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ABSTRACT Blockchain’s popularity has seen a historic rise over the last decade. However, existing

blockchain systems have a major issue with scalability, which has become one of the main obstacles in

technology’s adoption in mainstream. There have been several attempts to address this limitation by identi-

fying Blockchain’s scalability/performance bottlenecks (e.g. those mainly related to consensus algorithms),

and thus proposed different solutions (e.g., new consensus protocols) to address such limitations. Other

works applied sharding to tackle the issue. All solutions however have mainly focused on Cryptocurrency

applications, and thus addressing the scalability of blockchain systems for general applications remains a

concern. This work proposes a scalable blockchain protocol for general applications (i.e., not restricted to

Cryptocurrencies). To improve the two major factors affecting transaction scalability, namely throughput

and latency, we needed to modify both the blockchain structure as well as the block generation process.

ZyConChain, the proposed Blockchain system, introduces three types of blocks that form three separate

chains: parentBlock, sideBlock and state block. These blocks are generated based on different consensus

algorithms, as each algorithm has specific properties that make it suitable for each type of block. To improve

the overall performance, ZyConChain generates sideBlocks (that carry transactions) at a high rate and keep

them in a pool. To generate parentBlock, miners, instead of packing transactions into a block as they do in

conventional blockchains, pack sideBlocks into a parentBlock. SideBlocks are generated based on an adapted

Zyzzyva consensus protocol, withO(log n) complexity. This has reduced the final consensus complexity per

transaction, in comparison to previous work. To enable the protocol to scale out with the increase in the

number of nodes, ZyConChain applied sharding technique. Parallel state chains have also been introduced

to address cross-shard transactions.

INDEX TERMS Blockchain, consensus protocol, distributed systems, scalability, security, sharding.

I. INTRODUCTION

Blockchain, as a promising solution to develop secure dis-

tributed ledgers, has gained an increasing attention over the

last decade. It is an append-only data structure that runs

over a decentralized network and is distributed among all

the peers. The strong security features, namely integrity,

immutability, and transparency that Blockchain offers, has

made the technology well-suited for applications with high

security requirements, and can benefit other sectors, such as

Supply chain, e-voting, Internet of Things (IoT), Healthcare

& medical records, and Government records (e.g., date of

birth). However, to provide these features (decentralization
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and security), blockchain has jeopardized scalability [1].

When dealing with an ever increasing number of users,

miners, and transactions, blockchain is unable to scale

and provide the same performance as centralised systems

(e.g. centralised payment systems). Without addressing this

fundamental scalability problem, such a promising technol-

ogy may not be able to be adopted in mainstream.

Several solutions have been proposed to address scala-

bility, such as Bitcoin-NG [2], ByzCoin [3], Elastico [4],

Omniledger [5], RapidChain [6], Red Belly [7], Algorand [8],

IoTA [9], Directed Acyclic Graph (DAG) based solutions

(e.g., Byteball [10], nano [11]), and Ripple [12], [13]. Some

of these proposals have achieved a better performance by

modifying blockchain structure. However, others identified

the consensus algorithm as themajor bottleneck of scalability,
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and hence, they modified the consensus algorithm to resolve

the issue. But these approaches have some major drawbacks,

and here we summarise some of these limitations and show

the proposed Zyzzyva algorithm addresses them.

A. SUMMARY OF EXISTING SOLUTIONS

ByzCoin [3] focused on designing a blockchain con-

sensus protocol to reduce the transactions’ latency of

Bitcoin [14], [15]. Inspired by Bitcoin-NG [16], ByzCoin

decouples transactions from the block generation and divides

the conventional block into two blocks, called KeyBlock and

microBlock. The former relates to the election of a leader

among the consensus group, and the latter form the trans-

actions blocks. By decoupling the leader election and trans-

action block, ByzCoin was able to improve throughput and

latency. However, scalability remains a problem in ByzCoin

and Bitcoin-NG, as they are unable to scale out when the

number of miners in the network increases [17]. Another

well-studied approach to address scalability is the sharding

method [4], which partitions the nodes in a network into

small groups (called committees) with the aim that commit-

tees work in parallel to process transactions. This method

has been applied in several works, such as Elastico [4],

Omniledger [5], and RapidChain [6]. However, these still

have limitations, especially when applying sharding, where

cross-shard transactions processing needs to be addressed.

Cross-shard transaction refers to the transaction that results

in the update of two or more shards. The existing sharding-

based methods either fail to process cross-shard transactions

(e.g., Elastico [4]) or their applicability is limited to Cryp-

tocurrency applications (e.g., Omniledger [5] and Rapid-

Chain [6]). Thus, they cannot be applied for general

applications.

B. CONTRIBUTIONS’ SUMMARY

The aim of this article is to build a scalable Blockchain

protocol that can be applied to all sectors with differ-

ent applications. The focus is (i) to increase throughput,

(ii) to reduce latency, and (iii) to enable the protocol to scale

out in proportion to the number of nodes.

• To achieve (i)-(ii), we modified the block structures,

block generation process, and the consensus algorithm.

We introduced three types of blocks (i.e., parentBlock,

sideBlock, and state block) and they form different

chains. Thus, the protocol comprises of three different

chains: main chain (which comprises of parentBlocks),

sideBlock chain, and state chain. The blocks are gen-

erated in different layers with different consensus algo-

rithms. ParentBlock generation follows the Nakamoto

consensus model. For the sideBlock generation how-

ever, we introduced a new consensus protocol based

on Zyzzyva consensus algorithm [18]. Zyzzyva is a

Byzantine Fault Tolerance (BFT) consensus protocol

that enhances the performance of the previous BFT

consensus protocols, such as Practical Byzantine Fault

Tolerance (PBFT) [19]. Similar to other BFT consensus

algorithms, Zyzzyva can’t scale up. To address this issue

of scalability, we applied the Scalable Collective Signa-

ture (CoSi) protocol [20].

• To achieve (iii), we applied sharding method, and

the innovation here is on the way we addressed the

cross-shard transactions: parallel chains, which com-

prise of the state chains of all shards in the sys-

tem, are introduced. Having the state chains of other

shards, which contain information about cross-shard

transactions, enable the nodes to verify the cross-shard

transactions.

This new proposed protocol is called ZyConChain. To gen-

erate sideBlock, we choose Zyzzyva algorithm [18], after

conducting an evaluation of consensus protocols in dis-

tributed systems (for details refer to Appendix A). The perfor-

mance analysis provided in [18], [21] showed that Zyzzyva

has significantly improved performance compared to the

previous BFT protocols, namely, PBFT [19] and QU [22].

Zyzzyva’s latency has reached the lower bound and its

throughput overhead has reduced remarkably.We believe this

fundamental improvement can notably benefit blockchain

protocols if applied correctly. Thus, Zyzzyva is used here to

introduce a new blockchain consensus protocol to reduce the

latency and increase the throughput of current protocols.

Zyzzyva applied a speculative approach in updating the

states, resulted in a high throughput [21], [23]. When the

primary (current leader) receives a client’s request, it sends

it to other nodes. Nodes respond to the request without first

running the expensive three-phase commit protocol to reach

agreement. It comprises of two paths [18], [21], [23]: one is

a two-phase path (that resembles the PBFT protocol), and the

other is the fast path (that has removed the commit phase from

the PBFT protocol). In the fast path, the state is updated once

the client receives 3f + 1 preparemessage. However, if there

is not enough (3f + 1) prepare messages, then the protocol

falls into the two-phase path to guarantee the progress. Below

are some details about the two paths:

• Fast path does not have commit message. When a client

receives the 3f + 1 prepare messages from the nodes,

it commits the message. This is an optimistic approach

that can fail. To guarantee the progress, Zyzzyva pro-

poses a second path, two-phase path which resembles

the PBFT.

• Two-phase path: if the client receives between 2f + 1

and 3f preparemessages, then the client needs to collect

2f + 1 commit messages. Thus, the client creates a

commit-certificate and sends it to the nodes. The nodes

send the commit message to the client. If client receives

2f + 1 commit messages, then the request is complete

and client commits the message.

To evaluate the performance of ZyConChain protocol, its

consensus complexity per transaction is compared with exist-

ing ones. The results show that ZyConChain outperforms the

previous sharding-based blockchain protocols. To measure

the overheads of the parallel state chains that have been added
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FIGURE 1. ZyConChain high level view.

to the protocol, we measured the storage complexity and

performed a comparison with other works. The results also

show that the overheads incurred by the parallel chains is

negligible.

C. ZyConChain’s OVERVIEW

Figure 1 provides a high-level view of ZyConChain. This

divides the network into small groups, committee, and intro-

duces three types of chains, see § IV. Within each com-

mittee nodes process transactions and generate sideBlocks,

parentBlocks, and state blocks. The primary of the commit-

tee collects transactions from transaction pool and includes

them into a sideBlock, refer to § IV-B3. It then triggers

the CoSi-based Zyzzyva consensus algorithm, see § IV-B1,

to reach agreement among the committee group for the pro-

posed sideBlock. The sideBlock is attached into the side-

Block pool once the committee agreed on it. ZyConChain

requires the primary to change in order to bypass the chal-

lenges of the view-change phase of the Zyzzyva consen-

sus algorithm, see § IV-B2. ZyConChain proceeds based on

epochs. In each epoch a leader is elected, which generates

parentBlock (which includes a number of sideBlocks) and

sate Block, see § IV-B4. To address the cross-shard transac-

tions, ZyConChain generates verifiable objects for the cross-

shard transactions and includes them into the state block, see

§ IV-C, other shards upon receiving the state block are able to

verify the cross-shard transactions confirmation and finalize

the cross-shard transaction.

D. ORGANISATION OF THE PAPER

The rest of this article is organized as follows. Section II

reviews the main existing solutions, followed by Section III

that provides details of the problem to be addressed.

Section IV explains in details the proposed ZyConChain pro-

tocol. The performance analysis of ZyConChain is presented

in Section V, and Section V-C concludes the paper. A road-

map of the paper is also provided at Figure 2.

II. RELATED WORK

This section discusses some of the well-known protocols,

outlining both their advantages and limitations.

A. BITCOIN-NG [2]

This system addressed the scalability issue of Bitcoin, and

its remarkable finding was that generating block in Bitcoin

involves two tasks: (1) solving a hash puzzle (i.e., referred to

as Proof-Of-Work (PoW) mechanism, and proving that miner

has worked on the block to prevent Sybil attack [24]) and

(2) serializing/validating/packing transactions into the block.

Based on this finding, Bitcoin-NG broke the Bitcoin’s block

into two blocks, calledKeyBlock andmicroBlock, to decouple

the two tasks. The former is referred to as leader, and the

latter is referred to as transaction proposal. The keyblock

includes the solution for the hash puzzle, the PoW, and

is generating in every 10 minutes. The miner of the key-

Block becomes then the leader and generates microBlocks

(transaction block). The leader generates microBlocks until

the next keyBlock is mined and a new leader is elected.

Thus, the microBlock generation interval is small, i.e., the

microBlocks are generated at high frequency. This obviously

increases transaction throughput, however the drawback of

this high frequency microBlock generation is the creation of

fork on almost every keyblock. Bitcoin-NG is also vulnerable

to selfish mining attacks. Furthermore, Bitcoin-NG has not

resolved the scalability problem: if the number of miners in a

network increases, the network will not be able to scale up.

B. ByzCoin [3]

This system suggested a new structure for blockchain to

enhance transaction’s throughput and improve performance.
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FIGURE 2. Paper road map.

Inspired by Bitcoin-NG [2], ByzCoin decoupled leader

election and transaction proposal. Thus, it comprises of

KeyBlocks and microBlocks. Similar to Bitcoin-NG, the

keyBlock is generated by the PoWmechanism that announces

the epoch’s leader. The keyBlocks are also used to form

a consensus committee by a sliding-share-window mech-

anism. The consensus committee comprises of the recent

keyBlock miners based on the amount of share they own.

More specifically, once a miner finds the solution for the

hash puzzle and generates the keyBlock, it is credited a

share in the current consensus group and moves the share

window, which includes the previous committee, one share

forward and forms the new consensus group. The miners in

the current consensus group can participate in the consensus

for the microBlock generation. To generate the microBlocks,

ByzCoin behaves different from Bitcoin-NG. It uses PBFT

consensus algorithm [19] and collective signature (CoSi)

protocol [20] to introduce a scalable PBFT-based consensus

algorithm for microBlock generation. Once the new leader is

elected and the committee for the current epoch is formed,

the leader generates the microBlocks, and triggers the CoSi-

based PBFT consensus. Once the consensus is reached on the

microBlock, the leader includes the collective signature into

the microBlock and adds it to the microBlock chain with a

pointer to the preceding KeyBlock. This increases through-

put, the issue of the scalability however still remains: when

the number of miners in the network increases, ByzCoin can’t

scale out and increase the transaction throughput. Further-

more, ByzCoin has a flat topology and falls back to this

topology in case of failure, which is detected by the keyBlock

miner. The flat topology requires all-to-all communication

among the committee group. which incurs O(n2) in the worst

case.

C. ELASTICO [4]

This is the first system that is based on a sharding con-

sensus protocol to address the scalability limitation of

permissionless blockchains. Elastico partitions a network into

smaller committees, where each committee processes a dif-

ferent set of transactions. Each committee has a relatively

small number of nodes ∼ 100 and runs PBFT consensus

algorithm that has O(n2) communication complexity. Elas-

tico operates in epochs, and re-partitions committees in each

epoch. Hence, Elastico’s nodes are assigned to a committee

only for duration of epoch. At the end of each epoch, nodes

solves a hash puzzle (PoW), which is seeded from a ran-

dom string generated by the final committee from the last

epoch; then later send their solution to the final committee

to be assigned to a new committee for the next round. Final

committee uses the least-significant bits from the PoWs to

distribute nodes into committees. After the committee setup,

the nodes within the committee agree on a set of transac-

tions and send it to the final committee, which gathers the

transactions received from committees into a global block

and distributes it to all committees. Elastico does improve

throughput and latency of Bitcoin, however it has some lim-

itations: (i) Elastico only partitions the nodes and it does not

divide the blockchain. This requires all the nodes to store the

entire blockchain. Thus, when a block is generated, it needs

to be sent to all the nodes in the network. This incurs a high

communication complexity. (ii) The size of each committee

is fixed and set to small number∼ 100, and this increases the

probability failure to 97% after 6 epochs [5], [6].(iii) Elastico

does not provide a solution for Cross-shard transactions [5].

D. OMNILEDGER [5]

This system is also a sharding based protocol that

addresses some of the Elastico’s limitations. Similar

to Elastico, Omniledger is designed for permissionless

blockchains. Hence, to allow nodes to join/leave the pro-

tocol, it re-configures the committees at every epoch

(once a day). The reconfiguration ensures that a commit-

tee is never compromised. To achieve this, Omniledger

designed a secure committee reconfiguration protocol based
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on RandHound [25] and Verifiable Random Function

(VRF) [26]. In each epoch, a fresh randomness is generated

using RandHound protocol [25]. This randomness is used to

partition the nodes into smaller committees. RoundHound

however relies on a leader to orchestrate the protocol. Thus,

it needs a leader election mechanism that is unpredictable

and unbiasable to prevent the adversary to break the proto-

col. Similar to Algorand [8], Omniledger uses VRF [26] to

provide the unbiased and unpredictable leader election mech-

anism. The consensus protocol within each committee is a

variant of ByzCoin [3]. One of the major security weaknesses

of ByzCoin’s design is the flat topology that the protocol

switches into in case of failure, which is a all-to-all commu-

nication model in the Byzantine setting. It is not known to

whether Omniledger’s new scheme of ByzCoin has addressed

this issue [6]. Besides, Omniledger has several drawbacks:

(i) its cross-sharding mechanism is based on a lock/unlock

mechanism which can result in a denial-of-service attack

(DoS), as a malicious user can lock arbitrary transactions [6],

(ii) Omniledger’s consensus protocol requires all nodes in

each committee to gossip messages to n nodes for each block,

which incurs O(n) per node communication complexity.

(iii) Omniledger can have less than 10 seconds low latency

if t < n/8 [6]. Finally, (iv) Omniledger’s cross-sharding

transaction mechanism is for Unspent Transaction Output

data model (UTXO), thus it is restricted to Cryptocurrency

applications. Moreover, it is based on a strong assumption

(i.e., users must actively participate in the cross-shard trans-

action), which is not feasible for lightweight nodes.

E. RapidChain [6]

This system aimed to address the drawbacks of previous

sharding-based protocols. Unlike previous protocols that per-

form partial sharding, RapidChain presents the full shard-

ing of computation, storage, and communication overhead

of processing transactions. It partitions nodes into smaller

groups of nodes, called committees, i.e. the computation

sharding. Each committeemaintains a disjoint ledger (storage

sharding) and process disjoint set of blocks. By sharding the

storage and the nodes (into committees), RapidChain could

scale the system’s throughput in proportion to the number

of committees. Similar to previous sharding-based protocols,

RapidChain operates in epochs. In the first epoch, it config-

ures a committee of sizeO(log n) as the reference committee,

which is responsible for performing the reconfiguration task

between epochs. At the end of every epoch, the reference

committee generates a fresh randomness used (i) to divide

nodes into committees, (ii) to allow participating nodes to

obtain a new identity, and (iii) to reconfigure the existing

committees to provide the join/leave property required for

permissionless blockchains. For reconfiguration, RapidChain

uses Cuckoo rule [27], [28] (a) to provide liveness at the time

of reconfiguration (re-organizing only a subset of nodes),

(b) to reduce the large communication overheads on the

network, and (c) to protect against slowly-adaptive Byzan-

tine adversary to the protocol. Once the committees are

reconfigured, nodes receive transactions from the network

and start packing them into a block. To reach consensus on

a block, RapidChain uses a Synchronous BFT protocol [29]

within committees: when the committee agrees on a block,

to propagate it within the committee, RapidChain uses a fast

gossiping protocol built on the Information dispersal algo-

rithm (IDA) [30], [31]. For communication sharding, Rapid-

Chain applied Kademlia routing protocol [32] to divide the

communication between committees. Hence, each committee

stores a routing table with log n size of records. When nodes

need to communicate with other nodes from other commit-

tees, they only take log n steps to discover them. Despite

its advantages, RapidChain has a few limitations: (i) simi-

lar to previous sharding protocols, RapidChain is designed

for Unspent Transaction Output (UTXO) data model, and

thus it is limited to Cryptocurrency applications; (ii) it per-

forms cross-sharding transactions by splitting a transaction

into three transactions based on the shards they belong to.

This approach fails to provide isolation which is one the

essential requirements for distributed transactions [33], and

(iii), RapidChain design is very complex.

III. PROBLEM STATEMENT AND PROPOSED

SOLUTION – A SUMMARY

As detailed in Section II, the current solutions to address

scalability have major limitations. ByzCoin & Bitcoin-NG

have improved performance, they, however, fail to scale out

when the number of miners in the network increases. Recall

that scaling out refers to the ability of the system to process

more transactions when the number of miners in the network

increases. For instance, if a network with N nodes processes

T number of transactions per second, when the number of

nodes increases to 2N , then the system should be able to

process more transactions than T . Sharding technique [4] is

one approach that has been applied in several work, such as

Elastico [4], Omniledger [5], and RapidChain [6], to resolve

this issue. However, these proposals have some limitations.

There is a major challenge when applying sharding,

namely cross-shard transaction processing. Cross-shard

transaction refers to the transaction that results in the update

of two or more shards. For example, assume a transaction

Tx = < (in1, in2),O >, where in1 is a coin from shard1 and

in2 is a coin from shard2 and these two coins create a new

coin, namely O, in shard3. This is a cross-shard transaction.

Elastico [4] applied sharding to improve the scalability, but

it did not address the cross-shard transaction processing.

Omniledger also leverages sharding. For cross-shard transac-

tion, Omniledger, applies a lock/unlock mechanism. Rapid-

Chain [6], another solution based on sharding, has applied

a different technique to support cross-shard transactions.

RapidChain splits the transaction into sub-transactions and

process the new sub-transactions separately. In the above

example, RapidChain splits the Tx into three transaction,

Tx1 =< in1, in
′
1 >, Tx2 =< in2, in

′
2 >, and Tx3 =<

(in′1, in
′
2),O >. in′1, in

′
2 belong to shard3. Each of these

transactions are processed individually. Here, Tx1 sends the

VOLUME 8, 2020 158897



N. Sohrabi, Z. Tari: ZyConChain: A Scalable Blockchain for General Applications

in′1 to shard3, then Tx2 will send in
′
2 to shard3, then in shard3,

Tx3 will combine the in′1 and in
′
2 and create the new coin O.

However, the drawback with Omniledger and RapidChain

solution is that they are mainly designed for UTXO data

model, hence they are limited to Cryptocurrency applica-

tions [33]. UTXO (Unspent Transaction Output) is the data

structure used in most Cryptocurrency applications. More-

over, RapidChain does not provide isolation which is one the

key factor of ACID properties of transaction processing in

database systems [33]. It is also a complicated design.

The aim of this article is to design a novel protocol to

improve scalability of blockchain that addresses the above

limitations and fits different types of applications. We have

three goals:

• Increasing throughput

• Reducing latency

• Providing a cross-shard transaction solution for sharding

technique that is not limited to a specific data model

Being inspired by ByzCoin and Bitcoin-NG, we sepa-

rate transaction block and the leader election. However,

to improve upon their throughput and latency, we have modi-

fied the chain structure, transaction block generation, and the

consensus algorithm that is applied in committee group to

finalize the transaction blocks. We introduced three types of

blocks: parentBlock, sideBlock, and state block. ParentBlock

is the leader election block and sideBlock is the transaction

block. ParentBlocks and sideBlocks are maintained in differ-

ent chains but are linked together. SideBlocks are generated,

by nodes in the committee, before parentBlocks are gener-

ated, and they are kept in a sideBlock pool.Whenminers want

to generate a parentBlock, instead of packing transactions

into the blocks, they pack sideBlocks and attach them into

the parentBlock. This increases the sideBlock generation rate,

which improves the throughput and latency.

To enable ZyConChain to scale out, we applied sharding

technique with the aim not to limit its use to Cryptocurrency

applications. We introduced state block that contains cross-

shard transactions information and forms the state chain.

Each shard has its own state chain. To facilitate the cross-

shard transactions, we designed parallel chains that comprises

of state chains of all shards. In another word, we leveraged

parallel chains to link different shards together to facilitate

cross-shard transactions. This means each shard keeps the

state chains of other shards, in parallel, which enables it

to verify cross-shard transaction confirmation. Thus, each

shard, besides its own chains, has the state chains of all other

shards.

In summary, the differences between ZyConChain and

existing solutions are as follows:

• In ByzCoin and Bitcoin-NG, once a keyBlock is gener-

ated, then the leader will generate microBlocks until the

next keyBlock is generated. In ZyConChain however,

sideBlocks are generated before the parentBlocks are

generated, and they are kept in a sideBlock Pool. To gen-

erate a parentBlock, miners create a parentBlock and

pick several sideBlocks from pool and attach them into

the parentBlock. Then start mining for that parentBlock.

Once the parentBlock is mined (i.e., a miner finds the

hash for PoW of parentBlock), the parentBlock and its

attached sideBlocks are confirmed.

• To finalize the microBlocks, ByzCoin applies the

expensive 3-phase protocol PBFT algorithm for each

microBlock (i.e., preprepare, prepare, and commit).

In ZyConChainn, Zyzzyva consensus algorithm (with

a minor modification) is used as a faster consensus

algorithm for sideBlock generations.

• The other limitation of ByzCoin and Bitcoin-NG is that,

they are not able to scale out. ZyConChain applied

sharding technique to address this issue.

• State-of-the art sharding-based protocols (e.g. Elastico,

Omniledger, and RapidChain) have a few limitations

that ZyConChain attempted to address here.

– As Elastico is not able to process cross-shard

transactions, ZyConChain supports cross-shard

transactions.

– Omniledger applies a lock/unlock mechanism

to provide cross-shard transaction. RapidChain

divides the cross-shard transactions into separate

inter shard transaction to process and finalize them.

However, they both are limited to Cryptocurreny

applications. ZyConChain provides a new concept,

i.e. parallel state chain to enable nodes in different

shards to process and verify the cross-shard trans-

action. This solution is not limited to a specific data

model.

IV. ZyConChain IN DETAILS

ZyConChain partitions the nodes into small groups, called

committees, and enables the network to scale out when the

number of nodes increases. Each committee maintains a

main chain, a sideBlock chain, and state chain, depicted

in Figure 3. Main chain includes parentBlocks; and side-

Block chain comprises of sideBlocks. ParentBlock is the

block that elects the leader for a committee in each epoch;

and sideBlock is the transaction block. State block, as the

name suggests, is the state of the committee in epoch. The

mined parentBlock and confirmed transactions in the epoch

define the state of the committee for that epoch. Hence,

the state block includes the hash of the parentBlock generated

in that epoch; the merkleRoot of the transactions that are

finalized in that epoch; and the list of Cross-shard transac-

tions. The state block is introduced to address cross-shard

transaction.

The committee also keeps the state chains of all other

committees in the networks, referred to as parallel chains.

Parallel chains link different shards together. Having the

state information of other shards, which includes the cross-

shard transaction information, enables the nodes within a

shard to verify the cross-shard transaction confirmations.

Figure 4 illustrates an example of parallel chain in one

shard – Shard1.
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FIGURE 3. ZyConChain blocks structures.

FIGURE 4. Chains within one shard.

A. NETWORK MODEL

We assume a network with n nodes over a peer-to-peer par-

tially synchronous setting. In a partially synchronous model,

there is no bounded time1 for message delivery. This means,

messages are guaranteed to be delivered but there is no known

delay time for delivery [34] (for more details in network

synchrony refer to Appendix A). We also assume all nodes

in the network have equivalent computational resources. Each

node has a private-public key set, (pki, ski), as an identity. The

nodes are divided into c = n/m shards, where m = t log n is

the size of each shards, refer to as committee.

B. ZyConChain WITHIN ONE COMMITTEE

In ZyConChain blocks are generated within two different

layers, namely Committee-layer and Leader-layer.

• Committee-layer: SideBlocks are generated in this layer.

In each committee, nodes first create SideBlocks, and

later run the consensus algorithm to get other nodes

agreement on the sideBlocks. Once other nodes agreed

on the sideBlock, sideBlock is included into a sideBlock

pool, where they are waiting for miners to collect them

and attach them into a parentBlock. While they are in

the pool, they are not finalized yet. But, once they are

attached to a parentBlock and the parentBlock is added

into the main chain, then the sideBlocks are finalized.

Because all nodes participate in generating sideBlocks

and consensus algorithm, we refer to the sideBlock gen-

eration layer as the committee-layer.

• Leader-layer: ParentBlocks and State blocks are gen-

erated in this layer. To generate a parentBlock, nodes

first create a parentBlock and pick several sideBlocks

from pool and attach them into the parentBlock. They,

then, start mining for that parentBlock. Once the par-

entBlock is mined (i.e., a miner finds the hash for the

parentBlock, PoW mechanism), the parentBlock and

its attached sideBlocks are finalized. The miner which

has created the current parentBlock will become the

leader of the epoch. The leader will then create the state

block of the epoch and collect the committee group’s

signatures for the state block. Finally, the state block is

included in the state chain and the leader will broadcast

it to other shards in the network, using Kademlia routing

protocol [32].

1) CoSi-BASED Zyzzyva CONSENSUS PROTOCOL

To reach consensus for a sideBlock in a committee,

we designed a novel consensus algorithm based on Zyzzyva,

i.e., a BFT consensus algorithm in distributed systems.

To enable Zyzzyva to scale for a large network, we applied

CoSi protocol [20], which is a scalable collective signature

protocol based on Schnorr signature. This section provides

details of CoSi-based Zyzzyva.

Let us consider a committee of size N = 3f + 1, where

N is the total number of nodes in the committee and f is the

number of Byzantine nodes. CoSi-Based Zyzzyva Consensus

comprises of two paths, namely fast path and two-phase

path, which resembles to the PBFT protocol. In the normal

condition (i.e. all nodes are correct nodes), the fast path will
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be executed and terminate the consensus. However, if the fast

path fails to complete, the protocol falls into the two-phase

path. The paths are explained as follows:

• Fast path

– First, the primary (explained in § IV-B2), computes

a hash for a sideBlock and sends the generated

sideBlock to other committee members.

– Second, the committee members will validate the

transactions in the sideBlocks and add their signa-

ture if the transactions and the hash value are valid.

– Third, the primary will collect all the signatures

from the committee members using CoSi proto-

col [20]. If 3f +1 signatures are collected (including

the primary’s signature), the consensus has reached

for the sideBlock and it is confirmed. This path is

complete here.

• Two-phase path

If the primary does not receive 3f + 1 signatures for the

proposed sideBlock, then the protocol falls in this path.

In this path, assuming that the primary receives between

2f + 1 ≤ Signatures < 3f , then it will create a commit

certificate and send it to other committeemembers along

with the 2f + 1 signatures collected from previous path.

If the primary receives back 2f + 1 signatures acknowl-

edging the commit message, then the primary will add

the sideBlock into its pool and send the commitmessage

to other committee members along with the collected

signature from 2f +1 nodes. This path is complete here.

2) VIEW CHANGE

Zyzzyva is known to have a complex view change mech-

anism. In leader-based-BFT consensus algorithms the view

change occurs when the primary (leader) is faulty. This is

because the primary is fixed. Thus, when the nodes detect

that the primary is faulty or behavingmaliciously, they trigger

the view change to change the primary. We simplified the

Zyzzyva’s view change mechanism by avoiding to have a

fixed primary. That is the primary is changing in each epoch

based on a PoW mechanism (with a low difficulty such that

in every 5 minutes a new primary is elected).

To change the view in ZyConChain nodes work to find a

solution for PoW puzzle (i.e., finding a hash on a set of data

(timestamp, nonce, previous primary’s hash) that is less than a

target). Upon finding the hash the node, i.e., the new primary,

sends the hash, a primary commit message, the set of data,

and the last sideBlock’s id it has received from the current

primary, to all the nodes in the committee. The nodes upon

receiving the new primary’s hash, (i) verify the correctness

of the hash, and (ii) check whether the last sideBlock’s id that

the primary has sent is similar to the last one they have in

their pool. If the conditions are met, nodes (1) append the new

primary’s hash into their view list (fig 5), (2) stop receiving

the sideBlocks from the current primary, and (3) send their

signature on the primary commitmessage to the new primary.

Upon receiving 2f + 1 signatures the new primary sends the

FIGURE 5. View list.

collected signature to nodes and start generating sideBlocks

until the next primary is elected. Note that the communication

overhead for the view change is log n as the new primary uses

CoSi protocol [20] to collect the signature for primary commit

message.

3) HOW SideBlocks ARE GENERATED IN EACH COMMITTEE?

To generate a sideBlock, nodes follow the below steps in each

committee:

• The primary creates a sideBlock, includes transactions

into it and computes a hash for the sideBlock.

• Then the primary, needs to collect signatures of the

committee group for the newly generated sideBlock.

Hence, it uses the CoSi-based Zyzzyva consensus pro-

tocol, to collect 3f + 1 signatures.

• If 3f + 1 signatures are collected (including the pri-

amry’s signature) the sideBlock has been accepted by

the committee. The primary will include the collective

signature, σ , into the sideBlock and add it to the pool,

where it is chained to the previous sideBlock andwaits to

be picked. It, then, sends the σ to other nodes so that they

can include it into the sideBlock and add the sideBlock

to their pool. Here, the consensus is terminated.

• But, if 2f + 1 ≤ number of Signatures < 3f , then the

protocol will fall into the second phase of the CoSi-

Based Zyzzyva protocol, where the primary sends a

commit certificate along with the collected signatures

to the nodes in the committee. Then the primary waits

to collect another 2f + 1 signature for the commit cer-

tificate. If it receives the 2f + 1 signatures, then the

sideBlock is considered accepted and can be added to

the pool. Then primary, will send the sideBlock along

the commit certificate and the collected signature to the

nodes, so nodes add the sideBlock into their pool.

• if less than 2f + 1 signatures are collected, then the

sideBlock is failed and not accepted.

When collecting signatures in the Zyzzyva consensus

rounds using CoSi protocol [20], we reduced the communi-

cation cost to log n, where n is the total number of nodes in

the committee. To verify σ , the final signature, nodes perform

O(1) computation. Hence, the total computation and commu-

nication costs for generating each sideBlock is O(log n) +

O(1) = O(log n). SideBlocks are generating with high rate,

every few seconds. We then pool the generated sideBlocks,
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Algorithm 1 SideBlock Generation Algorithm

Input: List of transaction

Output: sideBlock

1 Function sideBlockGen():

2 SideBlock sideBlock ← new SideBlock();

3 List<Transactions> TXs← List of Transactions;

4 sideBlock.add(TXs);

5 merkleRootTXs←

MerkleTree().getMerkleRoot(TXs);

6 List<CrossShardTransaction> crossTXs← List of

Cross-Shard Transactions;

7 sideBHeader ← previousSideBHash +

timestamp +merkleRootTXs+ crossTXs;

8 while !sideBHash < target do

9 nonce++; // difficulty is low to

find hash every few seconds

10 sideBHash← sha256(sideBHeader|nonce);

11

12 end while

13 σ ← CoSiBasedZyzzyvaConsensus(sideBlock);

14 sideBlock.addCollectiveSignature(σ );

15 return newSideBlock;

16 End Function // Run the consensus

algorithm within the committee.

17 Function

CoSiBasedZyzzyvaConsensus(sideBlock):

18 σ ← collect committees’ signatures;

19 return σ ;

20 End Function

and this is introduced to facilitate the sideBlock generation in

parallel with parentBlock generation (see Algorithm 1).

4) HOW ParentBlocks ARE GENERATED?

In each committee, nodes, parallel to generating sideBlocks,

participate in PoW mechanism to find the hash for PoW

puzzle and generate a ParentBlock. The steps to generate a

parentBlock are as follows:

• First, node creates a parentBlock, pick several side-

Blocks from sideBlock Pool and attach them to the par-

entBlock (i.e., adding the hash of the sideBlocks to the

parentBlock). Then it starts mining for the parentBlock.

Mining is based on the PoW mechanism.

• The node which finds the hash, which means the par-

entBlock is mined, will become the leader and add the

parentBlock to main chain and also add the sideBlocks

into the sideBlock chain. Next, it broadcasts the newly

mined parentBlock to all nodes within the committee.

Nodes in the committee, following Nakamoto’s consen-

sus algorithm (i.e., the longest chain rule), validate the

parentBlock then either accept it or reject it. If nodes

accept the parentBlock, they will add it to their copy of

main chain and add the sideBlocks, which are attached

to the parentBlock into the sideBlock chain. Note that

only parentBlock is sent to other nodes. Because nodes

within the committee already have the sideBlocks in

their sideBlock pool, they hence are able to retrieve them

and add them to the sideBlock chain.

• The leader, which mined the current parentBlock, then

creates a state block for this epoch. It includes the fol-

lowing information into the state blocks:
– MerkleRoot of all the transactions finlaized in this

epoch. The merkleRoot is available in the side-

Block. Hence, depending on the number of side-

Blocks that leader has attached to the parentBlock,

the number of MerkleRoots included into the state

block varies. For instance, if the leader has attached

3 sideBlocks to the parentBlock, then it needs to

include 3 merkleRoot to the state Block.

– List of cross-shard transactions. It is available in the

sideBlocks. Similar to the merkleRoot, the number

of cross-shard transactions depends on the number

of sideBlocks attached to the parentBlock.

– The hash of the current parentBlock. This is used as

a pointer to point to the previous state block in the

state Block chain to form the chain.

– Then leader requires to collect the committee signa-

tures for the generated state block. Hence, it triggers

the CoSi Zyzzyva consensus algorithm to collect

the signatures.

– Once the signatures are collected, then the state

block is finalized and can be appended to the state

chain.
• The leader’s last task in the epoch is to broadcast the

state block to other shards in the network.
Algorithms 2,3 are the parentBlock and state block gen-

eration algorithms. Figure 6 shows an overview of the side-

Block and parentBlock generation in one committee. Figure 7

depicts the state chains update in two different shards.

Algorithm 4 is the ZyConChain main algorithm.

C. CROSS-SHARD TRANSACTION AND PARALLEL CHAINS

As explained earlier, each committee has 3 chains: main

chain, sideBlock chain, and state chain. ZyConChain also

introduces parallel chains structure (i.e., state chains of all

shards in the network) to link shards together. To do so, state

chain of each shard is kept in the other shard. Therefore,

to link all the shards together, each shard keeps the state

chain of all other shards, i.e., parallel chains structure. This

is done to facilitate cross-shard transactions. The state chain

comprises of state blocks generated in each epoch. Each

state block contains, hash of the parentBlock generated in

that epoch, the merkleRoot of the transactions that are final-

ized in that epoch, and the list of Cross Shard Transactions,

i.e. shown as Cross−Tx. Having the merkleRoot of trans-

actions and the cross-shard transactions information, which

are stored in the state blocks, enables the nodes within the

shard to verify whether a cross-shard transaction has been

confirmed.
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Algorithm 2 ParentBlock Generation Algorithm

Input: List of SideBlocks

Output: parentBlock

1 Function parentBlockGen():

2 ParentBlock parentBlock ← new ParentBlock();

3 List<SideBlock> sideBlocks← List of SideBlocks;

4 parentBlock.attachSideBlocks(sideBlocks);

5 List<Hash> sideBHashes;

6 foreach SideBlock si : sideBlocks do

7 sideBHashes.add(si.getHash());

8

9 end foreach

10 parentBHeader ← previousparentBHash +

timestamp + sideBHashes

11 while !parentBlockHash < target do

12 // PoW mining.

13 nonce++;

14 parentBHash←

sha256(parentBHeader|nonce);

15

16 end while

17 return newParentBlock;

18 End Function

Algorithm 3 Shard State Block Generation Algorithm

Input: parentBlockHash, List of Cross-Shard

Transactions, List of MerkleRoot of

Transactions

Output: stateBlock

1 Function shardStateBlockGen():

2 StateBlock stateBlock ← StateBlock();

3 List<CrossShardTransaction> crossTXs← List of

Cross-Shard Transactions;

4 List<MerkleRoot> merkleRootTXs← List of

MerkleRoots of Transactions;

5 foreach SideBlock si : sideBlocks do

6 crossTXs.add(si.getCrossTXs());

7 merkleRootTXs.add(si.getMerkleRootTXs());

8

9 end foreach

10 stateBlock← parentBHash + timestamp

+crossTXs+ merkleRootTXs;

11 stateBlock.addHash.(sha256(parentBHash|

timestamp |crossTXs|merkleRootTXs));

12 return newStateBlock;

13 End Function

Let us assume we have a transaction Tx = <

(acc1, acc2), amnt >, where acc1 is an account in shard1,

acc2 is an account which belongs to shard2, and amnt is

the amount to transfer from acc1 to acc2. Also assume this

transaction is sent to the shard1. To process this transaction,

our protocol follows the steps below:

• The transaction is divided into two transactions, Tx =

Tx−1+ Tx−2. Tx−1 is to deduct the amount from acc1.

Tx−1 = < acc1,−amnt >. And Tx−2 is to add the

amount to acc2. Tx−2 = < acc2,+amnt >.

• An object Cross−Tx is created to contains the follow-

ings: the original transaction id (Tx−Id), the split trans-

actions ids, (Tx−1−Id and Tx−2 − Id), two verifiable

Objects (VO1 and VO2) for Tx−1 and Tx−2 which

are initially set to null. VO is the path of a transac-

tion in the merkle Tree. This path enables a verifier

to verify whether a transaction has been processed by

reconstructing the merkleRoot. Note that, to reconstruct

a merkleRoot, the transaction Id and the path of that

transaction in the merkleTree is sufficient. If the recon-

structed merkleRoot is the same as the merkleRoot

stored in the state block, then the transaction has been

confirmed and everyone can verify that. Figure 8, depicts

the merkle Tree and the path to verify a transaction in the

merkle Tree.

• Tx−1 and the Cross−Tx will be sent to shard1.

• Shard1 then processes the Tx−1 and updates the

Cross−Tx by adding the merkle tree path of the Tx−1

into the VO1. Once the state block is generated and

broadcast, other shards are able to verify whether the

Tx−1 is confirmed.

• Then the Tx−2 along with the Cross−Tx is sent to

shard2.

• Shard2 process the Tx−2 and updates the Cross−Tx.

Once the Tx−2 is confirmed and the state block is broad-

cast, all shards can verify the Tx−2.

• If shard2 does not process and confirm the Tx−2 within

△, then a new transaction Tx−revert is generated,

i.e., Tx−revert =< acc1,+amnt > which must be

sent to shard1, but, to avoid double spending attack,

i.e., to make sure that the shard2 will not process the

Tx−2 sometime in future, we create another transaction

Tx2−abort , which is sent to shard2. Once, the confirma-

tion of Tx−abort is received (via state block) then the

Tx−revert is sent to shard1.

We assume that the number of cross-shard transactions that

are generated between two shards are limited. If the number

of cross-shard transactions between two shards, say shard1

and shard2 is more than a threshold, then it means that the

nodes are not partitioned correctly. In this case, the network

require re-partitioning.

D. CHALLENGES

We faced the following challenges when designing

ZyConChain.

• Preventing Sybil attacks. To prevent this attack, we have

applied PoW mechanism, which its security has been

proven and it has been used in many blockchain

protocols
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FIGURE 6. Within committee ParentBlock and SideBlock generation overview.

FIGURE 7. Parallel chains in two shards.

• Securing the sideBlocks. We first need to define what

the security of a sideBlock means. As mentioned, every

node in each committee has a sideBlock pool along

with the main chain. We designed sideBlock pool to

enable fast generation of sideBlocks. However, once

a sideBlock is appended to a pool, no one should be able

to modify it. Furthermore, the total order of transactions

must be kept. These are the security requirements of a

sideBlock. To provide immutability and total transaction

ordering, every sideBlock has a hash and also is linked
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Algorithm 4Main Algorithm

// joining network and mining.

1 Join the network by connecting to known peers;
2 Start sideBlockGen();
3 Start parentBlockGen();
// Main loop.

4 while alive do

5 if parentBlockGen() returns parentBlock then

6 // add the parentBlock into

main chain.

7 mainChain.add(parentBlock);
8 broadcast(parentBlock); // to peers in

the committee

9 List<SideBlock> sideBlocks =

parentBlock.getSideBlocks(); // get

attached sideBlocks.

10 sideBlockChain.add(sideBlocks);
11 sideBlockPool.remove(sideBlocks);
12 stateBlock ← shardStateBlockGen();
13 broadcast(stateBlock); // to all

committees.

14 resetParentBlockGen();

15 end if

16 if parentBlock receives & isValid() &

extendsTheLongestMainChain() then

17 mainChain.add(parentBlock);
18 List<SideBlock> sideBlocks =

parentBlock.getSideBlocks();
19 sideBlockChain.add(sideBlocks);
20 sideBlockPool.remove(sideBlocks);
21 gossip(parentBlock);
22 resetParentBlockGen();

23 end if

24 if primary then

25 while new primary not elected do

26 sideBlock← sideBlockGen()

sideBlockPool.add(sideBlock);
27 broadcast(sideBlock);// to peers

in the committee.

28 resetSideBlockGen();
29

30 end while

31 else if sideBlock receives & isValid()

sideBlockPool.add(sideBlock);
32

33 end while

34 Function sideBlockGen():

35 return sideBlock // Algorithm 1

36 End Function

37 Function parentBlockGen():

38 return parentBlock // Algorithm 2

39 End Function

40 Function shardStateBlockGen():

41 return stateBlock // Algorithm 3

42 End Function

FIGURE 8. Merkle root.

to the previous sideBlock by containing the previous

sideBlock’s hash. The hash is generated with standard

hash functions, namely, SHA-256.

• Double-spending attacks. In ZyConChain, if adversary

wants to double-spend on a transaction that is included in

t sideBlock before, then it requires to re-generate all the

subsequent sideBlocks, which then requires to collect

the signatures of the committee. In addition, it requires to

re-generate all the subsequent parentBlocks, which to do

that, it requires to gain 50% of the hashing power of the

entire network. This suggests that, as long as adversary

has less than 50% of the power of the network, and also

as long as 2/3 of the nodes in each committee are honest,

then the proposed protocol is secure against this attack.

• Scaling the consensus in each committee. similar to Byz-

Coin, we applied CoSi protocol [20] to scale the Zyzzyva

protocol that we have applied in each committee.

• Leader election in each committee. In each committee,

a leader is elected based on PoW consensus. The diffi-

culty level of PoW is set to 10 minutes to prevent Sybil

attack.

V. PERFORMANCE ANALYSIS

This section analyses the performance of ZyConChian and

benchmarks it with some existing work. The following two

metrics are considered here:

• Consensus complexity aims to measure the communi-

cation and computation costs of ZyConChain’s transac-

tion. This relates to the overheads of the modifications

of the consensus algorithm (CoSi-Based Zyzzyva Con-

sensus), the block generation, and the chain structures.

We then compare the complexity of ZyConChain with

the existing work to evaluate its efficiency.

• Storage complexity is used to measure the storage over-

head that parallel state chains structure, which every

committee needs to store, incurred to the protocol.
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A. CONSENSUS COMPLEXITY

We compute the complexity of the consensus per transaction,

denoted as Tx. Let us assume that Tx belongs to committee

Ci, which includes m nodes. The network is partitioned into

n/m committees, where n is the total number of nodes in

the network and m is the size of each committee, i.e. m =

t log n, and t is the security parameter. Kademlia [32] routing

protocol is used for the committee-committee communica-

tion. Recall that in Kademlia, each node stores a routing

table of size log n, where n is the size of entire network.

To discover the nodes and rout messages, Kademlia requires

log n steps. Hence, in the proposed solution, each node can

send a message to another node in another committee in

log n/m steps, as each committee requires to store a table of

size log n/m records. Thus, when Tx is first generated, it is

sent to a constant number of nodes in the network, which

then is sent to committee Ci. To discover the nodes in another

committee, the communication cost is log n/m. Thus, to send

the Tx to all nodes inCi, the communication and computation

overhead is m log(n/m) = O(m log n). Second, the nodes in

Ci add Tx into sideBlock and run the consensus algorithm,

and has communication overhead of the order of O(logm).

This is because we applied the scalable collective signature

(CoSi protocol [20]), and the communication costs have been

reduced from O(m) to O(logm). Next, sideBlock will be

attached into a parentBlock and the consensus algorithm is

triggered on parentBlock. This adds O(m) communication

overhead. Hence, the total communication and complexity of

the consensus per-transaction is in the order of O(m log n) +

O(logm) + O(m) = O(m log n+ log(m)+ m).

TABLE 1. Complexity comparison.

Table 1 provides a summary of the complexity evaluation

of the proposed protocol and existing sharding-based proto-

cols. The consensus complexity comparison is also depicted

in Figure 9, which shows that the proposed protocol out-

performs existing ones when the number of nodes in the

network increases. Note that the committee-to-committee

communication cost of the proposed protocol and Rapid-

Chain is similar, i.e.O(m log n), as they both use theKademlia

protocol. RapidChain has however a cost in the order of

O(m2/b), as it has used inter-committee consensus that was

different from the one used in the proposed protocol. As we

have added an extra step, which attaches the sideBlocks to

a parentBlock, this adds an extra cost in the order of O(m).

In total however, the proposed protocol still performs better

in terms of the consensus complexity.

B. STORAGE COMPLEXITY

Let denotes by |B| the size of Blockchain, which in the pro-

posed protocol is computed by |B| = |PB|+ |SB|, where |PB|

FIGURE 9. Comparison of consensus complexity.

denoting main chain (ParentBlocks) size and |SB| denoting

SideBlock chain size, respectively. We divide the blockchain

intoC shards, whereC = n/m. Hence, each committee stores

O(|B|/C)= O(m× |B|/n) parts of blockchain; and thus each

node storesO(|B|/C) amount of data. We also store the shard

state chain. Let |S| denotes shard state chain size. As the

size of each state block is very small, hence the storage size

required to store a state chain is equivalent to the storage

size that a light-node needs to store the block headers in con-

ventional blockchains. As mentioned earlier, each committee

stores the state chains of other shards, thus each node stores

C × |S| amount of data for state chains. Note that the size of

each state chain, denoted as |S|, in comparison with the size

of total blockchain |B| is negligible. However, as we store the

state chains of all shards, it adds some storage costs, which

were included here to make the computation much more pre-

cise. Therefore, the total storage size that each node requires

isO(|B|/C+C×|S|). As shown in Table 1, the storage com-

plexity of the proposed protocol in comparison with Elastico

is significantly reduced. Compared however to Omniledger

and RapidChain, the proposed protocol requires slightlymore

storage, which is due to the parallel chain design.

To better understand the storage complexity comparison

between the protocols, we plotted the functions from Table 1,

in Matlab based on an example explained below.

Let us assume that the total size of the blockchain is

|B| = 200 MB. We then consider a network with

C = 10 shards. We also set the size of a state block to 800 B

(as mentioned, the size of a state block is small, in reality

this size could be even smaller than this, e.g., 80B similar to

block header in Bitcoin). Assume each shard has generated

100 blocks, hence, |S| = 100 × 800B. Finally, the graphs

are plotted based on these data. As depicted in Figure 10,

the difference between the amount of storage required per

each node in ZyConChain and Elastico is significant, where
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FIGURE 10. Comparison of storage complexity - ZyConChain(Ours) and
Elastico.

FIGURE 11. Comparison of storage complexity - ZyConChain(ours) and
Omniledger and RapidChain.

Elastico requires much more storage space per each node.

In comparison with Omniledger and RapidChain however,

ZyConChain requires slightly more storage per node, as illus-

trated in Figure 11.

C. CONCLUDING REMARKS

To the best of our knowledge, this work is the first to propose

the concept of the parallel state chains to facilitate the cross-

shard transactions for general data models. Table 2 compared

the proposed protocol with the exiting sharding-based and

some of the standard blockchain protocols. This table shows

the advantages of ZyConChain as a scalable blockchain pro-

tocol for general applications. ZyConChain provided three

TABLE 2. Comparison of Blockchain protocols.

types of blocks that form three separate chains. To improve

transaction scalability, ZyConChain packs transactions in

blocks with a high rate, using Zyzzyva consensus algorithm,

and maintains them in a pool. Miners then pick the pooled

blocks and attach them into a parentBlock to be finalized.

This has significantly enhanced transaction’s throughput and

latency. Furthermore, ZyConChain uses sharding to scale out

when the number of nodes in the system increases. The key

idea of ZyConChain is the parallel state chain structure which

has been used to facilitate the cross-sharding transactions for

any type of data model.

APPENDICES

APPENDIX A–DISTRIBUTED SYSTEMS AND

CONSENSUS PROTOCOLS

1) DISTRIBUTED SYSTEM OVERVIEW

A distributed system is a system that its components (hard-

ware or software) are located on the different networked

computers and communicate and coordinate their actions by

passing messages to one another [34]–[36]. Based on their

message exchanging mechanism, distributed systems can

be categorised into two types: message passing and shared

memory [16], [37]:

• Shared memory – all nodes (networked components) in

the network has access to a shared memory to exchange

information to one another.

• Message passing – each node in the system has its

own private memory (distribute memory). Information

between nodes are exchanged by passing messages.

There are several basic architectures for implementing the

applications (called distributed programming) running on dis-

tributed systems namely, client-server, three-tier, n-tier, and

peer-to-peer models [38].

• Client-server – in this model, each node in the system

take a role of being server or client. The client interacts

with server, which potentially is located in separate host

computer, in order to access a shared resource [35].

• Three-tier – the three-tier architecture divides the client,

in the client-server model, into two nodes by sepa-

rating the end-user view from the application logic.

Hence, it adds one extra tier to the client-server model.

To demonstrate this model, we divide the functions of

a given application into presentation, application, and

data logic. This application is an example of three-tier

architecture [35].
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• n-tier – the approach applied in the three-tier can be gen-

eralized to n-tiered model. This architecture is a solution

for an application which its domain is divided into n

logical components and each component is mapped to

a separate server.

• Peer-to-peer – in this architecture, all nodes (known as

peers) have the same responsibilities and are not sepa-

rated by their role (client or server). Peers can serve both

as clients and as servers. The main goal of the peer-to-

peer architecture is to share the data and resources on a

very large scale by removing the requirement for a server

to manage them. Examples of this architecture includes

the bitcoin network.

In this research our focus is on the message passing type of

distributed systems built on peer-to-peer architecture, as this

type of system resembles blockchains.

2) CONSENSUS PROBLEM

Distributed systems are associated with a fundamental prob-

lem, i.e., to achieve reliability in the presence of a number of

faulty processes (nodes) in the system [16], [34], [39]. This

problem, referred to as consensus problem. Nodes require to

agree on a data value (e.g., a block of data), however, some

nodes may be faulty or unreliable. We study two types of

nodes faults (or failure): Crash failure and Byzantine failure.

• Crash failure – it occurs when a node stops its activ-

ity, abruptly, and does not resume its functions. In this

failure, other nodes in the system can detect the

crash [16], [34], [39].

• Byzantine failure – in this failure the node behaves

arbitrarily and no assumption can be made about its

behaviour. It may send conflicting messages to other

nodes or it may remain silent and act as dead for a while

then revive itself [16], [34], [35], [39], [40]. Byzantine

problem was first introduced by Lamport et al. [40],

in Byzantine Generals problem. In Byzantine generals

problem, there are three or more generals that have

surrounded a city and need to agree to either attack to

the city or retreat. One of the generals, the commander,

orders. Others must decide whether attack or retreat

abased on the commander order. If the commander is

treacherous, he will order attack to one of the general,

and retreat to the other.

Thus, to reach agreement among nodes in distributed systems,

consensus protocols are required and they need to tolerate the

aforementioned failures.

A consensus protocol runs among the nodes with the goal

of reaching agreement over a data value [34], [35]. A consen-

sus protocol is Crash Fault Tolerant (CFT) if it can tolerate a

number of crash failures, or Byzantine Fault Tolerant (BFT)

if it can tolerate Byzantine failures [16], [34].

Besides the above failures that consensus protocols need to

tolerate, there are two properties that consensus algorithms

must satisfy: safety and liveness. According to Alpern and

Schneider [41] safety and liveness are defined as follows:

• safety – all nodes must execute the requests in the same

order.

• liveness – no valid request is ignored. In another word,

all valid requests must be served.

3) BFT CONSENSUS PROTOCOLS

In 1980, Pease et al. proved that to design a BFT consensus

protocol that can tolerate f faulty nodes, 3f + 1 total number

of nodes is required. This was the foundation of the sub-

sequent BFT consensus protocols. There are also a number

of requirements that BFT consensus must satisfy [16], [34],

[35], [42]–[45]:

• Agreement – if a correct node decides on an output

y′(e.g., a block), then all correct nodes must decide on

the same y′.

• Integrity – the decision and the output y′ of every correct

node must have been proposed by some correct node.

That is, the origin of the decision is important and is not

from an adversary [34].

• Termination – all correct nodes eventually decides an

output.

• validity – if all correct nodes broadcast a valid request

m, then m will be eventually delivered and included in

an output y′.

To evaluate the performance of consensus protocols often

two metrics are considered: running time and message com-

plexity.

• Running time – refers to the number of rounds that

messages need to exchange to reach agreement.

• Message complexity – message traffic generated

through running the protocol.

Hence, throughout this research when we need to evaluate

the performance of the consensus protocols, we measure the

above metrics.

4) NETWORK SYNCHRONY

Network synchrony is a fundamental concept in the dis-

tributed systems and refers to the model based on which

the nodes (networked components) are coordinating together.

It is classified into three types, namely synchronous, partially

synchronous, and asynchronous [16], [17], [34], [42], [43]:

• Synchronous – synchronous network proceeds in a

sequence of rounds. In another word, nodes’ opera-

tions are coordinated in rounds. In each round all nodes

perform the operations of that round (e.g., sending a

message), and, then move to the next round. The clock

drift ratio (which refers to the time at which a computer

clock deviates from a reference clock [35]) which can

affect the coordination, is addressed by a central clock

synchronization service [34]. In this model messages,

that are transmitted to the nodes, are delivered within

a known bounded time 1.

• Partially synchronous – in this model, there is no

bounded time 1 for message delivery. This means, mes-

sages are guaranteed to be delivered but there is no
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known delay time for delivery. This causes the nodes to

coordinate loosely [34].

• Asynchronous – in asynchronous network, there is no

guarantee for message delivery and messages are deliv-

ered arbitrarily. That, one message may get delivered

instantly, and other may take several years to get deliv-

ered. Also, nodes operations are not coordinated, due to

the lack of clock synchronization. One nodemay execute

one step of the operations within a short time, while

other may take several days to execute that [35].

Partially synchronous network condition is assumed in

most practical distributed systems. Hence, we focus on

the consensus protocols for partially synchronous network

model.

When designing/evaluating consensus protocols this

important factor, network model, needs to be taken into

account.

5) CONSENSUS PROTOCOLS FOR PARTIALLY

SYNCHRONOUS

There are several consensus protocol designed for this net-

work model, namely, DLS-protocol [43], Paxos [46], view-

stampeld replication (VR) [47], Practical Byzantine Fault

Tolerant (PBFT) [19], Quorum/Update (QU) [22], Hybrid

Quorum (HQ) [48], Zyzzyva [18], FaB [49], Spinning [50],

Robust BFT SMR [51], and Aliph [52]. Because of its wide

used in Blockchain systems, here, we explain PBFT proto-

col [19]. we will also detail Zyzzyva protocol [18] as we have

applied it in designing our protocol.

• PBFT – Practical Byzantine Fault Tolerance (PBFT)

protocol, proposed by Castro et al. [19], is one of the

efficient algorithm to reach consensus in the presence

of Byzantine participants in a partially synchronous net-

work. It requires 3f + 1 nodes in the system to be able

to tolerate up to f byzantine nodes. Since it is designed

for partially synchronous network, the nodes are coordi-

nated in rounds. Each round comprises of three phases,

namely, pre-prepare, prepare, and commit [19].

– Pre-prepare – in this phase the primary node (cur-

rent leader), triggers the next round (in which the

nodes must agree upon a value m) by sending a

‘‘pre-prepare’’message to other nodes.When nodes

receive the ‘‘pre-prepare’’ message, they check the

validity of them. Ifm is valid and correct, then, they

proceed to the next phase, prepare.

– Prepare – every node sends a ‘‘prepare’’ message

to other nodes. A node that has received a quorum

of 2f + 1 ‘‘prepare’’ message for the value m,

it proceeds to the next phase, commit.

– Commit – when a node is in this phase, it sends

a ‘‘commit’’ message to other nodes. Once, nodes

received a quorum of 2f +1 ‘‘commit’’message for

the value m, they are assured that they are in the

safe state as enough members have acknowledged

and recorded the decision for m. Thus, they update

their state by adding m.

These phases are the normal operations of the PBFT,

when the primary is correct and reliable. However,

if the primary is suspected faulty, then the protocol

falls into a sub-protocol, View-Change. When a node

notices a malicious behaviour of primary (of the current

view), or stuck in one phase for a long time with no

progress, it initiates a view-change and stops performing

the current view’s operations. If 2f + 1 nodes triggered

the view-change phase, then the next primary takes over.

PBFT has been applied in some existing blockchain sys-

tems such as Hyperledger fabric [53], Tendermint [54].

However, it has some drawbacks. (1), all nodes in the

system are fixed, and predefined (before the protocol

starts). Thus, it fails to provide the join/leave prop-

erty (which is one of the essential properties for public

blockchains), (2), it has a O(n2) communication com-

plexity, due to the nodes communicating directly to all

other nodes [3]. This causes significant delay in the

networks with large number of nodes.

• Zyzzyva – In 2007 Kotla et al. [18] proposed Zyzzyva,

a fast BFT consensus protocol based on state machine

replication. Zyzzyva applied a speculative approach in

updating the state which resulted in a high through-

put [21], [23]. In Zyzzyva, when the primary (current

leader) receives the client’s request it sends it to other

nodes. Nodes respond to the request without first run-

ning the expensive three-phase commit protocol to reach

agreement. It comprises of two paths [18], [21], [23].

One is a two-phase path which resembles the PBFT

protocol. The other is the fast path which has removed

the commit phase from the PBFT protocol. In the fast

path, the state is updated once the client receives 3f + 1

prepare message. However, if there is not enough

(3f + 1) commit messages, then the protocol falls into

the two-phase path to guarantee the progress.We explain

them in more details below.

– Fast path – this path does not have commitmessage.

When a client receives the 3f +1 preparemessages

from the nodes, it commits the message. This is

an optimistic approach which may fail. To guaran-

tee the progress, Zyzzyva proposes a second path,

two-phase path which resembles the PBFT.

– Two-phase path – If the client receives between

2f + 1 and 3f prepare messages, then the client

needs to collect 2f + 1 commit messages. Thus,

the client creates a commit-certificate and sends it

to the nodes. The nodes send the commitmessage to

the client. If client receives 2f +1 commitmessages,

then the request is complete and client commits the

message.
Zyzzyva has a view-change sub-protocol which will be

initiated if a primary is faulty.
Performance analysis provided in [18], [21], shows that

Zyzzyva has significantly improved performance compare to

the previous BFT protocols, namely, PBFT [19] and QU [22].

Zyzzyva’a latency has reached the lower bound. And the
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throughput overhead of Zyzzyva has reduced remarkably.

We believe this fundamental improvement can notably bene-

fit blockchain protocols if applied correctly. Thus, we applied

Zyzzyva, to propose a new blockchain consensus protocol to

reduce the latency and increase the throughput of the current

protocols.

APPENDIX B–SCHNORR SIGNATURE

It is a digital signature scheme which is defined over an

Elliptic curve and generates the key pairs similar to ECDSA

algorithm, i.e. x is the secret key, which is a random integer

from {1..n−1}, where n is the order of the subgroup, and pub-

lic key is pk ← x×G, whereG is the base point of the elliptic

curve. To generate the signature, a random number R, which

is a point over the curve, is generated by R← k × G, where

k is a random integer. Signature s is s = k + h(pk,R,m).x,

where h is a standard hash function. Signature is valid if the

s × G = R + h(pk,R,m) × pk . Schonrr signature can be

used to build multi party signatures, m-of-n multi signature,

however, it needs to use some kind of merkle tree to be able

to satisfy the multi signature requirements, i.e. including the

public keys of all the participants in signing. The drawback

of this scheme is when the size of m and n become large,

the merkle tree size blows up exponentially. This signature

is applied in CoSi protocol by applying spanning trees to

manage the public keys. We have applied CoSi protocol to

design our protocol.
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