
ZVMST: a minimum spanning tree-based vertex finder

S. Hillert

University of Oxford - Department of Physics

Denys Wilkinson Building, Keble Road, Oxford OX1 3RH - UK

A new topological vertex finder is presented which combines ideas of the well-established

ZVTOP algorithm with a novel minimum spanning tree approach. A preliminary

performance study with simulated e
+

e
− → qq̄ events at a centre of mass energy of

√
s = 91.2 GeV shows that the new approach is competitive with existing vertex finder

algorithms.

1 Introduction

.

LC-DET-2008-004

.

Minimum spanning trees (MSTs) are a mathematical optimisation tool with a wide range of
applications, which include finding the best route to travel from one place to another, finding
the optimal way to connect computers in a network and astrophysical applications, such as
source detection in gamma ray images [1], where the suggestion of using this approach for
cluster finding dates back to the early 1980s. As this method exploits topological information
- in the astrophysical example the connectedness of the detected photons - one can expect
this method to provide a natural approach to topological vertex finding, i.e. the identification
of decay vertices of heavy flavour hadrons in the jets that result from the collision of high-
energy particles at collider experiments.

For pixel-based vertex detectors of sufficient spatial resolution, the topological vertex
finder ZVTOP, originally developed at the SLD experiment [2] and more recently widely
used in Linear Collider physics studies, see e.g. [3, 4], provides the most precise vertex
information available to-date. It consists of two algorithms, ZVRES, which uses topological
information to resolve secondary vertices from the primary in the dense track environment
near the interaction point (IP), and ZVKIN, which is more specific in being only applicable
to b-jets as it uses kinematic information only available for this flavour. In this paper, a
new algorithm, ZVMST, is presented, which combines ideas of the ZVRES algorithm with
a new ansatz for finding vertices based on a minimum spanning tree.

The paper is structured as follows: after a brief introduction to minimum spanning trees
in section 2.1 and the mathematical functions used to describe the topological information
which both ZVRES and ZVMST exploit in section 2.2, the new ZVMST algorithm is de-
scribed in detail in section 2.3. The performance of the new algorithm is presented and
compared to that of ZVRES and of a vertex cheater in section 3. The vertex cheater is
described in section 3.1. The performance study comprises results on vertex multiplicity
(section 3.2), purity of track-content of the vertices found (section 3.3) and resulting flavour
tagging performance (section 3.4). Preliminary results regarding the dependence of some
of these performance indicators on the parameters of the new algorithm are presented in
section 4. Section 5 concludes with a summary and overview of further studies that would
be useful to improve the understanding of the algorithm’s performance and its optimal use
for flavour tagging.

2 The ZVMST vertexing algorithm

The new ZVMST algorithm is based on essentially the same mathematical description of
the topological information of a given input jet that was carefully developed for ZVRES,
and differs only in the way this information is used for finding vertices. The main challenge
of vertex finders used prior to ZVTOP is the large number of track combinations that need
to be considered and checked as to whether they form a good vertex. To avoid this problem,
the ZVRES algorithm uses a bottom-up approach, starting out from all possible two-track
combinations and using the vertex function as well as the fit-χ2 to decide which candidates
to keep and to merge. While ZVRES is thus an iterative procedure that gradually arrives
at optimised vertices, in the new ZVMST algorithm much of this optimisation is provided
by the minimum spanning tree approach.

Before describing the new algorithm, it is therefore necessary to give a brief overview of
minimum spanning trees and of the mathematical description of tracks and of the vertex
function that is calculated from the track information.

2.1 Minimum Spanning Trees

Mathematically, minimum spanning trees are a special type of graph. A graph is a set
of nodes that are connected by edges. Each edge can have a weight assigned to it. For
example, the nodes could correspond to different cities, the connecting edges to the roads
linking these cities and the weights to the distances. (For route planning other criteria,
such as the likelihood of traffic jams on particular roads, need to be taken into account to
determine the weights).

Trees are graphs in which for any pair of nodes there exists exactly one sequence of
connecting edges - i.e. the edges do not form loops. For a graph containing loops, there
therefore exist several trees, i.e. graphs with the same set of nodes as the original graph,
but only a subset of the edges.

For graphs with weighted edges, the minimum spanning tree is defined as the tree for
which the subset of edges is chosen such as to minimise the sum of the weights. It can
be shown that unless there are weights that are identical, there always exists exactly one
minimum spanning tree for a given graph.

Efficient algorithms for finding the minimum spanning tree for a graph exist, e.g. the
Dijkstra algorithm [5] and the algorithm by Kruskal [6]. Well tested, optimised implemen-
tations of these algorithms are available in the graph library of the C++ package boost [7].
This library has been used for the application to topological vertex finding.

2.2 Track probability tubes and the vertex function

A central idea of the ZVRES algorithm is to describe each track by a probability density
function fi(~r) in 3D space and to use these to define a vertex function V (~r) that yields
higher values in the vicinity of true vertex locations and lower values elsewhere, as well as
providing a criterion for when two vertex candidates are resolved from each other.

The track functions have a Gaussian profile in the plane normal to the trajectory. With
~p the point of closest approach of track i to space point ~r the track function fi(~r) is defined
as:

fi(~r) = exp

{

−1

2
(~r − ~p) V

−1
i (~r − ~p)T

}

,

where Vi is the covariance of the track at ~p.

In its most basic form, the vertex function is then defined as

V (~r) =

N
∑

i=1

fi(~r) −
∑N

i=1
f2

i (~r)
∑N

i=1
fi(~r)

with the second term preventing a single track passing near a point from yielding a high
V (~r) value at that position. Optionally, further knowledge on where vertices are more likely
to be found can be used to weight the vertex function, thereby suppressing fake vertices and
increasing the purity of the vertices found (i.e. the fraction of correctly assigned tracks).
Knowledge about the location of the event vertex can be used to suppress fake vertices from
tracks passing close by each other in the vicinity of the IP location. By adding a contribution

f0(~r) = exp

{

−1

2
(~r − ~p) V

−1

IP (~r − ~p)T

}

,

with VIP representing the IP covariance and ~p the IP position, and redefining the vertex
function as

V (~r) = f0(~r) +
N

∑

i=1

fi(~r) −
f2
0 (~r) +

∑N

i=1
f2

i (~r)

f0(~r) +
∑N

i=1
fi(~r)

,

space points close to the IP are less likely to be resolved from each other and tracks that
could otherwise give rise to fake vertices are more likely to be assigned to the primary vertex.
This IP-contribution is not adopted for the new ZVMST algorithm, as it can also have the
side-effect of suppressing secondary vertices that could otherwise be found.

Similarly, vertices are more likely to be found close to the jet axis than at a large angle
from it, which is taken into account by re-weighting the vertex function outside a cylinder
of radius 50 µm by an attenuation factor exp

(

−Kαα2
)

with opening angle α, Kα = kEJet

with k a user-settable code parameter and EJet the jet energy. This jet-energy dependent
definition of Kα takes into account that jets of higher energy are more collimated.

In addition to indicating likely vertex positions, the other use of the vertex function in
the ZVRES algorithm is to provide a key criterion for merging candidate vertices in the
process of vertex finding: space points ~r1 and ~r2 are defined to be resolved from each other,
if along the straight line connecting these points the vertex function falls below a given
fraction R0 of the lower of the values V (~r1) and V (~r2).

2.3 The ZVMST vertex finder

The ZVMST algorithm has two main stages: first a small number - typically between 1 and
5 - of 3D positions at which vertices are likely to be found is chosen on the basis of the
vertex function. In the second phase tracks are assigned to these candidate vertex positions,
using both the value of the Gaussian probability tube of each track at each of the selected
space points and the vertex function value at these points.

To select the candidate vertex positions, the intial step is identical with that of ZVRES:
for all possible two-track combinations in the input jet a vertex-fit is attempted, and com-
binations discarded that have a fit-χ2 above a user-settable cut value (default: 10) or for

which the vertex function at the resulting fit position is below 0.0001. In contrast to ZVRES,
combinations of one track and the IP are not considered in this approach. a

The retained two-track combinations are used to set up a mathematical graph structure,
in which each node corresponds to one of the tracks in the jet, and each edge corresponds to
a successful vertex fit of the two tracks that it connects. Note that a connection is only made
if the corresponding fit passes the cuts described above. As weight for the edge, the inverse
of the vertex function at the vertex position obtained from the two-track fit is chosen.

The graph is passed as input to the minimum spanning tree algorithm. This algorithm
selects a set of at most N − 1 edges for N input nodes (or less if the input graph contains
unconnected nodes) in such a way that the overall weight is minimised. In this case, because
of the choice of the weights, this minimisation corresponds to maximising the sum of the
vertex function values for the selected two-track candidate vertices.

Often some of the N −1 selected candidates will correspond to the same physical vertex,
especially for multi-prong vertices and the primary vertex. Therefore, sets of two-track can-
didates that correspond to one physical vertex need to be identified and only one optimised
position derived for each set. One can expect that two-track candidate vertices correspond-
ing to the same physical vertex should have fit-positions that are close in space and thus also
have similar vertex function values. This information should therefore be useful in deciding,
whether two candidate vertices are representing the same physical vertex or not. Due to
measurement uncertainties, the fit-position obtained from the two-track fit may be shifted
with respect to the position one would obtain from a simultaneous fit of all tracks belonging
to the physical vertex. Better results are therefore obtained if one searches the vicinity of
each two-track candidate for the 3D position which maximises the vertex function. The
”maximal vertex function value in the vicinity of a candidate vertex” is also used in the
later stages of ZVRES, and the same implementation is used for the new algorithm.

For ZVMST, the sorted list of N − 1 two-track fits that results from the minimum
spanning tree algorithm is used to select candidate 3D positions as follows: an empty list
of candidate positions is created. For each of the N − 1 two-track fits it is checked, if
its maximal vertex function position corresponds to the same physical vertex as any of the
candidate positions in the list. Only if none of the positions fulfils this criterion, the maximal
vertex function position of the two-track fit is added to the list of candidate positions. Two
positions are considered to correspond to the same physical vertex if their spatial separation
is below a user-settable cut value dmin (default: 400 µm). A more detailed discussion of this
criterion, and possible further studies related to it can be found in section 5.

The first stage of the ZVMST algorithm is now complete, and has resulted in a short
list of candidate 3D positions, which are considered in the second stage of the algorithm,
concerned with assigning tracks to vertices.

For each track i the probability tube value is calculated for each position in the list of
candidate 3D positions. The two largest of these for each track, fi (~ri1) and fi (~ri2), with
fi (~ri1) > fi (~ri2) and the vertex function values for the two positions, V (~ri1), V (~ri2), are
used to decide, if to assign track i to candidate position ~ri1, to ~ri2 or not at all: for assigning
a track to position ~r it is required that fi(~r) is larger than fmin (default 0.0001). If both the
track function and the vertex function are larger for ~ri1, the track is assigned to ~ri1.

aIncluding these combinations has been tried and results in some non-primary vertices not being found,
as the one-track IP combinations tend to have large vertex function values (regardless of goodness of fit)
and hence tend to be preferably selected in the following minimum spanning tree based optimisation step,
leading to non-primary vertex positions being discarded and some vertices not being found.

However, there are also some tracks, for which V (~ri2) > V (~ri1) and the track functions
are sizeable at both ~ri1 and ~ri2, and in these cases it is useful to consider assigning the
track to the candidate position with larger vertex function, even if the track function at that
position is smaller. If V (~ri2) > V (~ri1), it depends on the relative differences

∆fi1,2 =
|fi (~ri1) − fi (~ri2)|
fi (~ri1) + fi (~ri2)

and ∆Vi1,2 =
|Vi (~ri1) − Vi (~ri2)|
Vi (~ri1) + Vi (~ri2)

,

if track i is assigned to ~ri1 or ~ri2. The track is assigned to ~ri2, if the difference between the
track functions at ~ri1 and ~ri2 is ”not too large” and the vertex function difference is ”large
enough”, i.e. if ∆fi1,2 < ∆fmax (default value: 0.95) and ∆Vi1,2 > ∆Vmin (default: 0.15).

The intial values for these cuts were chosen ”by hand” based on these values found
for number of example jets and the corresponding track-to-vertex correspondence known
from the Monte Carlo (MC) generator, and subsequently an initial optimisation study was
performed, which is described in section 4. Effectively, these cuts do come close to the
criterion of assigning the track not to the position with higher track function value, but to
the one with higher vertex function value (as could have been expected from the role the
vertex function plays for the track-to-vertex assignment in ZVRES). It was therefore also
tried, for cases for which both fi (~ri1) and fi (~ri2) are above the minimum track function
cut, to base the decision between ~ri1 and ~ri2 exclusively on the vertex function. However
this resulted in less good performance than the cuts described above.

3 Performance of the ZVMST algorithm

The goal of vertexing algorithms is to find both the positions of the vertices in a jet and the
set of decay tracks originating at each of these vertices. Despite this clear goal, there is no
single performance measure for vertexing algorithms, but a range of criteria that should be
taken into account. In the initial performance study presented in this note, the emphasis
is on whether ZVMST can compete with existing algorithms in terms of finding vertices
without creating an increased number of fakes, e.g. by wrongly combining two IP-tracks to
form a non-physical secondary. In addition to a vertex multiplicity study, it is investigated to
which extent the correct tracks are assigned to the found vertices. It can be expected, that if
this aspect of vertexing is competitive, the resulting vertex positions should on average also
be at least as good as those obtained from existing algorithms if the vertex fitting procedure
is unchanged. The quality of the reconstructed vertex positions is not yet considered in the
present study and will need to be evaluated in the future. Instead, it is investigated, how the
performance of the identification of different jet-flavours (the flavour-tag) depends on the
vertex finder used. For each of these aspects, the result obtained from ZVMST is compared
to that of the well-established ZVRES algorithm, as well as a ”vertex cheater” algorithm
described in section 3.1 .

For the intial performance study presented in this note, a sample of 10000 two-jet
e+e− → qq̄ events (qq̄ = bb̄, cc̄, ss̄, uū, dd̄), generated with the PYTHIA event generator
at a centre of mass energy of

√
s = 91.2 GeV was used. The response of a typical ILC detec-

tor design, the LDC detector model LDC01_05Sc, was simulated using the GEANT4-based
program MOKKA. Events were reconstructed using the MarlinReco event reconstruction
package. The recently developed LCFIVertex package provides a set of algorithms to per-
form topological vertexing (ZVRES and ZVKIN), flavour tagging and vertex charge recon-
struction. The ZVMST algorithm was implemented into the LCFIVertex package, using the

minimum spanning tree implementation from the graph library of the boost C++ library.
The boost library is already being used by the LCFIVertex package for vector and matrix
representation. The LCFIVertex code was also used for obtaining the flavour tag and track-
to-vertex association purity. For the ZVMST algorithm, the default code parameters given
in section 4 were used.

3.1 The vertex cheater algorithm

The idea of the vertex cheater algorithm is to provide a performance comparison with vertices
obtained from perfect track-to-vertex assignment based on MC-truth information. The sets
of tracks obtained in this way are passed to the same vertex-fitter used for reconstructed
vertices. In this way the aspect of finding the correct track-combinations is disentangled from
the problem of finding the correct vertex position. While the vertex positions found by the
cheater deviate from the true MC vertex positions, this approach has the advantage that the
vertices obtained from the cheater can be treated in the same way as vertices obtained from
the topological vertex reconstruction algorithms, e.g. the fitter provides realistic covariance
matrices, which are subsequently used in the calculation of the input variables from which
the flavour tag is obtained.

It should be noted, that ”perfect” track-to-vertex assignment is to be understood within
the limitations imposed by performing vertex finding on a jet-by-jet basis, i.e. if the jet-
finder assigns two tracks originating from a common decay vertex to different jets, this vertex
will not be found by the cheater algorithm.

3.2 Comparison of vertex multiplicity

In Fig. 1 the multiplicity of vertices reconstructed by the topological vertex finders is com-
pared to the one obtained from the vertex cheater. The inclusive distributions in Fig. 1 (a)
show that as expected both the ZVRES and the ZVMST vertex finder reconstruct a smaller
number of vertices than is actually present in the jets. It is known for ZVRES that this
is especially the case at small decay lengths, where the danger of creating fake vertices is
particularly high. The two reconstruction algorithms ZVRES and ZVMST yield very similar
results, with the overall number of vertices found by ZVMST being slightly larger than for
ZVRES.

The dependence of vertex multiplicity on the number of input tracks in the jet is plotted
in Fig. 1 (b). The reconstructed vertex multiplicity is slightly higher for ZVMST than it
is for ZVRES over the entire range of input track multiplicities. The comparison with the
vertex cheater shows that while for high track multiplicity the tendency increases not to find
some of the physical vertices that are present in the jet, for a track multiplicity of up to 4
both ZVRES and ZVMST find too many (i.e. fake) vertices.

This suggests that it might be useful to investigate if vertex finding could be improved
by making the criteria for deciding whether to create more or fewer vertex candidates (the
resolvability cut for ZVRES and the dmin cut for ZVMST) track-multiplicity dependent.
Care would have to be taken not to introduce an unwanted dependence on jet-energy as a
side-effect.

N(vertices)
0 1 2 3 4 5

N
(j

et
s)

0

2000

4000

6000

8000

10000

12000

14000
Cheater

ZVRES

ZVMST

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

N(tracks)

<N
(v

er
ti

ce
s)

>

Cheater

ZVRES

ZVMST

(a) (b)

Figure 1: Multiplicity of vertices found by the two topological vertex reconstruction algorithms
ZVRES and ZVMST. The multiplicity of reconstructable vertices as found by the vertex
cheater is shown for comparison. (Reconstructable vertices are all vertices that contain at
least two tracks that are assigned to the same jet by the jet-finder). Shown are (a) the
inclusive distribution and (b) the average vertex multiplicity as function of track multiplicity
in the input jet.

3.3 Purity of track-content of reconstructed vertices

The extent to which the reconstructed vertices contain the correct tracks is quantified in
terms of the purity of the track-to-vertex assignment as determined by the LCFIAIDAPlot-

Processor of the LCFIVertex package. As different types of jets present different challenges
to vertex finding, different classes of jets and vertices are studied separately. In particular,
separate studies are performed for the case that two vertices and that three vertices have
been reconstructed in a jet, and for b-jets and c-jets. (Note that this is the MC-truth
flavour, as determined from an angular match between the jet axis and the heaviest-flavour
MC-hadron that is the direct parent of any of the MC-particles corresponding to the tracks
in the jet, as implemented in the TrueAngularJetFinder of LCFIVertex). For each of these
four classes, the primary, secondary, and where available the tertiary vertex were studied
separately. For each, the fractions of tracks were determined, for which the corresponding
MC particle originated from the IP, the B-hadron decay and the D-hadron decay. The
resulting purities obtained from the vertex cheater, ZVRES and ZVMST are shown in table
1, along with the fractions of tracks contained in each type of vertex, normalised to the total
number of tracks in each of the four jet categories.

The residual amount of confusion found for the vertex cheater despite the use of MC
information for the track assignment indicates some of the limitations of this approach of
studying track-to-vertex association purity, which should also be kept in mind when looking
at the results from the reconstruction algorithms. These limitations include the following
effects:

Monte Carlo Reconstructed track-vertex association
track origin Two vertex case (b) Three vertex case (b)

pri sec iso pri sec ter iso
Cheater 93.8 0.508 24.2 98.7 0.167 1.29 46.8

Primary ZVRES 89.8 1.83 34.3 94.4 5.85 5.74 47.5
ZVMST 89.1 2.31 46.6 95.5 5.78 5.85 57.7
Cheater 5.95 41.2 41.6 1.24 79.8 14.5 28.8

B decay ZVRES 7.26 48.3 30.5 3.83 65.5 12.9 25.6
ZVMST 8.05 48.5 22.6 3 67.3 17.4 19.7
Cheater 0.242 58.3 34.2 0.0295 20 84.2 24.4

D decay ZVRES 2.92 49.8 35.2 1.74 28.7 81.3 26.9
ZVMST 2.81 49.2 30.8 1.53 27 76.7 22.5
Cheater 52.4 31.1 16.5 40.7 28.8 22.7 7.8

all above ZVRES 49.3 36.9 13.8 38.2 29.7 23.4 8.73
ZVMST 45.5 35.3 19.2 34.2 28.3 23.7 13.7

track origin Two vertex case (c) Three vertex case (c)
pri sec iso pri sec ter iso

Cheater 99.8 0.862 74.4 99.9 7.16 26.7 75.9
Primary ZVRES 94.8 7.17 75 94.3 26.7 33.6 67.4

ZVMST 95.8 9.2 78.2 95.7 21.2 44.5 73.8
Cheater 0.191 99.1 25.6 0.104 92.8 73.3 24.1

D decay ZVRES 5.23 92.8 25 5.67 73.3 66.4 32.6
ZVMST 4.18 90.8 21.8 4.29 78.8 55.5 26.2
Cheater 65.4 27.2 7.44 56.3 19.7 18.9 5.11

all above ZVRES 64.1 27.3 8.59 49.5 22.3 21.1 7.1
ZVMST 60.9 27.7 11.4 44.9 23 20.1 11.9

Table 1: Percentages of the tracks assigned to the reconstructed primary, secondary and
tertiary vertex, which originate from the IP-, the B or the D decay at MC level. The
fractions of tracks assigned to primary, secondary and tertiary vertex, normalised to the
total number of tracks in the jet are also shown. Four different types of jet, with b- and
c-flavour and with 2 or 3 vertices found, are considered separately.

• Non-primary one-prong vertices cannot be found by any of the three approaches, in-
cluding the vertex cheater. For the case of the cheater, this is intentional, so the
purities obtained this way can be used as reference for the two topological reconstruc-
tion algorithms. (Note that the ZVKIN reconstruction algorithm has the possibility
to reconstruct such vertices; for studies of the ZVKIN performance, a modified vertex
cheater taking this into account, could therefore be useful in future).

• Which reconstructed vertex is considered the primary, the secondary and the tertiary is
decided only on the basis of their distance from the IP/event vertex. b This assignment
may not be correct, i.e. particularly in low-energy jets there can be cases, for which
the D-hadron emerges from the B-hadron decay vertex at angles larger than 90◦ to
the jet axis, resulting in the D decay vertex being closer to the primary than the B

decay vertex.

• Hadronic interactions in the detector material give rise to additional vertices. These
are currently not identified and known not have a significant effect on the flavour tag
at the jet energy considered in this study. However, where present they do invalidate
the assumption made regarding which reconstructed vertex corresponds to the decay
of which type of MC-hadron.

• Due to effects of pattern recognition at the track reconstruction stage, the correspon-
dence between tracks and MC-particles is not perfect.

Bearing in mind these sources for the confusion inherent in the way the purities are
determined, the vertex cheater provides the best purity values achievable, which can serve
as a reference to which to compare the results from the two vertex reconstruction algorithms.
This is particularly useful for the cases, in which the reconstructed number of vertices does
not agree with what would be expected for the jet-flavour (i.e. 2-vertex b-jets and 3-vertex
c-jets), and where it is therefore otherwise not clear, e.g. what fraction of the tracks in the
secondary vertex of a b-jet with only two vertices found should be expected to come from
the B- and from the D-decay, respectively.

For the three vertex case, the track-content of the primary and the secondary vertex is
improved by ZVMST compared to the ZVRES result for both b- and c-jets. The improvement
is particularly large for the secondary vertex in c-jets with three vertices, reducing the
fraction of IP-tracks that are wrongly assigned to the secondary vertex by almost 1/5 as
compared to the ZVRES result.

However, for the tertiary vertex, ZVMST does not reach the performance of ZVRES
in assigning the correct tracks, but shows an increased level of confusion with the primary
vertex for c-jets, and between B- and D-decay tracks for b-jets.

For b-jets in which only two vertices are reconstructed, the confusion between primary,
B- and D-decay tracks is larger for ZVMST than it is for ZVRES. For two-vertex c-jets, the
reconstructed primary vertex contains a smaller fraction of tracks actually originating from
the D-decay, but the fraction of IP-tracks assigned to the reconstructed secondary vertex is
increased.

Regarding the distribution of tracks between the different types of vertices, the new
ZVMST algorithm tends to assign less tracks than ZVRES, returning a larger fraction of

bBefore ZVTOP is run, the event vertex is reconstructed by an independent processor taking all tracks
in the event as input.

isolated tracks. This fact might to some extent account for the improved purities found for
ZVMST in some cases. To fully assess the track-assignment performance, the fraction of
jets that fall into the four categories (b-, c- with 2-, 3-vertices) would need to be included in
the study.

In conclusion, the differences between the two topological vertexing algorithms are smaller
than the differences between these reconstruction algorithms and the vertex cheater, indicat-
ing that rather different vertex reconstruction algorithms yield similar performance. What
is less clear is how to decide on the basis of the track-to-vertex purities as discussed in this
section, which of the two reconstruction algorithms performs better. This is partly due to
the fact that the definition of the different classes of jets that are considered separately is
not optimal: the same jet can fall into the 2-vertex category for ZVRES and the 3-vertex
category for ZVMST or vice versa. It is therefore unclear whether to interpret an increased
purity for one type of vertex as improved performance, as the correlations with the changes
in purity for the other types of vertices and the fraction of isolated tracks are not known.

Complementary to the vertex purity results presented in table 1, it might therefore be
useful to explore different ways of assessing vertexing performance that would avoid these
problems. For example, for each track that is assigned to a vertex by a reconstruction
algorithm one could define ∆Rrec as distance between the location of this reconstructed
vertex and the MC origin of the particle corresponding to the track. One could then plot the
fraction of tracks in bins of ∆Rrec. As isolated tracks would be included in the normalisation,
there would be no doubt about whether apparent improvements are only due to less tracks
having been assigned as is the case with the current assessment method.

3.4 Flavour tag results

Finally, the performance of ZVMST is studied in terms of the resulting flavour tag purities
for b-jets, c-jets and c-jets with b-background only. For each of these, the flavour tag is
obtained from the output of a neural net fed with characteristic jet properties, such as the
Pt-corrected vertex mass and the joint probability of the tracks to originate from a common
vertex. Depending on whether one-, two- or more vertices are found, different neural nets
are used. The flavour tagging approach was originally developed by R. Hawkings [8]. The
implementation of this approach provided by the FlavourTagInputsProcessor and the
FlavourTag processor of the LCFIVertex package is described in detail elsewhere [9]. For
the study presented in this note, the neural nets that were trained with input from the fast
MC SGV were used.

Fig. 2 shows the resulting purities for the three tags as function of tagging efficiency
for ZVMST. Results obtained from ZVRES and from the vertex cheater are shown for
comparison. Again, performance obtained from ZVMST is similar to the one resulting from
ZVRES. For the c-tag with all backgrounds, ZVMST performs better over the full c-tag
efficiency range, at low efficiency giving an improvement of up to 5%. In contrast, the b-tag
purity is lower for ZVMST than it is for ZVRES, by up to ≈ 1.5%, which is probably related
to the lower purity of the c-tag with b-background at high efficiency (with improvement wrt
ZVRES for this tag at low efficiency).

The cheater result for the c-tag shows that if further improvements in the track-to-vertex
assignment could be made, this should directly result in corresponding improvements in the
flavour tag. In contrast, the b-tag performance of both reconstruction algorithms is close to
the result provided by the vertex cheater, with ZVRES yielding a higher b-tag purity than

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

efficiency

p
u

ri
ty

b c bc
ZVRES

efficiency

p
u

ri
ty

ZVMST

efficiency

p
u

ri
ty

Cheater

Figure 2: Comparison of tagging performance at the Z-resonance obtained using the new
ZVMST vertex finder compared to results obtained using ZVTOP’s ZVRES algorithm and
for a vertex cheater using MC information for track-to-vertex assignment. Tagging purity is
shown as function of efficiency for b-jets and c-jets. Performance for c-jets assuming only
b-background (labelled “bc”) is also shown.

the cheater at low efficiency, indicating that the superior track-to-vertex assignment of the
cheater for this tag does not improve the tagging performance when using the current set of
flavour tag inputs and networks. The reason for this could be that the additional vertices
that the cheater provides compared to ZVRES, mostly correspond to low decay lengths and
have different characteristics than the vertices with which the flavour tag networks used
in this study were trained. To some extent this could also be the case for ZVMST. For
understanding the difference in b-tag performance between ZVRES and ZVMST, a study of
the decay length dependence of vertexing performance of the two algorithms could therefore
be useful.

Finally, the result obtained from the vertex cheater should not be misinterpreted as
indicating the optimum flavour tagging performance achievable: There could be ways of
improving the flavour tag by means other than an improvement in the track-to-vertex as-
signment, e.g. by including additional neural net input variables providing a different type
of further information. Such information could include characteristics of the minimum span-
ning tree of the ZVMST algorithm, e.g. the number of edges and candidate 3D positions
considered or the sum of the vertex function value corresponding to all selected edges.

parameter initial value range investigated step size resulting default value
dmin [µm] 300 [50, 600] 50 400

fmin 0.0001
[

0.5 · 10−4, 1.5 · 10−4
]

0.1 · 10−4 0.0001
∆fmax 0.9 [0.85, 0.95] 0.05 0.95
∆Vmin 0.1 [0.05, 0.15] 0.01 0.15

Table 2: Parameters of the ZVMST algorithm included in the preliminary study of parameter
dependence. The ranges over which each parameter was varied and the step size by which
parameters were incremented in these intervals are shown, as well as the current default
values derived from the study.

4 Choice of code parameters

Compared to ZVRES, the ZVMST algorithm has five new parameters, as described in detail
in section 2.3. Initial values for these parameters were selected on the basis of printout of
values for 20 randomly picked events, with the true origin of the MC particle corresponding
to each track being available for comparison. A preliminary tuning of these parameters
was then performed, in which each of the five parameters was varied over a range of values
while keeping the other four parameters fixed. The initial default values, ranges of variation
and resulting defaults (quoted in section 2.3) are shown in table 2. The optimised values
were again selected ”by hand” on the basis of the flavour tag purities at 70, 80 and 90%
tagging efficiency. This choice was not always unambiguous, as sometimes different values
were favoured by the different tags and the different efficiencies. Generally, a very weak
parameter dependence was seen over most of the parameter ranges considered for all the
parameters. Further work will be required to understand the parameter dependence in more
detail.

5 Summary and Conclusion

A new topological vertexing algorithm based on a minimum spanning tree approach, ZVMST,
was presented and shown to yield results that are competitive with the leading existing al-
gorithm ZVRES.

Vertex multiplicities for the new approach are slightly closer than ZVRES to the reference
results that were obtained by using MC information. A study of dependence of reconstructed
vertex multiplicity on the input track multiplicity suggests that an improvement might be
possible by taking the track multiplicity into account in deciding how tight to choose the
cuts that determine the multiplicity of candidate vertices. Care will need to be taken not
to accidentally introduce a jet-energy dependence as a side-effect.

Both algorithms yield similar results when studying track-to-vertex assignment. The
current method of assessing this aspect of vertex finding was shown to have some limitations
making it difficult to interpret the results. A different approach was suggested that would
also take the distance between reconstructed and MC vertices into account.

In terms of flavour tagging performance, the new algorithm yields an improvement of up
to 5% in purity for the c-tag, while performing slightly less well than ZVRES in terms of b-
tag purity. The flavour tagging performance yielded by both algorithms is very similar, while
differing considerably from the results obtained from the vertex cheater.Future improvements

of the neural net-based flavour tag might be possible by adding further input variables, which
could include characteristics of the minimum spanning tree found for each jet by the ZVMST
algorithm.

It should be noted that the results presented are very preliminary. In particular, the
algorithm parameters of both ZVRES and ZVMST are not yet optimised. Also, some of
the choices made during the development of ZVMST should be reconsidered. In particular
the criterion for deciding whether two candidate vertex positions correspond to the same
physical vertex will need to be revisited. Alternatively to the distance cut used in the current
approach, the criterion of when two vertices are resolved from each other as implemented
in ZVRES could be used. Both criteria (distance and resolvability) have been tried during
the development phase, with the distance criterion yielding slightly better results for the
c-tag. However, since both criteria depend on a cut value, which for the ZVRES criterion
was kept fixed, this comparison is largely inconclusive. A systematic study of a range of R0

and dmin, for a range of jet energies would be required to decide which of the two criteria to
prefer. For example, the resolver criterion might prove to be less sensitive to jet energy. On
the other hand, should there be a jet-energy dependence of the optimal dmin value, it might
be possible to account for this by a simple scaling.

Further studies could also show, if the two algorithms have particular strengths for a
subset of jets with characteristics that allow to decide which vertex finder to use.

References

[1] R. Campana, E. Massaro, D. Gasparrini, S. Cutini, A. Tramacere, Mon. Not. R. Astron. Soc. 383,
(2008), 1166-1174;

[2] D. J. Jackson, Nucl. Instrum. Meth. A 388 (1997) 247;

[3] ILC Global Design Effort and World Wide Study, ILC Reference Design Report (RDR), (2007); available
from http://www.linearcollider.org/rdr/

[4] T. Behnke, S. Bertolucci, R. D. Heuer and R. Settles, ECFA-2001-209;

[5] E. w. Dijkstra, “A note on two problems in connexion with graphs”, In: Numerische Mathematik,
1:269-271 (1959);

[6] J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and teh travelling salesman problem”,
Proceedings of the AMS, 7(1):48-50 (1956);

[7] J. G. Siek, L.-Q. Lee, A. Lumsdaine “Boost Graph Library, The: User Guide and Reference Manual”
C++ In-Depth Series, Addison Wesley Professional (2001);

[8] S. M. Xella Hansen, C. Damerell, D. J. Jackson and R. Hawkings,
Prepared for 5th International Linear Collider Workshop (LCWS 2000), Fermilab, Batavia, Illinois,
24-28 Oct 2000, LC-PHSM-2001-024;

[9] LCFI Collaboration, “The LCFIVertex Package: vertexing, flavour tagging and vertex charge recon-
struction software for the design of an ILC vertex detector”, in preparation, to be submitted to Nucl.
Instr. and Meth. A

http://www.linearcollider.org/rdr/
http://www-flc.desy.de/lcnotes/notes/LC-PHSM-2001-024.ps.gz

	Introduction
	The ZVMST vertexing algorithm
	Minimum Spanning Trees
	Track probability tubes and the vertex function
	The ZVMST vertex finder

	Performance of the ZVMST algorithm
	The vertex cheater algorithm
	Comparison of vertex multiplicity
	Purity of track-content of reconstructed vertices
	Flavour tag results

	Choice of code parameters
	Summary and Conclusion

