scispace - formally typeset
Search or ask a question

Answers from top 15 papers

More filters
Papers (15)Insight
To our knowledge these are the highest performance transistors and the fastest circuits ever fabricated directly on plastic
They are the best results to date for AlGaAs/GaAs resonant tunneling transistors.
Proceedings ArticleDOI
Yi Tang, J.B. Fedison, T.P. Chow 
19 Jun 2000
16 Citations
Bipolar transistors are attractive due to their small forward voltage drop and ease of fabrication compared to MOSFETs.
These values far exceed those found in Si MESFETs and are comparable to the best results achieved in GaAs/AlGaAs modulation-doped transistors.<<ETX>>
The proposed operating technique greatly simplifies the pixel architecture with only four transistors and two control signals required, while six transistors and four control lines are required by its current-mediated counterpart.
I–V characteristics of the transistors before and after preparation indicate that the sectioned transistors show a higher leakage current, but are still functionally operational.
Moore’s law An observation that the number of transistors in an integrated circuit doubles every 18 to 24 months, doubling its performance.
These are the smallest high density double QD transistors achieved to date.
The constraint of an even number of transistors is no longer necessary.
These are the highest values ever reported for organic transistors.
The transistors exhibit high current gains over 200, which is comparable to those in transistors grown on InP substrates.
The fabricated transistors exhibit excellent I-V characteristics.
To our knowledge these are the first In(GaAl)As hot electron transistors to exhibit 300 K gain of this magnitude.
Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs.
Our study, for the first time, demonstrates that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2DSC electronics.

See what other people are reading

What is the electrical efficiency of parabolic trough collectors?
4 answers
What is numerical focused?
5 answers
What are the most effective design elements for creating an engaging point of purchase display?
5 answers
What are the most effective design elements for creating an engaging point of purchase display?
5 answers
What is mechanisms of theX-ray detection?
5 answers
The mechanisms of X-ray detection involve various components and processes. X-ray detectors typically consist of vibrating disks, conveying devices, guide rails, detection devices, and sorting mechanisms to facilitate efficient detection of materials. These detectors utilize the Shockley-Ramo theorem to operate, incorporating ionization energy for electron-hole pair creation and responsivity formulation. In medical imaging, flat panel X-ray imagers (FPXIs) play a crucial role, utilizing direct conversion technology where X-ray photons are converted to charges in a photoconductor, then read by sensors like TFT-AMA or CMOS arrays. Additionally, a guiding mechanism with lead screws and sliders enables precise adjustment for optimal X-ray source reception, ensuring clear image quality and easy maintenance. These combined mechanisms enhance detection efficiency and accuracy in X-ray applications.
How does 2D ice contribute to green energy?
5 answers
2D ice plays a significant role in contributing to green energy by enabling innovative technologies for sustainable practices. It can be utilized in various ways such as in ice-assisted electron-beam lithography (iEBL) for nanofabrication, as a template for assembling colloidal nanoparticles into large 2D nanosheets, and in a multi-level ice and snow energy utilization system for power generation. These applications demonstrate how 2D ice can be leveraged to enhance energy efficiency, reduce environmental impact, and promote the utilization of renewable resources. By incorporating 2D ice into different green energy technologies, it contributes to the development of sustainable solutions for energy generation and utilization, aligning with the global efforts towards a more eco-friendly future.
What was the main focus of the research conducted by David, J., Lemak., Wiboon, Arunthanes in 1997?
5 answers
The research conducted by David, J., Lemak., Wiboon, Arunthanes in 1997 focused on the development of a high-speed hydraulic cylinder with low friction by employing constant clearance seal technology. This innovative hydraulic cylinder aimed to address the traditional issue of friction affecting the high-speed performance of hydraulic cylinders due to sealing ring friction. Despite achieving low friction and fast speed, internal leakage remained a challenge, leading to decreased volume efficiency with increasing working pressure. To overcome this, the researchers proposed a self-compensation variable-clearance sealing hydraulic cylinder, studying the compensation mechanism, effect, and adaptability of the variable clearance seal. The study also involved establishing a load analysis model for the piston lip in the flow field and optimizing the piston structure to enhance sealing effectiveness.
What are the design considerations for low-power operational transconductance amplifiers in biomedical applications?
5 answers
Low-power operational transconductance amplifiers (OTAs) for biomedical applications require careful design considerations. Various techniques have been proposed to achieve low power consumption and high performance. For instance, techniques like enhanced bootstrapping linearization, current reuse cascode design, and composite flipped voltage follower with partial positive feedbackhave been suggested. These designs operate at low supply voltages, offer high gain, low power dissipation, and improved linearity. Additionally, incorporating features like fixed gain, ultra-low input noise, and self-biasing mechanismscan further enhance the efficiency of OTAs in amplifying weak bio-potential signals. Overall, the focus lies on achieving a balance between power consumption, linearity, gain, and other performance metrics to meet the stringent requirements of biomedical applications.
Why millimeter wave is important in next generation wireless communication?
5 answers
Millimeter-wave (mm-wave) technology is crucial in next-generation wireless communication due to its ability to meet the escalating demands of consumer wireless technologies. Operating in the 10 to 100 GHz frequency range, mm-wave systems offer increased data rates, reduced latency, and robust service for a large number of users. These systems provide high transmission rates, wide bandwidth, and immunity to interference, making them ideal for high-quality, high-speed broadband networks. Additionally, mm-wave technology addresses frequency band scarcity issues by accessing a wide spectrum up to tens of Gigahertz, enabling improved throughput with small fractional bandwidths. The integration and packaging of mm-wave modules in compact sizes at low costs while maintaining reliability is a key challenge for various applications, emphasizing the importance of mm-wave technology in diverse fields.
What are the advantages and limitations of using 8-bit microcontrollers for direct digital synthesis?
5 answers
Using 8-bit microcontrollers for direct digital synthesis (DDS) offers advantages such as increased processing power through distributed systems theory, enabling efficient task execution and data analysis. Additionally, the implementation of DDS on low-cost field programmable gate arrays (FPGA) allows for precise control over waveform parameters without glitches or phase discontinuity, along with the ability to modulate pulse characteristics and trigger pulse generation externally. However, limitations include the restricted architecture of 8-bit microcontrollers, which may pose challenges in handling complex operations and tasks efficiently. Furthermore, the slow pace of adopting precision farming technologies in agriculture, including DDS, in Russia highlights the need for increased government support to update material and technical resources and enhance domestic production of farming technologies.
What materials are commonly used in x ray detectors?
5 answers
Commonly used materials in X-ray detectors include perovskite materials like halide perovskites, gallium oxide (Ga2O3), and conventional semiconductors such as Si, α-Se, PbI2, and CdZnTe. Perovskite materials offer high X-ray sensitivity, excellent carrier transport capability, and high effective atomic number, making them ideal for X-ray detection. Gallium oxide (Ga2O3) is also a promising material due to its wide bandgap, high mass attenuation coefficient, and radiation damage resistance. Additionally, conventional semiconductors like Si, α-Se, PbI2, and CdZnTe have been traditionally used in X-ray detectors, although they may have limitations such as low stopping power for X-rays and high fabrication costs. These materials play crucial roles in various X-ray detection applications in medical imaging, industrial inspection, and scientific research.