key Lab For Intelligent Networks and Network Security, Xian, China

3Faculty of Information Technology, Monash University, Australia
4National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University, Xian, China

5School of Information Technology and Electrical Engineering, The University of Queensland, Australia
6School of Computer Science, Carnegie Mellon University, USA

zhanglingling@stu.xjtu.edu.cn, cxj273@gmail.com, {liukeen, minnluo}@xjtu.edu.cn,

sen.wang@uq.edu.au, zongyuan.ge@monash.edu, alex@cs.cmu.edu

Abstract

An integral part of video analysis and surveillance is

temporal activity detection, which means to simultaneously

recognize and localize activities in long untrimmed videos.

Currently, the most effective methods of temporal activity

detection are based on deep learning, and they typically

perform very well with large scale annotated videos for

training. However, these methods are limited in real appli-

cations due to the unavailable videos about certain activity

classes and the time-consuming data annotation. To solve

this challenging problem, we propose a novel task setting

called zero-shot temporal activity detection (ZSTAD), where

activities that have never been seen in training can still be

detected. We design an end-to-end deep network based on

R-C3D as the architecture for this solution. The proposed

network is optimized with an innovative loss function that

considers the embeddings of activity labels and their super-

classes while learning the common semantics of seen and

unseen activities. Experiments on both the THUMOS’14

and the Charades datasets show promising performance in

terms of detecting unseen activities.

1. Introduction

Given its importance to video analysis and surveillance,

temporal activity detection is one of the most studied tasks

in computer vision [31]. Most videos are untrimmed and

only contain a few interesting activities among a long

stream of nondescript scenes. Hence, the goal of tempo-

ral activity detection is to simultaneously recognize and

∗Corresponding author: Xiaojun Chang, cxj273@gmail.com

categorize specific activities in a video along with their

start and end times [32, 12]. As with many other tasks,

deep learning has led to a step-change in the speed and

accuracy of temporal activity detection, as demonstrated

in studies like [48, 10, 9, 41, 6]. However, these deep

methods rely heavily on a fully-supervised training scheme.

Long videos where every activity class is already anno-

tated are rare, and manual annotation is expensive and

time-consuming, which means an alternative approach, like

weakly-supervised [39, 25], semi-supervised or unsuper-

vised learning, is needed.

In recent years, zero-shot learning (ZSL) has emerged as

a novel approach to this very problem. ZSL can be thought

of as a special case of supervised learning, where the train-

ing and testing classes (i.e., the seen and unseen classes) are

disjoint but semantically related [23, 28]. In fact, generally

speaking, the training dataset does not even contain any in-

stances labeled with testing classes [20, 19]. ZSL works

by exploiting useful prior knowledge, such as common at-

tributes or label embeddings, and then transfers the learned

knowledge from seen classes to unseen classes. So far, stud-

ies on ZSL have been dominated by zero-shot recognition

(ZSR), i.e., classification problems. These approaches are

often based on the assumption that each sample only con-

tains a single dominant example from one of the classes

(whether seen or unseen). Hence, the overall aim is to clas-

sify each unseen sample to an unseen class in the testing

stage. On this proviso, ZSR would not be directly applica-

ble to temporal activity detection for two reasons: (1) Tem-

poral activity detection is of most value with long videos,

which means the sample would almost certainly contain

multiple activities. (2) Part of temporal activity detection

is predicting the start and end times for each activity in ad-
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Figure 1: Diagram of zero-shot temporal activity detection network. Purple part: the input videos are resized into fixed

dimensionality; Green part: 3D ConNet extracts the deep features for input videos; Pink part: Temporal proposal subnet

(TPN) generates the proposals for seen and unseen activities; Orange part: Zero-shot detection subnet (ZSDN) detects the

seen and unseen activities by utilizing their label embeddings.

dition to recognizing the class of behavior. Thus, in this

paper, we present a novel task setting for ZSR, called zero-

shot temporal activity detection (ZSTAD), that is designed

specifically for long untrimmed videos and can also predict

the temporal information surrounding those activities.

Unlike simple ZSR, ZSTAD not only recognizes activ-

ities that are not seen during training, but it also localizes

the start and end times of the activities. ZSTAD is imple-

mented in a novel end-to-end deep network, as shown in

Figure 1. The network uses two types of prior information

to mine the common semantics of seen and unseen activi-

ties: label embeddings from Word2Vec [11] and the super-

classes of those labels. For ZSTAD, the label embedding

for the background class is crucial, however, it does not di-

rectly correspond to any embeddings in Word2Vec. Hence

we solve an optimization problem to obtain a special vec-

tor for the background. Note that this learned embedding

is far away from all the activity label embeddings in the

semantic space. With this prior information, the ZSTAD

deep network thus consists of four parts: (1) the input pro-

cess, which resizes the original video into a sequence of

RGB frames with fixed dimensionality; (2) a 3D convolu-

tional subnet (3D ConvNet), which extracts the deep fea-

tures from the input videos; (3) a temporal proposal subnet

(TPN), which uses the learned deep features and the embed-

ding of the background class as inputs to generate proposals

for seen and unseen activities; and (4) a zero-shot detection

subnet (ZSDN), which uses the label embeddings of all ac-

tivities to predict a proposal’s class and start/end times.

To optimize the deep network, we design an innovative

loss that combines the classification loss and boundary re-

gression loss of both the TPN and ZSDN subnets. Note that

the classification loss for ZSDN consists of two terms: the

basic-class classification loss and the super-class clustering

loss. The basic-class classification loss guarantees that the

score for the true label is the largest of all labels. The super-

class clustering loss controls the labels that are similar to

the true label, to obtain the higher scores than other labels.

Four contributions of the paper are summarized as follows:

• We propose a new task setting called ZSTAD to simul-

taneously classify and localize the activities in long

untrimmed videos, even if the activity classes have

never been seen during training.

• A novel end-to-end deep network is developed for ZS-

TAD task, which uses prior information from label em-

beddings of the background, seen activities, and un-

seen activities. The background label embedding is

derived by solving an optimization problem and is far

away from the other label embeddings.

• We design an innovative classification loss for ZSDN

subnet, which integrates the basic-class classification

loss and super-class clustering loss together. Note that

the super-class prior information carries the semantic

correlation among activity labels.

• We conduct extensive experiments on two widely-used

video datasets, THUMOS’14 and Charades, to evalu-

ate the effectiveness and superiority of the proposed

deep model.

2. Related Work

2.1. Temporal Activity Detection

The literature on temporal activity detection can be di-

vided into two groups according to how the activity pro-

posals are generated. In the first category, activity classi-

fiers are applied to sliding windows generated by scanning

across the video. For example, Wang et al. [38] used a

temporal sliding window to generate video clips and then

extracted motion and appearance features for action classi-

fication. Shou et al. [33] generated segments with varied
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lengths via sliding windows, then fed them into 3D Con-

vNets for action recognition. And Gaidon et al. [8] de-

scribed a sliding central frame based on a generative model

of temporal structures. These sliding window methods not

only have a high computation cost due to the large num-

ber of windows, but also constrain the boundary of detected

activity segments to some extent [42].

To avoid these issues, the second category of methods

detects activities with arbitrary lengths by modeling the

temporal evolution of the video. For instance, Gao et al.

[10] presented an effective temporal unit regression network

for generating temporal action proposals. Xiong et al. [40]

introduced a new proposal generation scheme called tem-

poral actionness grouping that can efficiently generate can-

didates with accurate temporal boundaries. Xu et al. [41]

put forward the first end-to-end activity detection model,

RC3D, by combining the proposal generation and classi-

fication stages together. Compared to the sliding window

methods, these temporal evolution methods have attracted

more attention because of their added flexibility in predict-

ing arbitrary activity start and end times.

2.2. Zero­Shot Learning

Zero-shot learning (ZSL) is designed to recognize sam-

ples of classes that are not seen during training [50, 45, 5,

17]. The idea is to learn shared knowledge from prior infor-

mation and then transfer that knowledge from seen classes

to unseen classes [21, 27, 2, 4, 3, 18, 46]. Common at-

tributes, such as color, shape, and similar properties, are the

typical forms of prior information. Lampert et al. [16] pre-

learned the attribute classifiers independently to accomplish

ZSL on unseen classes, while Parikh et al. [24] learned rel-

ative attributes to enhance ZSL accuracy. Attribute-based

methods have achieved promising results on ZSL, but they

have poor scalability because the attributes need to be man-

ually defined. Semantic embeddings of seen and unseen

labels, which are another type of prior information, do not

have this problem [43]. They are generally learned in an un-

supervised manner with a method such as Word2Vec [11] or

GloVe [26]. Socher et al. [36], for example, mapped sam-

ples and labels into a shared semantic space and introduced

a binary variable to indicate whether an instance was in seen

or unseen class. Zhang et al. [47] developed a semantic

similarity embedding method by expressing seen and un-

seen data as a mixture of seen class proportions. Compared

to the attribute-based methods, label embedding methods

are more practical and popular because this type of prior

information is easily accessible from open text corpora.

Beyond these studies, which focus on ZSR problems,

four notable studies on zero-shot object detection (ZSOD)

have recently appeared in the image processing literature.

Zhu et al. [49] presented a novel ZSOD architecture that

fused semantic attribute information with visual features

to predict the locations of unseen objects. Bansal et al.

[1] proposed a background-aware ZSOD model based on

visual-semantic embeddings. Demirel et al.’s [7] solution

for ZSOD aggregated both label embeddings and convex

combinations of semantic embeddings. Last, Rahman et

al. [29] has proposed the first end-to-end deep network for

ZSOD based on the Faster RCNN [30] framework.

To the best of our knowledge, this paper is the first to

apply the idea of ZSL to temporal activity detection.

3. Zero-Shot Temporal Activity Detection

This section begins with a description of the problem set-

ting of ZSTAD. We then introduce the detailed architecture

of the proposed deep network, and design a novel objective

loss to optimize the network’s parameters.

3.1. Problem Description

In the framework of ZSTAD, there are n untrimmed

videos X = {x1,x2, · · · ,xn} about c activity classes.

The first ns videos Xs = {x1,x2, · · · ,xns
} are la-

beled for training with temporal annotations that cover the

first cs seen activity classes. The remaining nu videos

Xu = {xns+1,xns+2, · · · ,xn} are unlabeled for test-

ing, with each containing at least one activity in cu un-

seen classes. Motivated by previous studies on ZSL, la-

bel embeddings generated from an unsupervised method,

such as Word2Vec, are still used to measure the se-

mantic relationships in both seen and unseen classes.

The label embedding set of cs seen activities is de-

noted as Ls = {ℓ1, ℓ2, · · · , ℓcs}, accordingly, Lu =
{ℓcs+1, ℓcs+2, · · · , ℓc} for cu unseen activities. Especially,

the label embedding for background class is not directly

available from Word2Vec and, without it, the model cannot

determine whether the video contains any activity or not.

Therefore, we propose the following optimization problem

to overcome this problem:

ℓbg = argmin
ℓbg

c∑

j=1

max(0, s(ℓbg, ℓj)−∆bg)
2, (1)

where ∆bg is the margin hyper-parameter. Solving this

problem results in a special vector ℓbg that is far away from

all embeddings of activity labels. The function s(ℓbg, ℓj)
measures the semantic similarity between label embeddings

ℓbg and ℓj , which is calculated according to cosine distance.

In effect, this equation stipulates that the background label

is at most ∆bg similar to other activity labels in the semantic

embedding space. The resulting set of all label embeddings

is denoted as Lbg = {ℓbg, ℓ1, ℓ2, · · · , ℓc}.

Rahman et al. [29] proved that super-classes over

label embeddings benefit ZSL. Therefore, we have in-

corporated super-classes into the embeddings Lbg =
{ℓbg, ℓ1, ℓ2, · · · , ℓc} as another type of prior information in
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Figure 2: Diagram of the temporal proposal subnet.

the ZSTAD framework. More specifically, we partition c ac-

tivity label embeddings into c+ disjoint super-classes such

that the activity labels in the same super-class share high

semantic similarity, while ensuring that the labels from dif-

ferent super-classes are as dissimilar as possible. These ac-

tivity super-classes are denoted as Z = {z1, z2, · · · , zc+},

where zq is a set of label indexes whose corresponding em-

beddings are partitioned into the q-th super-class. Namely,

zq = {j ∈ [1, c], s.t., g(ℓj) = q}, where the function

g(·) maps each activity label embedding to its correspond-

ing super-class zg(.). Practically, the mapping function g(·)
could be performed by any number of popular clustering

algorithms. Further, the background label embedding ℓbg
is set into an individual super-class zbg to ensure that it is

clearly different from the other activity labels in the seman-

tic embedding space. Ultimately, the overall super-classes

is represented as Zbg = {zbg, z1, z2, · · · , zc+}.

To summarize, the ZSTAD model is trained on labeled

videos Xs with temporal annotations of seen activities, with

the objective of recognizing and localizing unseen activities

in unlabeled videos Xu. The common semantics between

seen and unseen activities are reflected in the prior informa-

tion from the label embeddings Lbg and super-classes Zbg .

3.2. Network Architecture

The deep network for ZSTAD is illustrated in Figure 1.

Its backbone is the R-C3D framework [41] due to the R-

C3D’s superior performance in temporal activity detection.

The four colored panels delineate the four essential com-

ponents. The purple panel shows the input process, where

videos are transformed into a sequence of RGB frames with

dimension R
3×L×H×W . Here, L denotes the number of

frames and H,W represent the height and width of each

frame. The 3D ConvNet (the green panel) extracts the deep

features from the input videos. The architecture of this sub-

net is similar to that proposed in [37], i.e., eight 3D convolu-

tional layers (conv1a to conv5b) and four max-pooling lay-

ers (pool1 to pool4), and the output is a feature map with di-

mension R
512×L

8
×

H
16

×
W
16 . The pink panel houses the TPN,

which takes the video’s feature map as its input and outputs

proposal segments of variable lengths. The ZSDN, in the or-

ange panel, recognizes the classes of the generated propos-

als and fine-tunes their start/end times. The two key com-

ponents of the framework are obviously TPN and ZSDN.

These are discussed in more detail in the following sections.

3.2.1 Temporal Proposal Subnet (TPN)

The architecture of the TPN subnet is illustrated in detail in

Figure 2. This subnet generates high-quality proposals and

can correctly distinguish whether the proposal contains an

example of any activity. Its anchor segments are predefined

multiscale windows centered on L/8 uniformly distributed

temporal locations, where the maximum possible number of

proposals for each location is k. Therefore, the total num-

ber of segments for each input video is kL/8. The output

of the 3D ConvNet first passes through a 3D convolutional

filter and a max-pooling layer, which is represented as a

temporal-only feature map Ctpn ∈ R
512×L

8
×1×1. Namely

the 512-dimensional feature is produced for each temporal

location. This feature map is then fed into three modules:

a boundary regression module (left flow), a basic classifi-

cation module (center flow), and an improved classifica-

tion module (right flow). The boundary regression mod-

ule is used to predict the offset and length of each segment.

The purpose of two binary classification modules is to score

each proposal as either an activity or background. Their out-

puts are added together to jointly determine the final scores.

Note that the architectures of both the boundary regres-

sion module and the basic classification module are the

same as R-C3D. The improved classification module was

designed by us to refine the results produced by the basic

module by introducing the background label embeddings.

The improved classification module contains an additional

3D convolutional layer with mk channels on the feature

map Ctpn. The output is then reshaped as m× (kL/8), i.e.,

each anchor segment is represented as an m-dimensional

feature vector. The d-dimensional background label em-

bedding is also mapped into m-dimensional space with a

fully-connected layer. In this way, the improved classifica-

tion module determines its binary scores by computing the

cosine distance between m-dimensional features of the an-

chor segment and the background label embedding. The

improved classification module can decrease the mistake
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of regarding unseen activities as background in the test-

ing stage, because the label embedding of background is

far away from that of unseen activities.

3.2.2 Zero-Shot Detection Subnet (ZSDN)

The TPN subnet generates a set of candidate activity pro-

posals by automatically ranking the confidence scores of

all anchor segments. The non-maximum suppression algo-

rithm is applied first to eliminate the proposals with large

overlaps or low confidence scores. Next, three-dimensional

region of interest (3D RoI) pooling with 1 × 4 × 4 grids

maps the selected proposals, which are of different lengths,

into a fixed size of 512× 1× 4× 4. Each proposal’s pooled

feature passes through two fully-connected layers, and then

onwards into a zero-shot classification module and a bound-

ary regression module. Descriptions follow.

• The zero-shot classification module includes two fully-

connected layers that project the input proposal’s fea-

tures onto d-dimensional semantic space. A score vec-

tor pi ∈ R
c+1 is calculated for each proposal by com-

puting the cosine distance between the proposal’s fea-

ture vector and all label embeddings Lbg . Vector pi

consists of the possibilities that the proposal belongs

to the background class and the c activity classes.

• The boundary regression module is one fully-

connected layer at the top of the network, which gen-

erates 2× cs outputs. These outputs are used to refine

each proposal’s start/end times.

3.3. Training and Inference

The network is trained by jointly optimizing the classi-

fication and regression losses for both the TPN and ZSDN

subnets. Note that three losses, including the classification

and regression losses of the TPN and the regression loss of

the ZSDN, are set as the work in [41]. This last loss, i.e.,

the classification loss of the ZSDN subnet, is integral to ac-

complishing the ZSTAD task, which is designed as follows:

Lzs−cls =
1

N

∑

i

(Lbc(pi, p
∗

i ) + βLsc(pi, p
∗

i )), (2)

where N denotes the number of proposals in the ZSDN sub-

net, and i stands for their index during the training proce-

dure. The vector pi ∈ R
c+1 is the output of the ZSDN’s

zero-shot classification module. It represents the predicted

probability distribution over the background and c activ-

ity classes. The integer p∗i ∈ {0, 1, · · · , c} represents the

ground-truth label of the i-th proposal. If p∗i = 0, the pro-

posal does not contain any activities, otherwise it belongs

to the p∗i -th activity class. On the whole, the classification

loss Lzs−cls consists of two components: a basic-class clas-

sification loss Lbc and a super-class clustering loss Lsc. β is

a hyper-parameter that controls the trade-off between these

two terms. Given a proposal, the basic-class classification

loss guarantees that the predicted score for its true class will

be the largest in the (c+ 1)-dimensional score vector pi. It

is evaluated with a general softmax loss as follows:

Lbc(pi, p
∗

i ) = − log pip∗

i
. (3)

The Lsc clustering loss considers the prior information from

the super-classes Zbg of the activities. It controls the pre-

dicted scores of activity labels in the same super-class as

the true label, should be higher than those of other activity

labels in different super-classes. The value Lsc is derived

from the following hinge loss:

Lsc(pi, p
∗

i ) =
1

Nsc

∑

j1 /∈zs∗
i

∑

j2∈zs∗
i

max(0, pij1 − pij2 +∆sc),

(4)

where ∆sc is a margin hyper-parameter that can be de-

termined through cross-validation. The integer s∗i is the

super-class index of the ground-truth activity label embed-

ding ℓp∗

i
, i.e. s∗i = g(ℓp∗

i
). The number of Nsc is equal to

(c+1−|zs∗
i
|)×|zs∗

i
|, where |zs∗

i
| denotes the total number

of activity labels in the super-class zs∗
i
.

Note that no relative time offsets and lengths are deter-

mined for unseen activities because no unseen activity sam-

ples are included in the training procedure. Therefore, the

testing stage simply produces a (2×cs) matrix denoting the

two parameterized coordinates for each seen activity class.

In this case, the relative offset and length of unseen activity

are approximated through the coordinates of closely related

seen activities. This strategy was first proposed by Rahman

et al. [29], and it has proven to be effective for zero-shot

detection because the visual features of unseen activities are

usually similar to those of their close seen activities.

4. Experiment

4.1. Datasets

We conduct experiments with two video datasets: THU-

MOS’14 and Charades. Their details follow.

• THUMOS’14 [14]: This dataset contains 20 activity

classes for temporal activity detection and consists of

four parts: training data, validation data, testing data,

and background data. We use the validation data (200

untrimmed videos) to train our network and the test

data (213 untrimmed videos) to evaluate the model’s

performance. 12 activities are selected as seen classes

with the remaining 8 activities as the unseen classes.

• Charades [35]: This is another widely-used dataset

for activity recognition and detection. It comprises

9848 videos over 157 daily indoor activities collected
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Figure 3: Some prediction results of zero-shot temporal ac-

tivity detection over two datasets.

through Amazon Mechanical Turk. We use 7985

videos for training and 1863 for testing. 120 activities

are chosen as seen classes; 37 activities are unseen.

As described in Section 3.1, the two types of prior informa-

tion used are the activity label embeddings and their super-

classes. The labels in THUMOS’14 consist of one or two

nouns, so we use the average of their 300-dimensional fea-

tures from Word2Vec for the activity label embeddings. The

labels in Charades are gerund phrases, such as “Taking a

picture of something”. To ensure the accuracy of label em-

beddings, we remove the quantifiers and prepositions from

these phases, then represent the remaining words as mean

Word2Vec features. The background label embedding is

obtained by solving the optimization problem Eq. (1) with

a parameter setting of ∆bg = 0.1. The resulting activity la-

bel embeddings are then grouped into several super-classes

with the self-tuning spectral clustering algorithm [44]. The

background label is assigned into a individual super class

because it is far away from other labels.

4.2. Experimental Setup

To limit the GPU memory consumed, the network input

with the THUMOS’14 dataset is set to a sequence of RGB

frames with a dimension of 3 × 512 × 112 × 112, i.e., the

equivalent of a 30-second video clip. The input with the

Charades dataset is limited to 3×768×112×112, which is

about 154 seconds. Note that the ZSL setting demands that

the training dataset does not contain any instances labeled

with testing classes. Therefore, we remove any clips con-

taining unseen activities from the training video clips. In ad-

dition, we ensure that each clip in the testing set contains at

least one unseen activity. We build the network in the open-

Table 1: Zero-shot temporal activity detection results on

THUMOS’14 w.r.t mAP (%) at different IoU thresholds.

α=0.1 α=0.2 α=0.3 α=0.4 α=0.5
R-C3D+SE 13.96 12.61 10.81 7.91 5.11

R-C3D+ConSE 14.16 12.54 10.93 8.02 5.29

Ours (-TPN∗-Lsc) 16.76 14.76 11.87 9.01 7.37

Ours (+TPN∗-Lsc) 17.92 15.03 12.99 9.61 8.25

Ours (-TPN∗+Lsc) 19.50 16.72 13.81 11.23 8.88

Ours (+TPN∗+Lsc) 21.34 16.98 15.01 11.12 9.15

source Caffe framework [13], and the parameters of the 3D

ConvNet is pre-trained on the Sports-1M dataset [15] to

avoid overfitting. The number of anchor segments k are set

to values within [2,4,5,6,8,9,10,12,14,16] for THUMOS’14

and within [1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48]

for Charades. The three hyper-parameters are set as fol-

lows: the trade-off in the improved TPN subnet is set to

λ = 0.6; the trade-off in zero-shot classification loss is set

to β = 0.1 (Eq. 2); and the margin ∆sc in the clustering

loss function is set from [0.05,0.30] for the THUMOS’14

dataset and from [0.03,0.15] for Charades (Eq. (4)). Train-

ing is conducted with stochastic gradient descent at a learn-

ing rate of 0.0001, a momentum of 0.9, and a weight decay

of 0.00005 to optimize the proposed deep ZSTAD network.

4.3. Comparative Results

Given this study is the first work in the novel direction of

ZSTAD, there are no existing methods with which to com-

pare our model. Therefore, we design two baselines called

R-C3D+SE and R-C3D+ConSE by combining the R-C3D

activity detection model with well-known ZSR frameworks

SE [43] and ConSE [22] together. Note that SE is a primary

method for zero-shot action recognition, by using semantic

word vector space as the common space to embed videos

and category labels. ConSE projects samples into a seman-

tic embedding space via a convex combination of class la-

bel embeddings. In addition, we compare four versions of

our model with the designed baseline to explore its efficacy.

The four versions are:

• (-TPN∗-Lsc) without the improved classification

module in TPN subnet and without super-class clus-

tering loss for ZSDN subnet;

• (+TPN∗-Lsc) with the improved classification mod-

ule in TPN subnet and without super-class clustering

loss for ZSDN subnet;

• (-TPN∗+Lsc) without the improved classification

module in TPN subnet and with super-class clustering

loss for ZSDN subnet;

• (+TPN∗+Lsc) with the improved classification mod-

ule in TPN subnet and with super-class clustering loss

for ZSDN subnet.
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Table 2: Per-unseen class AP (%) at IoU threshold α = 0.5 on THUMOS’14 dataset.

Baseball Pitch Cricket Bowling Diving Hammer Throw Long Jump Shotput Soccer Penalty Tennis Swing

R-C3D+SE 2.23 3.09 3.13 9.21 12.15 3.42 3.38 4.29

R-C3D+ConSE 2.21 3.07 3.23 9.53 12.54 3.56 3.46 4.72

Ours (-TPN∗-Lsc) 3.79 4.03 4.41 14.25 17.47 4.98 4.92 5.11

Ours (+TPN∗-Lsc) 3.92 4.24 4.87 15.92 19.78 5.64 5.36 6.30

Ours (-TPN∗+Lsc) 4.20 4.62 5.07 17.02 21.23 6.31 5.82 6.78

Ours (+TPN∗+Lsc) 4.34 4.87 5.03 18.12 20.78 7.06 6.03 6.93

Table 3: Zero-shot temporal activity detection results on

Charades w.r.t standard and post-process mAP (%).

Standard mAP Post-Process mAP

R-C3D+SE 5.13 9.17

R-C3D+ConSE 5.67 9.84

Ours (-TPN∗-Lsc) 6.63 10.89

Ours (+TPN∗-Lsc) 7.03 11.72

Ours (-TPN∗+Lsc) 7.57 12.86

Ours (+TPN∗+Lsc) 7.91 13.23

Results on THUMOS’14: Table 1 reports the detection

performance for the eight unseen activities in terms of mean

average precision (mAP) at IoU thresholds [0.1, 0.5] (de-

noted as α). The average precision (AP) for each unseen

class at IoU threshold 0.5 is shown in Table 2. From these

results, we make the following four observations:

• All four versions of our method consistently perform

better than the R-C3D+SE and R-C3D+ConSE base-

lines over each of the unseen class. This indicates that

considering label embeddings in the ZSDN subnet is

beneficial to ZSTAD task.

• In most cases, the performance with TPN∗ is better

than without. This illustrates that the new classification

module in the TPN subnet, which introduces informa-

tion on the background label embedding, is helpful for

generating unseen activity proposals.

• Comparing the results of “+Lsc” and “-Lsc”, we con-

clude that considering the semantic clustering informa-

tion of label embeddings through the super-class clus-

tering loss can improve performance.

• With all methods, the mAP scores worsen as the value

of the IoU threshold α increases. This is reasonable

because a larger IoU threshold tends to require a more

accurate boundary for the predicted activities.

Results on Charades: Table 3 reports the results for the

37 unseen activities with the Charades data in terms of Sig-

urdsson et al.’s [34] standard and post-processed mAP eval-

uation metrics. The results are very consistent with those

from the THUMOS’14 dataset. That is, (+TPN∗+Lsc) still

delivers the best activity detection results with a 2.78% and
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Figure 4: The influence of improved classification module

(trade-off λ) in TPN subnet for ZSTAD.

2.24% performance improvement in standard mAP com-

pared to R-C3D+SE and R-C3D+ConSE, respectively. We

also note that the manually-designed post-processing effec-

tively improves the performance in terms of mAP. In ad-

dition, Table 4 shows the standard AP values per-unseen

activity class with the method (+TPN∗+Lsc). As the table

shows, these unseen activities, such as “Sitting in a chair”,

“Someone is dressing”, and “Sitting at a table”, are rela-

tively easy to detect in the testing stage.

4.4. Impact of the Improved Classification Module
in the TPN Subnet

The purpose of the improved classification module in the

TPN subnet is to refine the results of previous binary classi-

fication as to whether the segment contains an activity or is

the background. It does this by introducing the label embed-

dings of background and weighting the output with a trade-

off hyper-parameter λ. Therefore, it is necessary to test the

influence of λ on the results. The variants (+TPN∗-Lsc)

and (+TPN∗+Lsc), show the effect of this parameter with

λ tuned from 0.1 to 1 in step of 0.1. Figure 4 shows both

the mAP curves at an IoU threshold of α = 0.5 for THU-

MOS’14, and the post-process mAP curves for Charades.

We make two observations from the results:

• (+TPN∗-Lsc) and (+TPN∗+Lsc) consistently per-

form better than two baselines R-C3D+SE and R-
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Table 4: Per-unseen class AP (%) on Charades dataset with our method (+TPN∗+Lsc).

Throwing clothes 10.80 Opening a door 11.53 Sitting at a table 16.44 Talking on a phone 5.28

Holding a bag 7.86 Taking a book 3.93 Reading at a book 11.66 Holding a towel/s 12.87

Taking from a box 3.58 Closing a box 4.08 Taking a laptop 3.45 Tidying up a blanket 5.93

Sitting in a chair 18.09 Putting food somewhere 10.94 Eating a sandwich 7.96 Taking shoes 10.88

Holding a pillow 7.91 Tidying a shelf 4.84 looking at a picture 5.64 Closing a window 3.67

Taking a broom 10.35 Holding a mirror 2.69 Turning off a light 4.97 Washing a cup 4.05

Opening a closet 7.54 Taking paper 4.11 Wash a dish 9.59 Sitting on sofa 14.41

Tidying on the floor 8.14 Holding medicine 5.04 Taking a vacuum 5.63 Lying on a bed 10.10

Watching television 11.12 Fixing a doorknob 2.87 Opening a refrigerator 4.50 Someone is eating 5.32

Someone is dressing 14.90
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Figure 5: The influence of super-class clustering loss (trade-

off β) in ZSDN subnet for ZSTAD.

C3D+ConSE (see Tables 1 and 3) regardless of any

improvement brought by the trade-off λ.

• As λ increases, performance improves to a point then

gradually tapered. For THUMOS’14, the optimal

value of λ is 0.6, and 0.7 for Charades.

Overall, we find that the improved classification module

with a properly tuned λ enhances performance by generat-

ing better proposals for unseen activity classes in the testing

stage, and the optimal value of λ will differ depending on

the specific properties of the dataset.

4.5. Impact of the Super­Class Clustering Loss in
the ZSDN Subnet

As part of the ZSDN subnet, the super-class clustering

term Lsc in Eq. (2) aims to capture the common seman-

tics among all activities from the prior information of super-

classes over all activity label embeddings. Apparently, the

influence of the trade-off parameter β in the classification

loss needs to be examined. The variants (-TPN∗+Lsc) and

(+TPN∗+Lsc) are applicable here, with β varied in inter-

val {5×10−3, 1×10−2, 5×10−2, 1×10−1, 5×10−1, 1×
100, 5× 100, 1× 101, 5× 101, 1× 102} for both datasets.

Figure 5 shows the mAP curves at an IoU threshold of

0.5 for the THUMOS’14 dataset along with the post-process

mAP curves for Charades. As the figures show, detection

performance for all methods initially increases with an in-

crease in β before stabilizing in the interval [10−1; 100].
Once β exceeds 100, performance gradually declines. In

addition, we note that the results for (-TPN∗+Lsc) are

notably better than for (-TPN∗-Lsc) regardless of the

hyper-parameter β, as Tables 1 and 3 show (i.e., a 7.37%

improvement with THUMOS’14 and a 10.89% improve-

ment with Charades). Similarly, no matter the value of β,

(+TPN∗+Lsc) consistently outperforms (+TPN∗-Lsc) on

the two datasets. These results indicate that super-classes

over activity label embeddings are conducive to mine the

correlations between seen and unseen activities and signifi-

cantly contribute to detecting unseen activities.

5. Conclusion

In this paper, we propose a novel problem setting for

temporal activity detection in which activities that are not

seen during the training stage can be recognized and lo-

calized simultaneously. The solution presents in this paper

is the first attempt at zero-shot temporal activity detection

(ZSTAD). To address this challenging problem, we design

an end-to-end deep network that uses label embeddings and

their super-classes as prior information to capture the se-

mantics common to seen and unseen activities. The results

on THUMOS’14 and Charades datasets show the approach

is able to detect unseen activity to a high degree of accuracy.
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