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Abstract

Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded

as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics

for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and

commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae

based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental

and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic

engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly

promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and

metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan,

succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are

also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments

in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.
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Introduction
There have been growing concerns about biosynthesis of

fuels, desired chemicals and materials from renewable

biomass resources for limited fossil resources and associ-

ated environmental issues in the past few decades [1,2].

As model industrial or laboratory organisms, Escherichia

coli and Saccharomyces cerevisiae were selected as im-

portant platforms for the purpose of desired biofuels and

chemicals production via metabolic engineering [3-5]. Cur-

rently, strain optimization to utilize various feedstocks (for

example, starch, sugarcane, agricultural residues, industrial

waste, forest residues, energy crops, et cetera) [6,7], desired

products spectrum (for example, biofuels and building

block chemicals), and higher yields, which have made great

progress in the past decades and provided a basis for in-

dustrial applications [1-5].

As a candidate bio-ethanol producer, Zymomonas mobi-

lis showed some advantages, for example, higher specific

rate of sugar uptake, high ethanol yield, lower biomass

production, non-requirement of controlled addition of

oxygen during fermentation, et cetera [8-13]. Extensive

fundamental studies on Z. mobilis over the last 30 years

have also made this strain a promising ethanologenic or-

ganism for large-scale bio-ethanol production. On the

other hand, extensive studies on different genetic tech-

niques (including plasmid vector, expression system,

transposon system, gene knockout, gene transform-

ation, and gene function, et cetera) will help Z. mobilis

are amenability to genetic improvement for industrial

biotechnology [13]. Furthermore, strategies of strain im-

provement (such as conventional mutagenesis, transposon

mutagenesis, adaptive laboratory evolution, and metabolic

pathway engineering, et cetera), and different value-added

bio-products have also been paid more and more atten-

tion in the past 20 years. Importantly, genomics and tran-

scriptomic of Z. mobilis have also been developed since

2005, which will aid future metabolic engineering and

synthetic biology in strain improvement for industrial
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applications [14]. Selected milestones in Z. mobilis re-

search are summarized in Figure 1.

Currently, three subspecies (subsp.) of Z. mobilis have

been found, including Z. mobilis subsp. mobilis, Z. mobi-

lis subsp. pomaceae and Z. mobilis subsp. Francensis

[15-19]. All strains have also been summarized in the Ph

D thesis of So Lok-yan (University of Hong Kong) and

other review articles [19]. Among these strains, ATCC

31821 (ZM4), ATCC 10988 (ZM1), ATCC29191 (ZM6),

CP4, and NCIMB 11163 from Z. mobilis subsp. mobilis,

ATCC 29192 from Z. mobilis subsp. pomaceae, which

were well-charcterized by previous studies on the level

of physiology, biochemical, fermentation, genetics, metab-

olism, and omics. These strains are regarded as a model

organism in Z. mobilis research or industrial applications.

In general, Z. mobilis may play a critical role as a novel

platform in industrial biotechnology for the development

of a green replacement for petrochemical products. In

this paper, we review some critical research progress on

Z. mobilis for its use as a platform for the production of

ethanol and other buck chemicals from biomass.

Review
Genetic background of Z. mobilis

Currently, general genetic tools have been developed in

Z. mobilis since the 1980s, including native plasmids, broad

host-range vectors or shuttle vectors, expression system,

gene transfer, promoter, and reporter gene, as reviewed in

other articles [8,11,13]. Specific gene knockout, genomics,

and transcriptomics will be emphasised as below.

Specific gene knockout

The development of gene deletion approaches have been

performed for gene function and there has also been

greatly improved metabolic engineering of Z. mobilis.

Currently, different methods, including insertional mutant,

suicide plasmid-based mutant construction, site-specific

FLP recombinase, fusion-PCR-based construction tech-

nique, and transposon mutagenesis, have been employed

for inactivating specific genes of Z. mobilis. Up to date, many

genes, such as pyruvate decarboxylase (pdc, ZMO1360), al-

cohol dehydrogenase (adhB, ZMO1596), lactate dehydro-

genase (ldhA, ZMO1237), NADH dehydrogenase (ndh,

ZMO1113), RNA-binding protein Hfq (hfq, ZMO0347),

hydroxylamine reductase (nhaA, ZMO0117), glucose-

fructose oxidoreductase (gfo, ZMO0689), aldo/keto reduc-

tase (himA, ZMO0976), restriction-modification (R-M)

systems-related gene (ZMO0028, ZMO1933, ZMO1934,

ZMO1934, ZMO0575), cytochrome-related gene (cytC,

cytB, ctbD, ZMO0957, ZMO1572) et cetera, which were

selected as targets for improvement of some specific

phenotype (summarized in Table 1).

Sequenced genome of different Z. mobilis strains

Genome sequencing technology provides opportunities

for fundamental insights and facilitates strain develop-

ment [35]. Seo et al. reported the first genome sequence

of Z. mobilis ZM4 in 2005. The complete genome of

Z. mobilis ZM4 contains a 2,056,416-bp circular chromo-

some and five circular plasmids [9]. The complete genome

sequence of other Z. mobilis strains have also been re-

ported since 2005 [36-41]. All strains contain a circular

chromosome and types of plasimd. However, genome

sizes are various among these strains, ranging from 2.01

to 2.22, with two to six plasimds existing (Table 2). Al-

though the genome of seven strains has been sequenced

by different organizations, the comparative genome ana-

lysis has not been reported in public.

Figure 1 Selected milestones in Z. mobilis research.
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Transcriptome or gene expression of Z. mobilis

With different genome projects of Z. mobilis performed,

further comparative genomics or global expression ana-

lysis could provide some guidelines for strain improve-

ment in the future. Currently, many researchers are also

focusing on transcriptomic profiling of Z. mobilis to bet-

ter understand the network of gene or metabolic regula-

tion. Especially, DNA microarray techniques or DNA

sequencing have been used to identify differential gene

expression under nutrition limitation, environmental stress

(that is, heat stress, ethanol, furfural, et cetera). To date,

there are ten datasets (including some unpublished data)

from Gene Expression Omnibus (GEO) database (Table 2).

For example, transcriptomic profiling of ZM4 during aer-

obic and anaerobic fermentations have been investigated

for the first time [42]. Transcriptomic profiling of ZM4 in

response to ethanol and furfural stress were also performed

by our laboratory [43,44]. Integrated “omics” approach

(that is transcriptomic, proteomic and metabolic) was also

used for studing the molecular mechanisms of ethanol

stress response in ZM4 for the first time [45]. Expression

data for ZM4 growing in rich and minimal media,

Table 1 Summary of specific gene knockout in Z. mobilis

Gene inactive Method Description References

Extracellular sucrase gene
(sacC, ZMO0375)

Insertional mutant Improves levan production [20]

Restriction-Modification Insertional mutant or Homologous
recombination

Increased transformation efficiency [21,22]

(R-M) systems related gene (ZMO0028,
ZMO1932, ZMO1933, ZMO1934,
ZMO1935)

pdc (ZMO1360) Homologous recombination Lower ethanol and lactate yield, and higher
succinate concentration from glucose

[23]

adhB (ZMO1596)

ldhA(ZMO1237)

himA (ZMO0976) Transposon mutagenesis Reduced himA activity and increased ethanol
production compared to parental strains
when cultured in a mixed-sugar medium
containing xylose, especially in the presence
of acetate

[24,25]

ndh (ZMO1113) Insertional mutant Low respiration rate, higher cell growth and
ethanol yield under aerobic conditions

[26,27]

hfq (ZMO0347) pKNOCK suicide plasmid-based
mutant construction

More sensitive to multiple lignocellulosic
pretreatment inhibitors and hasan increased
lag phase duration and/or slower growth
depending upon the conditions; and verified
that hfqplaysa role in tolerance to multiple
biomass pretreatment inhibitors, including
acetate, vanillin, furfural, and HMF

[28]

nhaA (ZMO0117) Insertional mutant Cell growth decreased under sodium acetate
condition

[29]

Xylose reductase (XR, ZMO0976) Homologous recombination Improvement of xylose utilization [30]

gfo (ZMO0689) Site-specific FLP recombinase Improves growth and ethanol production
without formation of sorbitol as a by-product
in sucrose medium, but yields opposite effects
in high glucose

[31]

gfo (ZMO0689) Homologous recombination
(fusion-PCR-based construction
technique)

Reduction of cell growth and ethanol
production under osmotic, heat and
ethanol stresses

[32]

cytC Insertional mutant Exhibsfilamentous shapes and reduction in
growth under a shaking condition at a high
temperature

[33]

cytB (ZMO0957), ctdB (ZMO1572) Insertional mutant Low respiration capacity when cultivated
anaerobically

[34]

psp operon (ZMO1061-ZMO1065) Homologous recombination
(fusion-PCR-based construction
technique)

Mutiple phenotypes Our laboratory,
unpublished data

Mutant library Transposon mutagenesis Mutiple phenotypes Our laboratory,
unpublished data
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heat-shocked, or at high ethanol were also performed

by Lawrence Berkeley Laboratory (unpublished data).

Genome changes associated with Z. mobilis sodium

acetate-tolerant mutant (AcR) was aslo reported by Yang

et al. In this study, next-generation sequencing (NGS),

comparative genomics, transcriptomics, and genetics

were used to elucidate the molecular mechanism of

AcR sodium acetate tolerance. Especially, a key gene,

nhaA (ZMO0119), which conferred sodium acetate (NaAc)

tolerance in Z. mobilis [29]. ZM401 (a flocculent mutant

strain of Z. mobilis) was also studied by using genome-wide

transcriptomic technology, which provided a deep under-

standing for evidence related to phenotypic changes as-

sociated with its cell-cell attachment behavior. These

expression data indicate that cellulose and synthesis

flagella-related proteins synthesis play an important

role in its special flocculent behavior in ZM401 [46].

These studies will provide insights into molecular re-

sponse to environmental stress in Z. mobilis or help to

construct more resistant strains for ethanol or other

chemical production in the future. In conclusion, those

transcriptomic profiling generated in these studies will

likely serve as useful reference data for industrial strain

development at the level of systems biology in the

future.

Strain improvement for Z. mobilis

Strain improvement by conventional mutagenesis

Traditionally, strain improvement was achieved mainly by

mutagenesis and selection, which are still very useful in

Z. mobilis. Currently, different mutagenesis agents, in-

cluding UV light, 1-methyl-3-nitro-1-nitrosoguanidine

Table 2 Genomics, transcriptome or gene expression in different Z. mobilis strains

Sequenced genomea

Z. mobilisstrain Accsession number Description References

Size (Mb) Plasmids Protein

ZM4 (ATCC31821) NC_006526.2 2.06 5 1,738 [9]

NCIMB11163 NC_013355.1 2.22 3 1,884 [36]

ATCC 29191 NC_018145.1 2.01 3 1,709 [37]

ATCC 29192 NC_015709.1 2.06 2 1,748 [38]

ATCC 10988 NC_017262.1 2.14 6 1,803 [39]

ZM401 (ATCC 31822) Draft genome sequence 2.04 Not found 1,910 [40]

CP4 (NRRL B-14023) NC_022900.1 2.16 5 1,840 [41]

(CP006818.1)

Transcriptome or gene expression

ZM4 (ATCC31821) GSE10302 Transcriptomic profiling of ZM4 during aerobic
and anaerobic fermentations

[42]

GSE37848 Expression profiling of ZM4 in response to furfural
stress

[43]

GSE39558 Transcriptomic profiling of ZM4 in response to
ethanol stress

[44]

GSE21165 Systems biology analysis of ZM4 ethanol stress
responses

[45]

GSE39466 Comparison of gene expression and mutant
fitness in ZM4

Lawrence Berkeley Laboratory, unpublished
data

GSE51870 Expression data for ZM4 growing in rich and
minimal media, heat-shocked, or at high
ethanol

Lawrence Berkeley Laboratory, unpublished
data

ZM4 (AcR) GSE18106 Genome changes associated with Z. mobilis
sodium acetate-tolerant mutant (AcR)

[29]

RDM-4 strain of Z. mobilis GSE22355 Expression analysis of a respiration-deficient
mutant of Z. mobilis ZM6

Faculty of Food and Nutrition, Beppu
university

ZM401 Not deposited Genome-wide transcriptomic analysis of a
flocculent strain of Z. mobilis ZM401

[46]

ZM4 (ATCC31821) GSE49620 Transcriptional responses of Z. mobilis to
osmotic shock of high glucose concentration

Unpublished data, performed by Sichuan
University and Biogas Institute of Ministry
of Agriculture

aDetailed information on genome projects of Z. mobiliscanbe accessed at the NCBI Microbial Genomes Resources database: http://www.ncbi.nlm.nih.gov/genome/

?term=zymomonas+mobilisor the Genomes OnLine Database at: http://www.genomesonline.org/.

He et al. Biotechnology for Biofuels 2014, 7:101 Page 4 of 15

http://www.biotechnologyforbiofuels.com/content/7/1/101

http://www.ncbi.nlm.nih.gov/genome/?term=zymomonas+mobilisor
http://www.ncbi.nlm.nih.gov/genome/?term=zymomonas+mobilisor
http://www.genomesonline.org/


(NTG), caffeine, ethyl methane sulfonate (EMS), et cetera,

were used for Z. mobilis phenotype improvement. Many

mutants were obtained by these mutageneses, that is, auxo-

trophic, ethanol and salt-tolerant, acetaldehyde-tolerant,

osmotolerant, thermotolerant, sucrose-hypertolerant, acid-

tolerant, fructose-negative, glucose-negative, mannitol-

utilizing, levan-producing, and antibiotic-sensitive strains,

et cetera (as reviewed by other authors) [8]. Among

these mutants, environmental stress-tolerant mutant,

and antibiotic-sensitive strains have showed some potential

in industrial applications. For example, the acetate-tolerant

Z. mobilis mutant (AcR) was generated by chemical muta-

genesis and selection in the presence of acetate [47],

and used as a host for constructing of engineered tol-

erant Z. mobilis strain for bio-ethanol production, that

is ZM4/AcR (pZB5) [48-50].

Strain improvement by transposon mutagenesis

Transposon mutagenesis has also provided an alternate

mutational approach in Z. mobilis. Although different

transposons, including Tn5 and Tn10 [51], Tn951 [52] and

Tn1725 [53], which are carried by broad host-range plas-

mids, have been successfully transferred into Z. mobilis, no

transposition event have been found. Morever, Carey et al.

first found that plasmid pGC91.14 (RP1::Tn951) was stable

in Z. mobilis at 30°C, and the lac operon encoded by Tn

951 was expressed sucessfully in Z. mobilis [52]. Pappas et

al. also compared of the stability of different transposable

elements Tn5, Tn501 or mini Mu in Z. mobilis, and the

plasmid pULB113 (RP4::mini Mu) exhibited higher stability

than others. With the help of mini Mu transposon, a large

number of independent and stable auxotrophic mutants

with polyauxotrophs, cysteine, methionine and isoleucine

requiring-isolates were obtained [54]. The study proved

that transposon mutagenesis is an extremely powerful tool

for mutant construction in Z. mobilis [54,55]. For example,

Tn5 transposon was also used for construction of recom-

binant strain for ethanol production [56]. Actually, there

are some transposon elements in Z. mobilis strains. For ex-

ample, IS5-like insertion sequence, designated ISZm1068,

was firstly isolated from Z. mobilis CP4, which was kept ac-

tive in E. coli and led to plasmid replicon fusions [57].

Strain improvement by adaptive laboratory evolution (ALE)

Adaptive laboratory evolution (ALE) has emerged as a

valuable method in metabolic engineering for strain de-

velopment and optimization [58-62], and has been used

successfully in model organisms such as E. coli [63,64]

and S. cerevisiae [65-68]. Previous studies demonstrated

that adaptation and metabolic engineering can be used

synergistically for strain improvement. Recently, ALE strat-

egy was also employed for Z. mobilis strain improvement.

For example, an adaptive mutation procedure was devel-

oped for screening of acetic acid-tolerant Z. mobilis, and

many adapted mutants obtained for further use in bio-

ethanol production [69]. Agrawal et al. also used this

method to select a highly efficient xylose-fermenting

Z. mobilis strain A3 [70]. These two studies demon-

strated that the ALE method might be used as a powerful

metabolic engineering strategy for improving certain fea-

tures of Z. mobilis in the future, for example, inhibitor tol-

erance or substrate utilization.

Increase in the substrate utilization range of Z. mobilis

Extensive studies or reviews on ethanol production from

sugarcane, molasses, starch, and glucose by Z. mobilis

have been performed by many authors [8,10-13,19,71,72].

Based on the consideration of some debates about food

security [73], environmental degradation [74] and other is-

sues, developing lignocellulosic feedstocks to substitute

corn or sugarcane for bioenergy production will be an in-

evitable trend in the future [75]. Currently, recombinant

Z. mobilis capable of simultaneous fermentation of pen-

tose and hexose sugars from lignocellulosic hydrolysates

to ethanol have been achieved since 1995. The brief re-

search history is shown in Figure 2.

In 1995, Zhang et al. from the National Renewable

Energy Laboratory (NREL) constructed a recombinant

Z. mobilis CP4 (pZB5) strain by introducing two op-

erons encoding xylose assimilation and pentose phos-

phate pathway enzymes from E. coli into Z. mobilis for

the first time, which could ferment pentose sugar and

allowing for growth on xylose with 86% ethanol yield

[76]. Based on Zhang’s research, another arabinose-

fermenting recombinant Z. mobilis CP4 (pZB206) strain

was also constructed by introducing five arabinose

metabolism- related genes from E. coli into Z. mobilis

CP4 in 1996, which could ferment arabinose sugar and

produced ethanol at 98% of theoretical yield [77]. For

co-fermenting glucose, xylose, and arabinose to etha-

nol simultaneously, co-culture processes of Z. mobilis

ATCC 39676 (pZB4L) and ATCC 39676 (pZB206) have

been performed, which showed 72.5% of theoretical

ethanol yield [78]. However, both xylose-fermenting

strain and xylose had a significant effect on the per-

formance of the arabinose utilization strain. Based on

these considerations, Zhang et al. constructed a single

Z. mobilis 206C (pZB301) in 1998, which could fer-

ment mixture sugars to ethanol via 82 to 84% theoret-

ical yield [79]. However, all recombinant strains were

constructed by antibiotic-resistant plasmid; addition of

antibiotics to maintain stablity for large-scale fermen-

tations is highly undesirable. For enhancing its genetic

stability, all seven genes necessary for pentose utilization

were integrated into theZymomonas genome and a stable

Z. mobilis AX101 strain obtained in 2002, which could

ferment a hextose and pentose mixture via a preferential

order [80].
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Although a strain capable of co-fermentation of all

three sugars was achieved, all recombinant strains were

sensitive to acetic acid stress. For example, nuclear mag-

netic resonance (NMR) studies found that acetic acid

could inhibit efficiency of xylose utilization in Z. mobilis

ZM4 (pZB5)[81]. Different strategies were developed to

improve the tolerance of acetic acid and xylose utliza-

tion. For example, Lawford and Rousseau et al. devel-

oped a process via addition of extra glucose in acetic

acid-containing media for improving fermentation per-

formance of recombinant Zymomonas [82]. Recombin-

ant plasmid pZB5 was also transferred into an acetic

acid-tolerant strain (ZM4/AcR) [47], and a mutant re-

combinant Z. mobilis ZM4/AcR (pZB5) strain with in-

creased acetate resistance was obtained [48]. Overexpression

of xylulokinase in a xylose-metabolising recombinant strain

was also performed, and resulted in another recombinant

ZM4/AcR (pZB5, pJX1) [83]. The ALE strategy was also

used for improving the tolerance of acetic acid [69] and effi-

ciency of xylose utilization [70] in Z. mobilis as mentioned

previously. An isolated mutant CP4 (pZB5) M1-2 strain

could metabolize xylose more rapidly than glucose. Se-

quence data analysis revealed mutations in both the glucose

facilitator (glf) and glucokinase (glk) genes [84]. Mohagheghi

et al. developed a new integrant of ZM4(pZB5), and named

itZ. mobilis 8b, and this can tolerate acetic acid up to

16 g l−1 and achieve 82 to 87% ethanol yields [49]. An-

other mutant of Z. mobilis strain 8b obtained through

adaptation using 2-deoxyglucose has shown a higher

rate of xylose utilization [85]. Specific gene inactiva-

tion was also performed for strain improvement, for

example, a superior strain, ZM6014 △XR/pZMETX*

obtained by inactivation of xylose reductase (XR, ZMO0976)

[30,86]. Another example is himA (ZMO0976) inactive by

transposon mutagenesis (as also shown in Table 1) [24,25].

In 2013, a cost-effective recombinant Z. mobilis HYMX

was constructed by integrating seven genes (Pfu-sHSP,

yfdZ, metB, xylA, xylB, tktA and talB) into the genome

of Z. mobilis CP4 via Tn5 transposon, which showed

tolerance tomultiple stresses, high yield and stable gen-

etic characteristics [56].

Furthermore, fermentation characteristics of different

recombinant strains were also analyzed in the past dec-

ade [30,49,56,78-81,83,84,86-89]. Importantly, fermenta-

tion performance of three best recombinant strains form

different platforms used for cellulosic ethanol produc-

tion, E. coli KO11, S. cerevisiae 424A (LNH-ST) and

Z. mobilis AX101, which were compared with cellu-

losic material for the first time. Especially, Z. mobilis

AX101 showed the highest rate of glucose consump-

tion and lowest yield of byproducts [88]. These re-

sults also indicate that the metabolic pathway of E. coli

KO11 and Z. mobilis AX101 are more effective in fer-

menting ethanol from the related yeast pathway of the

consumed sugars [88]. However, utilization of xylose in

lignocellulosic hydrolysate and growth robustness of re-

combinant Z. mobilisare also required to improve in the

future. Moreover, different lignocellulosic feedstocks, such

as agro-industrial wastes [90], sugarcane bagasse [91], oat

hull [92], corn stover [49,93], bamboo residues [94], and

various hydrolysates produced by Arkenol Technology [50],

have also been used for ethanol production by Z. mobilis. In

general, these studies will provide a deep basis for the etha-

nol industry in the future.

Figure 2 Research history of recombinant Z. mobilis for ethanol production.
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Although different engineered Z. mobilis strains have

also been successfully constructed by introducing desir-

able genes as previously mentioned, convertion of cellu-

losic biomass into ethanol directly is also a considerable

task for ethanol production. Recently, there has been de-

velopment of consolidated bioprocessing (CBP)- a com-

bination of cellulase production, cellulose hydrolysis and

fermentation into a single step, which is regarded as an

alternative approach with outstanding potential [95,96].

In 2010, two cellulolytic enzymes, E1 and GH12 from

Acidothermus cellulolyticus were successfully expressed

in Z. mobilis via a native secretion signal peptide [97].

Five cellulolytic enzymes from bacteria isolated from the

gut of phytophagous insects were also transferred into

Z. mobilis, and all the resulting recombinants fermented

pretreated cellulosic feedstocks directly into ethanol

[98]. In another study, six genes encoding cellulolytic en-

zymes (CenA, CenB, CenD, CbhA, CbhB, and Cex) from

Cellulomonas fimi and other cellulolytic enzymes (cenA,

bgl) from Ruminococcus albus were also introduced and

co-expressed successfully in Zymobacter palmae, which

enabled Z. palmae to efficiently ferment a water-soluble

cellulosic polysaccharide to ethanol [99]. Although the

recombinant Z. mobilis strains need to be improved fur-

ther by simultaneous expression of additional cellulase

genes, all these results also indicate that Z. mobilis could

be serving as an important CBP platform organism.

Other value-added bio-products production by Z. mobilis

Sorbitol and bionic acid production

In 2013, the US Department of Energy (DOE) published

12 topvalue-added building-block chemicals from biomass

[100]. Representative chemicals, including four carbon

1,4-diacids (succinic, fumaric, and malic), 2,5-furan dicar-

boxylic acid (FDCA), 3-Hydroxypropionic acid (3-HPA),

aspartic acid, glutamic acid, glucaric acid, itaconic acid,

levulinic acid, 3-Hydroxybutyrolactone, glycerol, sorbitol,

xylitol/arabinitol. Sorbitol was identified as one of the top

12 building block chemicals by the US DOE [100], and

could be produced by Z. mobilis.

Actually, Barrow et al. found a phenomenon that

ethanol yield was decreased when Z. mobilis grown on

sucrose or mixtures of glucose plus fructose medium.

Further study by NMR spectroscopy indicated that the

reason for reduced ethanol yield was due to sorbitol

formation from fructose [101]. Leigh et al. identified a

proposed metabolic pathway for the production of

sorbitol in Z. mobilis [102]. Zachariou and Scopes et al.

demonstrated glucose-fructose oxidoreductase (GFOR)

and glucono-σ-gluconase (GL) are responsible for sorbitol

production, and gluconate intermediate could be con-

verted to ethanol via the Entner-Doudoroff (ED) path-

way [103]. These extensive studies demonstrated that

Z. mobilis could produce sorbitol in a one-step reaction

via GFOR, which is so far only known from this

bacterium.

Based on these studies, many researchers developed

different processes for producing sorbitol or gluconic

acid production by Z. mobilis via whole cells, perme-

abilized cells or immobilized cells (as shown in Table 3).

For example, Chun and Rogers et al. developed a simul-

taneous process for sorbitol and gluconic acid, 290 g/L

of sorbitol and 283 g/L of gluconic acid were yielded

from 60% total sugar solution (300 g L−1 glucose and

300 g L−1 fructose) after a 15-h reaction with Z. mobilis-

permeabilized cells [104]. Rehr et al. found no gluconic

acid formation when using glucose-grown cells for the

conversion of equimolar fructose and glucose mixtures.

However, nearly 295 g/L of sorbitol and gluconic acid

were produced using cetyltrimethylammonium bromide

(CTAB)-treated cells [105]. These results surported that

gluconate intermediate converted to ethanol via the ED

pathway [103,106]. Silveira et al. found that the yield of

sorbitol and gluconic acid increased with substrate con-

centration [107]. Cazetta et al. investigated sorbitol pro-

duction from sugar cane molasses by Z. mobilis, which

showed the best conditions for sorbitol production con-

taining 300 g/L total reducing sugars (TRS) in the cul-

ture medium [108]. Actually, to improve the sorbitol

yield, various cell permeabilization methods, that is tolu-

ene [104], dried Z. mobilis cells, CTAB [105], metal ions

[109], which inhibited key enzymes of the ED pathway

and led to decreased ethanol concentration.

Although Lactobacillus casei [110] and Lactobacillus

plantarum [111] were also engineered for sorbitol pro-

duction, sorbitol with a yield up to 0.65to 0.67 mol/mol

glucose [111,112], the conversion rate of sugar and yield

of sorbitol are lower when compared to Z. mobilis. So,

Z. mobilis showed some advantages of sorbitol produc-

tion, including a one-step reaction via GFOR, higher

conversion rate of sugar and yield, and higher value of

byproduct. It may be used for sorbitol production in an

industrial scale in the future.

Table 3 High yield of sorbitol and gluconic acid

production by Z. mobilis

Substrate Biocatalyst Products (g/L) References

equimolar glucose
plus fructose (g/L)

Sorbitol Gluconic
acid

600 Permeabilized
cell

290 283 [104]

Whole cell 240 ND [105]

Permeabilized
cell

295 295

100 Whole cell 12 1.5 [107]

300 105 50

650 300 320
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However, activity of GFOR in wild-type Z. mobilis is

very low and regulated by glucose concentration [103].

For further improvement of sorbitol production, overex-

pression of GFOR is an attractive strategy to improve its

efficiency. As reported by Liu et al., an engineered strain

harboring plasimd pHW20a-gfor, showed higher sorbitol

yield than the wild strain [109]. On the other hand, al-

though Z. mobilis could convert a mixture of glucose

and fructose into sorbitol with high efficiency, the cost

of the substrate may be very high. No natural feedstocks

could meet the demand of high sugar-concentration. So,

further research need to be carried out for searching for

cheaper feedstocks or into the development of a novel

process for conversion of lower sugar-concentration.

Fortunately, the metabolic pathway of sorbitol and glu-

conic acid are clear [103,113], and gene regulation of

gfor has also been studied by many research groups

[32,114]. Loos et al. described a sorbitol-related protec-

tion mechanism of osmotic stress in concentrated sugar

media [114]. Further research also indicates that sorbitol

is required for cell growth and ethanol production under

heat, ethanol, and osmotic stresses in Z. mobilis [32].

These clues will provide a chance for improving sorbitol

and gluconic acid yield through metabolic engineering.

Furthermore, for determination of the substrate spectrum

of GFOR, Satory et al. first reported that GFOR enzyme

from Z. mobilis can oxidize different aldose sugars into

corresponding aldonic acid when D-Fructose is used as

the corresponding acceptor substrate. The conversion

efficiency ranges from 9 to 84%, which shows a broad

spectrum of substrates for the enzyme [115]. The study

indicated that GFOR could be potentially used for other

bionic acid production, that is, lactobionic acid (LBA), a

lactose derivative that has many value-added applications

in cosmetics, pharmaceutical or biomedicines, food, and

chemical industries, as reviewed by Alonso et al. [113].

Lactose oxidation by GFOR was also performed by Satory

et al., which showed a high productivity of 110 g/L−1/d−1

in a continuously stirred tank reactor (CSTR) after operat-

ing for 70 h [115]. Bioconversion of a mixture of fructose

and lactose into sorbitol and LBA with immobilized cells

of Z. mobilis in calcium-alginate has also been reported

[116,117]. Other bionic acids, such as maltobionic, xylonic

acid, galactonic acid, arabinonic acid, mannonic acid and

cellobionic acid, should also be performed in the future,

which shows another important application for Z. mobilis

(as shown in Figure 3).

Levan production by Z. mobilis

Levan is a fructose polymer with potential importance in

food technology or medical applications [118]. Actually,

Dawes and Ribbons et al. first found that reduction of

ethanol yield has been attributed to levan formation when

Z. mobilisis grown on sucrose medium [119]. Further

research also verified that ethanol-yield reduction might

be due to sorbitol and levan formation [101,102,120]. For

example, Beker et al. developed a simultaneous sucrose

bioconversion into ethanol and levan by Z. mobilis, and

Figure 3 Reaction scheme for the production of bionic acid and sorbitol via glucose-fructose oxidoreductase (GFOR) and glucono-σ-lactonase

(GL) of Z. mobilis.
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the levan yield of 0.22 g/g and the productivity of 3.2 g/L/h

obtained [121]. Yoshida et al. and other researchers also

found Z. mobilis could produce a high yield of levan when

cultivated in sucrose medium [122-124]. Calazans et al.

also found that levans produced by Z. mobilis strains have

anti-tumor activities, and its molecular weight was also de-

termined [125,126]. Previous studies verified that intracel-

lular sucrase (SacA), extracellular levansucrase (SacB) and

extracellular sucrase (SacC) contribute to sucrose hydroly-

sis in Z. mobilis [127]. Based on its genetic and biochemical

studies, Senthilkumar et al. constructed a SacC mutant via

the insertional mutant method, and higher yield of levan

was obtained [20]. To avoid unnecessary supplementation

with vitamins and mineral salts, low-cost effective substrate

needs be used for levan production in Z. mobilis [128].

Levan production in batch and continuous fermentation

systems by Z. mobilis B-14023 was also investigated re-

cently [129]. These extensive studies indicate that Z. mobils

may be used for industrial levan production for some

purposes.

Succinic acid production by Z. mobilis

Succinic acid was identified as one of the top 12 building-

block chemicals by the US DOE[100]. Transparency Mar-

ket Research also published a new report,Succinic Acid

Market - Global Industry Analysis, Size, Share, Growth,

Trends and Forecast, 2012-2018, in October 2013, which

predicted that its market will be expected to reach USD

836.2 million by 2018. Based on these considerations, bio-

logical production of succinic acid from abundant and

available biomass has become a topic of worldwide interest.

Currently, different natural succinate-producing or genetic-

ally modified strains, such as Actinobacillus succinogenes,

Anaerobiospirillum succiniciproducens, Mannheimia succi-

niciproducens, Bacteroides fragilis, and Corynebacterium

sp. have been used for bio-based succinic acid production

from different feedstocks [130,131]. Other strains, includ-

ing E. coli [132,133], and S. cerevisiae [134,135] have also

been engineered for succinic acid production. Although

these strains showed some advantanges for succinic acid

production, the process of fermentation is anaerobic and

kinds of byproducts are formed. Recently, Lee et al. con-

structed a genome-scale metabolic model of Z. mobilis

(ZmoMBEL601), which suggested a possible strategy

for succinic acid production by disrupting pyruvate de-

carboxylase (pdc, ZMO1360) or alcohol dehydrogenase

(adhB, ZMO1596) and D-lactate dehydrogenase (ldhA,

ZMO1237) simultaneously [136]. Although this con-

clusion is based on the metabolic model, the higher

yield of succinic acid will likely be achieved in the fu-

ture. Actually, Seo et al. have constructed an engineered

Z. mobilis for succinic acid production by redirecting

metabolic pathways upon gene knockout of pdc and ldhA.

The double gene-knockout strain ZM4 (△pdc△ldhA) has

produced 1.46 mol succinate from 1 mol glucose, which

showed 95% theoretical yield, and agrees well with the

metabolic model ZmoMBEL601 [23]. Based on these

studies, a suggested pathway for succinic acid may be pro-

posed, as shown in Figure 4.

Other studies in silico or stoichiometric analysis of the

central metabolism of Z. mobilisare valuable, for instance,

Widiastuti et al. have also confirmed the functional role of

pdc and adh genes during ethanol production in Z. mobilis

via a genome-scale metabolic network (izm363) [137]. A

medium-scale model based on stoichiometric analysis of

central metabolism was also performed by Pentjuss et al.

[138]. These studies will also help us to gain a deep un-

derstanding of its special physiological characteristics

or re-direct its metabolic pathway for production of

target products in the future.

Isobutanol production

Isobutanol has also been paid more and more attention in

recent years for its advantanges over bio-ethanol as a liquid

fuel [2,139]. Engineered strains for isobutanol production

in E. coli [139-141], S. cerevisiae [142-144], Corynebacter-

ium glutamicum [143,145-147], Bacillus subtilis [148], and

fungal-bacterial consortia [149], have been engineered or

reviewed in previous studies. Recently, an engineered

Z. mobilis strain was also constructed for isobutanol pro-

duction via metabolic pathway engineering: 2-ketoisovalerate

decarboxylase (kivd) gene and alcohol dehydrogenase (adhA)

gene from Lactococcus lactis were introduced into Z. mobilis

ZM4, which led to isobutanol accumulation. Although the

yield of isobutanol is very low, an engineered Z. mobilis is

first used for producing the isobutanol. Higher yield may be

obtained by disruption of key genes of the ED pathway (as

shown in Figure 2) or addition of the extra biosynthesis

pathway of alanine (for example, alaD, L-alanine dehydro-

genase). Actually, alaD gene Bacillus sphaericus was also

cloned and introduced into Z. mobilis, and 7.5 g/L alanine

was excreted in the recombinant strain [150].

Other products

Isoprenoids represent another wide group of chemically

active compounds, which could be produced by engi-

neered microorganisms, and show a broad range of ap-

plications [151,152]. Actually, Z. mobilis has the highest

total hopanoid content (30 mg/g DCW, dry cell weight)

among all bacteria, which leads to more tolerance by in-

creasing the hopanoid content [153,154]. Further re-

search has also verified its biosynthesis pathway viathe

methylerythritol phosphate (MEP) pathway [155]. More-

over, biosynthesis pathway of hopanoid lipids and its

regulation have also been characterized on the genetic

level, which formed a biosynthetic operon [43,44,156-158].

These results indicated that Z. mobilis has higher activity

of the isoprenoid biosythensis pathway, which may be
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potentially used for isoprenoid compounds production and

reflects a novel application for Z. mobilis. Actually, a group

of plasmid-encoded carotene biosynthetic genes (crtB, crtE,

crtI, crtY) have been introduced into Z. mobilis via conju-

gation, resulting in production of β-carotene [159]. Several

genes from the thermallydimorphic fungus Penicillium

marneffei with predicted terpene synthase function were

also selected for functional analysis and evaluation of their

potential for the bioproduction of isoprenoid compounds

in Z. mobilis (as shown in the PhD thesis of So Lok-yan,

University of Hong Kong). Although these studies repre-

sent preliminary work, with deeper understanding of its

biosynthesis pathway, Z. mobililsshows great potential for

isoprenoid compounds production in the future.

Figure 5 General process of fuel or chemical production by Z. mobilis.

Figure 4 Metabolic pathways for the production of the high-value products by using Z. mobilis as platform. The solid lines indicate Z.

mobilis native pathways and the dotted lines refer to the recombinant pathway obtained by metabolic engineering strategies. gfor, glucose-fructose

oxidoreductase; ldhA, lactate dehydrogenase; pdc, pyruvate decarboxylase; gnl, glucono-σ-gluconase; adc, acetoacetate dehydrogenase; adh, secondary
alcohol dehydrogenase; adhB, alcohol dehydrogenase; adhE, acetaldehyde/alcohol dehydrogenase; adhE2, secondary alcohol dehydrogenase; atoAD,

acetyl-CoA:acetoacetyl-CoA transferase; atoB, acetyl-CoA acyltransferase; bcd, butyryl-CoA dehydrogenase; crt, crotonase; ctfAB, acetoacetyl-CoA

transferase; etfBA, electrotransfer flavor protein; hbd, β-hydroxy butyryl-CoA dehydrogenase; thl, acetyl-CoA acyltransferase; kivd, ketoisovalerate decarboxylase.
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Conclusions
Based on the previous and our reviews, Z. mobilis is

firstly being developed as an effective ethanologenic by

engineering strain improvement, including utilization of

xylose and arabinose in addition to glucose. Undoubt-

edly, Z. mobilis has showed desirable characteristics for

its special metabolic pathway. The scientific and techno-

logical progress of Z. mobilis have also made a signifi-

cant contribution to the bioethanol industry. Compared

with E. coli, Z. mobilis has high restriction-modification en-

zyme activity, and cannot be contaminated by bacteriphages

[13]. It is fairly osmo-tolerant and can hence tolerate very

high sugar concentrations, which is an advatange in fermen-

tation in a high-sugar medium. Its smaller genome and

simple metabolic pathway, also lead to less byproducts

formation. On the other hand, its desirable characteris-

tics will also make it a novel platform for future biore-

fineries, which will make a significant contribution to

green or sustainable chemistry (as shown in Figure 5).

Although extensive studies, such as general genetic

tools, strategies of metabolic engineering, value-added

bio-product production, genomic and transcriptomic, et

cetera, have been developed in Z. mobilis since 1980s,

non-commercialization of the Zymomonas process for

ethanol production from sugar, starch-based or lignocel-

lulosic biomass has developed successfully. Moreover, an

increased range of higher-value product generation has

also been restricted by its fundamental research. Espe-

cially, it is more difficult to engineereZ. mobilis than

E. coli or yeast. Despite the extensive studies on gen-

eral genetic tools and omics data available for Z. mobilis,

it is necessary to further develop advanced technologies

that can be used in metabolic engineering.

Therefore, to realize the industrial potential of Z. mobilis

for future biorefineries, considerable efforts should be fo-

cused on the following points in the future: developing

universal tools for deletion of several genes in one round,

controlling metabolic flux and optimizing regulatory

networks to improve the yield of desired products, and

developing a highly express system, et cetera; these

novel technologies are necessary for further strain im-

provement or redirection of the metabolic pathway for

fuel and chemical production. Moreover, different sys-

tems of metabolic engineering approaches are becom-

ing powerful tools in developing engineered E. coli or

S. cerevisiae [3,5], which should also be highlighted in

engineered Z. mobilis strains. In particular, other bio-

technological approaches, such as genome sequencing,

functional genomics, genome engineering and omics

will also provide a basis for pathway or genome recon-

struction to improve its fitness and robustness for environ-

mental stress [160,161]. Representitive biotechnologies, such

as CRISPR/Cas systems [162], site-specific recombinases

[163,164], genome shuffling [165], global transcription

machinery engineering (gTME) [166], and Zinc-finger

nucleases [167], which will also be used for enhancing

cellular traits of Z. mobilils. Presumably, their potential

will be further implemented with a promising future in

developing or optimizing the metabolic pathway for

the production of fuels as well as commodity and spe-

cialty chemicals.
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