scispace - formally typeset
Search or ask a question

Answers from top 9 papers

More filters
Papers (9)Insight
The transistors exhibit high current gains over 200, which is comparable to those in transistors grown on InP substrates.
The proposed structures reduce the number of the transistors considerably and have very high driving capability.
The chip has a novel wiring structure in which all pixels are connected through the channel of MOS transistors, which simplifies a wiring structure compared with conventional resistive networks.
Proceedings ArticleDOI
01 Jan 1977
11 Citations
Measurement of these devices reveals superior thermal characteristic and assures a larger ASO than that of conventional bipolar transistors of the same chip size.
These are the highest values ever reported for organic transistors.
Thus, this device is promising for highly scaled transistors.
The devices have a measured cutoff frequency of 27 GHz, making them the fastest silicon p-n-p bipolar transistors reported to date.
The results indicate that the post-CMOS-MEMS processing does not degrade the performance of the transistors.
These promising results indicate that the GIZO thin film transistors could be a candidate for selection transistors in 3-D cross point stacking memory.

See what other people are reading

How does 2D ice contribute to green energy?
5 answers
2D ice plays a significant role in contributing to green energy by enabling innovative technologies for sustainable practices. It can be utilized in various ways such as in ice-assisted electron-beam lithography (iEBL) for nanofabrication, as a template for assembling colloidal nanoparticles into large 2D nanosheets, and in a multi-level ice and snow energy utilization system for power generation. These applications demonstrate how 2D ice can be leveraged to enhance energy efficiency, reduce environmental impact, and promote the utilization of renewable resources. By incorporating 2D ice into different green energy technologies, it contributes to the development of sustainable solutions for energy generation and utilization, aligning with the global efforts towards a more eco-friendly future.
What is the purpose of constant in scientific research?
4 answers
The purpose of constants in scientific research varies depending on the context. In the realm of scientific revolutions, the "intelligence constant" serves as a parameter to gauge the complexity of research throughout history, indicating major scientific breakthroughs and potentially forecasting future revolutions. On the other hand, in the field of electrical engineering, constants like voltage and current are crucial for stable operation. Constant voltage circuits utilize feedback mechanisms to maintain a steady output voltage, reducing power consumption. Similarly, constant current circuits rely on offset voltages and differential amplifiers to ensure stable current output, simplifying operational control. Therefore, constants play a vital role in both predicting scientific advancements and maintaining stability in practical applications.
What was the main focus of the research conducted by David, J., Lemak., Wiboon, Arunthanes in 1997?
5 answers
The research conducted by David, J., Lemak., Wiboon, Arunthanes in 1997 focused on the development of a high-speed hydraulic cylinder with low friction by employing constant clearance seal technology. This innovative hydraulic cylinder aimed to address the traditional issue of friction affecting the high-speed performance of hydraulic cylinders due to sealing ring friction. Despite achieving low friction and fast speed, internal leakage remained a challenge, leading to decreased volume efficiency with increasing working pressure. To overcome this, the researchers proposed a self-compensation variable-clearance sealing hydraulic cylinder, studying the compensation mechanism, effect, and adaptability of the variable clearance seal. The study also involved establishing a load analysis model for the piston lip in the flow field and optimizing the piston structure to enhance sealing effectiveness.
What names are applied to the two types of BJT transistors?
5 answers
The two types of Bipolar Junction Transistors (BJTs) are named based on the arrangement of semiconductor materials within them. The first type is called NPN, which stands for Negative-Positive-Negative, while the second type is known as PNP, which stands for Positive-Negative-Positive. In an NPN transistor, the switch turns on when a current flows through the base, whereas in a PNP transistor, the switch turns on when there is no current through the base. These configurations are essential in determining the behavior and functionality of the transistors, influencing their applications in amplification, switching, and digital circuit elements.
What is application or daily use of adder and subtractor?
5 answers
Adder and subtractor circuits play a crucial role in digital circuits for performing arithmetic operations like addition and subtraction. These circuits are essential components in processors, where the Arithmetic Logic Unit (ALU) utilizes them for executing mathematical functions. In the realm of quantum-dot cellular automata (QCA), novel adder/subtractor designs have been proposed, leveraging the benefits of quantum technology for efficient and cost-effective computing systems. Additionally, the Universal Verification Methodology (UVM) is employed for verifying the functionality of adder-subtractor circuits, offering automation and ease of building verification environments. Overall, adder and subtractor circuits find widespread application in daily computing tasks, ensuring accurate and reliable arithmetic calculations in various digital systems.
How does temperature could result to more radiation?
5 answers
Temperature can influence radiation emission in various ways. Higher temperatures lead to increased energy emission from objects, with visible energy emitted around 650°C. For instance, in the case of parametric x-ray radiation (PXR) from a Si crystal bombarded by electrons, cooling the crystal to liquid-nitrogen temperature enhances radiation intensity compared to room temperature. Moreover, studies on human peripheral blood lymphocytes show that aberration frequency post-irradiation is significantly higher at 37°C compared to 5°C, indicating a temperature-dependent effect on radiation-induced damage. Additionally, research on radiation absorption in living tissues at different temperatures suggests that radiation effects may be more pronounced at higher temperatures, highlighting the potential risks of combining elevated temperatures with x-radiation, especially in patients with body temperatures around 40°C.
What are the challenges in single molecular electronics can large language model can solve?
5 answers
Challenges in single-molecule electronics, such as connecting molecules between wires for device functionality, persist despite advancements in theory and experiment. Machine learning models, like MoLFormer, trained on vast unlabeled molecular datasets, offer a solution by providing accurate property predictions with reduced complexity. These models, leveraging transformer-based language learning, outperform traditional supervised methods by capturing structural information from SMILES sequences of billions of molecules. MoLFormer's ability to learn spatial relationships between atoms within molecules enables it to predict various molecular properties, including quantum-chemical properties, showcasing the potential of large language models in addressing challenges in single-molecule electronics and advancing fields like drug discovery and material design.
What is the reference temperature and ampacity for Bear 250mm² ACSR?
5 answers
The reference temperature and ampacity for a Bear 250mm² ACSR can be determined through precise calculations considering various factors. In the context of overhead line emergency situations, accurate estimation of the maximum load (ampacity) that the line can carry is crucial. Additionally, voltage references designed for ADCs and integrated circuits provide insights into temperature coefficients and stability. These references offer low temperature coefficients, high PSRR, and stable output voltages across different temperature ranges. By integrating the information from these contexts, one can develop a comprehensive understanding of how to calculate the reference temperature and ampacity for a Bear 250mm² ACSR, taking into account temperature variations, current characteristics, and circuit design considerations.
Why are portable devices important?
5 answers
Portable devices are crucial due to their innovative features and functionalities. They enhance user experience by incorporating advanced technologies like light guiding components for improved display proportions, wireless connectivity for seamless communication in videoconferencing systems, and efficient power management through contactless charging and reflective displays. Additionally, the design of portable electronic devices is optimized for user convenience, with features like multi-folding structures for adjustable positioningand integrated storage solutions for earpiece units, reducing the risk of loss or misplacement. These aspects collectively highlight the significance of portable devices in modern lifestyles, offering mobility, versatility, and enhanced functionality to users.
How to connect different type of PV module in one string?
4 answers
To connect different types of PV modules in one string, various methods and apparatus can be utilized. One approach involves categorizing the modules into partitions, generating candidate connection solutions for each partition, and selecting the optimal solution based on estimated cable use. Another method includes arranging photovoltaic module regions sequentially, with each region comprising battery strings connected to bypass diodes in series, enhancing power generation efficiency. Additionally, employing a photovoltaic converter module string with boost-buck circuits and controllers can effectively manage voltage distribution and prevent damage to bypass diodes. Furthermore, utilizing buffer pads between cells in a photovoltaic cell string can prevent subfissures and simplify the structure. By following specific arrangement modes like consistent chamfer angles during series connection and integration, a monocrystal half-piece photovoltaic module string can be efficiently assembled.
What is advantage of immunosensor?
5 answers
Immunosensors offer several advantages over conventional methods for pathogen and toxin detection. They do not require highly trained personnel for operation, are quick, highly selective, and sensitive, and have the potential to significantly enhance diagnostic processes. In the case of Rituximab (RTX) monitoring, immunosensors provide a feasible alternative to chromatographic methods and immunoassays, offering affordability, label-free detection, and high sensitivity for on-site monitoring. Moreover, in the context of SARS-CoV-2 detection, immunosensors demonstrate high performance in terms of rapid and precise virus detection, without the need for polymerase chain reaction tests or labeling, showcasing their potential for efficient and accurate diagnostics. Overall, immunosensors present a promising solution for various detection applications due to their speed, sensitivity, selectivity, and ease of use.