scispace - formally typeset
Search or ask a question

Answers from top 16 papers

More filters
Papers (16)Insight
Variations in threshold voltage can be reduced to 10% while improving the saturation characteristics of a driving transistor.
By employing a positive feedback technique at the common-source transistor of the cascade stage, the voltage gain can be enhanced.
In this paper, we propose an ultra-low power compact 3-transistor voltage reference capable of operating at ultra-low supply voltages.
After cooling to room temperature under applied voltage, we demonstrate significantly improved transistor performance.
High-voltage field-effect transistor (HVFET) power amplifiers offer improved system efficiency through reduced DC power distribution loss and more efficient DC power conditioning.
The exceptional AC performance of this technology is among the highest reported in the literature at this low transistor leakage and operating voltage.
This doping scheme allows one to improve carrier injection, tune the threshold voltage Vth, and enhance the device performance in both the “ON-” and “OFF-” transistor states.
The high saturation current region of the transistor in the most positive bias voltage (1.3 V), with negligible hysteresis and greater stability, appears to give a device that is superior to other conducting polymer transistors.
By taking advantage of a compact MOS transistor model, we show how the circuit can be easily designed to precisely fix the drain voltage of the cascoded transistor just above its saturation voltage.
The experimental results show that a two-transistor inverting stage provides the lowest mean voltage gain.
Excellent transistor performance and a very low-voltage operation (≤2 V) have been demonstrated.
We then propose a new class of photovoltaic transistors in which this voltage directly controls the conductivity of the transistor channel.
A new low voltage transistor could contribute greatly to the need for a new Vdd scaling scenario.
In this paper, we propose a structure that improves the OFF state and switching behavior of the transistor without increase in the transistor length.
The transistor is expected to have a strong impact on the feasibility to realize mixed analog and digital signal circuits with high and low voltage functions on the same chip.
While the bipolar transistor is a suitable power device in the low voltage region, the MOSFET looks more promising in the high voltage region than the V-FET and the bipolar transistor.

See what other people are reading

What are the most effective design elements for creating an engaging point of purchase display?
5 answers
What are the most effective design elements for creating an engaging point of purchase display?
5 answers
What is the current state of ECG-based active acquisition in the field of EIT?
5 answers
What is the current state of ECG-based active acquisition in the field of EIT?
5 answers
What are the sensors used to measure dissolved oxygen?
5 answers
Various sensors are utilized to measure dissolved oxygen (DO) levels. These include potentiometric solid-state semiconductor sensors like SnO2-gate field-effect transistors (FETs), fluorescence quenching-based sensors employing fluorescence lifetime detection, time-domain lifetime measurement sensors with oxygen sensing films, phosphorescence quenching-based intelligent sensors on optofluidic platforms for continuous DO measurement, and microelectrode array (MEA) sensors with gold electrodes for electrochemical testing in solutions like potassium ferricyanide. Each sensor type offers unique advantages such as high sensitivity, stability, accuracy, and the ability to provide continuous, real-time measurements, catering to diverse applications in industrial, biomedical, and environmental fields.
What is mechanisms of theX-ray detection?
5 answers
The mechanisms of X-ray detection involve various components and processes. X-ray detectors typically consist of vibrating disks, conveying devices, guide rails, detection devices, and sorting mechanisms to facilitate efficient detection of materials. These detectors utilize the Shockley-Ramo theorem to operate, incorporating ionization energy for electron-hole pair creation and responsivity formulation. In medical imaging, flat panel X-ray imagers (FPXIs) play a crucial role, utilizing direct conversion technology where X-ray photons are converted to charges in a photoconductor, then read by sensors like TFT-AMA or CMOS arrays. Additionally, a guiding mechanism with lead screws and sliders enables precise adjustment for optimal X-ray source reception, ensuring clear image quality and easy maintenance. These combined mechanisms enhance detection efficiency and accuracy in X-ray applications.
What is the advantage and disadvantage of MC-ICPMS compared to TIMS during stable metal isotopic measurement??
5 answers
Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) offers advantages and disadvantages compared to Thermal Ionization Mass Spectrometry (TIMS) for stable metal isotopic measurements. MC-ICP-MS provides rapid sample throughput and simultaneous measurement of multiple isotopes, enhancing efficiency. However, MC-ICP-MS may face challenges in achieving the same level of precision as TIMS due to potential spectral and non-spectral interferences, impacting accuracy. TIMS, on the other hand, is known for its exceptional precision in isotopic analysis but is slower and less efficient in processing samples compared to MC-ICP-MS. Therefore, while MC-ICP-MS offers speed and multi-isotope analysis capabilities, TIMS excels in precision, highlighting the trade-offs between the two techniques in stable metal isotopic measurements.
How does 2D ice contribute to green energy?
5 answers
2D ice plays a significant role in contributing to green energy by enabling innovative technologies for sustainable practices. It can be utilized in various ways such as in ice-assisted electron-beam lithography (iEBL) for nanofabrication, as a template for assembling colloidal nanoparticles into large 2D nanosheets, and in a multi-level ice and snow energy utilization system for power generation. These applications demonstrate how 2D ice can be leveraged to enhance energy efficiency, reduce environmental impact, and promote the utilization of renewable resources. By incorporating 2D ice into different green energy technologies, it contributes to the development of sustainable solutions for energy generation and utilization, aligning with the global efforts towards a more eco-friendly future.
What is the purpose of constant in scientific research?
4 answers
The purpose of constants in scientific research varies depending on the context. In the realm of scientific revolutions, the "intelligence constant" serves as a parameter to gauge the complexity of research throughout history, indicating major scientific breakthroughs and potentially forecasting future revolutions. On the other hand, in the field of electrical engineering, constants like voltage and current are crucial for stable operation. Constant voltage circuits utilize feedback mechanisms to maintain a steady output voltage, reducing power consumption. Similarly, constant current circuits rely on offset voltages and differential amplifiers to ensure stable current output, simplifying operational control. Therefore, constants play a vital role in both predicting scientific advancements and maintaining stability in practical applications.
What are the difference between Online versus Offline HAR ?
5 answers
Online and offline techniques differ in various aspects for different applications. In the context of Raman pump power optimization, machine learning (offline) and evolutionary strategy (online) methods were compared. Online methods in distributed systems involve server operations triggered by online or offline instructions, ensuring client stability. On the other hand, an online and offline real-time interactive game system integrates cloud servers, internet clients, and offline player equipment for rapid synchronization and enhanced gaming experience. While online approaches are suitable for real-time interactions and quick data synchronization, offline methods are preferred for certain tasks like optimization where time-consuming reconfigurations are acceptable. Each method has its strengths and is chosen based on the specific requirements of the system or application.
What names are applied to the two types of BJT transistors?
5 answers
The two types of Bipolar Junction Transistors (BJTs) are named based on the arrangement of semiconductor materials within them. The first type is called NPN, which stands for Negative-Positive-Negative, while the second type is known as PNP, which stands for Positive-Negative-Positive. In an NPN transistor, the switch turns on when a current flows through the base, whereas in a PNP transistor, the switch turns on when there is no current through the base. These configurations are essential in determining the behavior and functionality of the transistors, influencing their applications in amplification, switching, and digital circuit elements.