scispace - formally typeset
Search or ask a question

Answers from top 9 papers

More filters
Papers (9)Insight
This discovery opens a new avenue of research in the field of high energy density electrochemical capacitors.
This polymer electrolyte was found viable for electrochemical capacitors.
The fabricated capacitors have potential for applications in embedded technology in the radio frequency.
These discoveries offer important mechanistic insights for the design of advanced electrochemical capacitors.
Na@C would be a very promising electrode material for commercial electric double-layer capacitors.
The results indicate that these composites are the potential materials for high energy density capacitors.
These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.
These results show that the composite film is a promising candidate for high energy electrochemical capacitors.
From the viewpoints of structural performance, safety, service life and high frequency capability, structural dielectric capacitors are closer to commercialization readiness than structural supercapacitors.

See what other people are reading

Why are internal voids less relevant or less dangerous according to this study?
4 answers
Internal voids are considered less relevant or less dangerous in certain studies due to various reasons. In the context of cross wedge rolling (CWR) and polymeric insulators, internal voids are highlighted as problematic due to electric field distortion and partial discharges, which accelerate material degradation. However, in the study of high-frequency voltage distortions on partial discharges, the impact of voids was evaluated, showing that voids created artificially in insulation materials may not always lead to significant partial discharge development. Additionally, research on basin insulators in GIS found that void characteristics, such as diameter and height, influence partial discharge behavior, but may not always result in severe consequences. Therefore, the relevance and danger of internal voids depend on the specific application and the material properties involved.
Moisture content of oil ?
4 answers
The moisture content of oil is a critical parameter in various industrial processes, impacting oil quality and production efficiency. Different studies have proposed innovative methods for measuring moisture content in oil. One approach involves utilizing high-frequency electromagnetic signals sensitive to dielectric constants of oil and water to optimize measurement accuracy. Another study introduces a device using terahertz imaging technology for nondestructive testing of moisture content in dielectric oil, emphasizing high accuracy and automation. Additionally, a new technology based on single-chip microcomputers offers automatic and precise moisture content detection in crude oil, enhancing production management and efficiency. These diverse approaches highlight the importance of accurate moisture content measurement in oil-related industries for quality control and operational optimization.
What is the current state of ADC compensation research and what are the main unsolved problems?
4 answers
Current research in ADC compensation focuses on innovative techniques to address inherent challenges like capacitor mismatch and analog signal path errors. Techniques like Dynamic Element Matching (DEM)and backpropagation-based compensationhave shown promising results in improving ADC performance. However, challenges persist, such as the need for adaptive background compensation to mitigate errors caused by process variations in CMOS implementations, the impact of time-interleaved ADC (TI-ADC) mismatches on receiver performance, and the nonlinear distortion induced by TI-ADC structures in full-duplex transceivers. Unsolved problems include achieving high manufacturing yield in the presence of process variations, maintaining robustness and convergence speed in compensation techniques, and effectively mitigating ADC imperfections to ensure optimal system performance.
What are the design a MEMS screech capacitive sensor?
5 answers
A MEMS capacitive sensor typically consists of a capacitor structure with various components like backplates, membranes, electrodes, and dielectric materials. These sensors are designed to measure pressure by detecting changes in capacitance due to pressure variations. Different designs have been proposed to enhance sensor performance. For instance, one design involves using a corrugated membrane with circular ridges and grooves to improve linearity in the capacitance-pressure response. Another design utilizes interdigital electrode (IDE) structures, where sensitivity increases with the width and depth of the sensing film. Additionally, some sensors incorporate multiple substrates, grooves, and electrodes to enhance linearity and reliability. These design variations aim to optimize sensor sensitivity, linearity, and overall performance for diverse applications in pressure measurement.
What are the remaining unsolved problems of frequency synthesizer?
5 answers
The remaining unsolved problems of frequency synthesizers include issues such as ensuring high accuracy despite temperature fluctuations and manufacturing variations, achieving a narrow channel interval while minimizing phase noise and spurious signals, preventing PLL circuits from locking before transmitting a standby frequency, which can interfere with reception, outputting all waveforms without increasing memory capacity and reducing side lobes, and maintaining a voltage control signal within a specified range while the synthesizer is in a locked state. These challenges highlight the ongoing need for advancements in frequency synthesizer technology to address issues related to accuracy, interference, waveform generation, and voltage control.
Is there magnesium based deep eutectics?
5 answers
Yes, magnesium-based deep eutectics have been explored in various studies. One study focused on the microstructure and properties of a magnesium-based nanocomposite processed with deep cryogenic treatment, showing enhancements in density, ignition temperature, strength, ductility, and microhardness. Another study introduced a novel class of deep eutectic electrolytes (DEEs) containing a tetramethylurea (TMU) dimer for Li-ion batteries, highlighting high thermal and reduction stabilities along with tunable conductivities. Additionally, chemical conversion films from deep eutectic solvents have been found to reduce the corrosion rate of magnesium alloys, indicating the potential of magnesium-based materials in this context. These findings collectively demonstrate the presence and potential applications of magnesium-based deep eutectics in various material and energy storage systems.
What is starter cell in this publication?
4 answers
In the publications provided, a starter cell is described in different contexts. In one instance, a starter cell is designed for plant growth, featuring openings for seeding and root passage, along with strategically placed ridges to guide root development and prevent twisting. Another mention of a starter cell refers to its role in a circuit, where it is part of a system that couples and decouples a power supply input to a supply capacitor based on the switching status of the circuit. Additionally, a different publication discusses a starter cell used in a fuel cell system, where part of the fuel is converted into hydrogen gas to enhance starting performance, especially at low temperatures. These varied applications highlight the diverse functionalities of starter cells in different fields.
How to caluclate the natural frequency of an RLC series circuit?
4 answers
To calculate the natural frequency of an RLC series circuit, various factors need to be considered. The natural frequency increases with plate distance but decreases with plate area and linear inductance coefficient. Additionally, the resonance and anti-resonance frequencies can be accurately determined by analyzing the impedance values of the circuit, even in the presence of damping effects. The circuit's components, such as resistance, inductance, and capacitance, play crucial roles in determining the natural frequency. Moreover, the medium inside the capacitor, dielectric constant, and special radiation generated due to charge imbalances impact the spectral form of the radiation, influencing the overall behavior of the circuit.
How does the piezoelectric coefficient of BCZT compare to that of PVDF under different loading conditions?
5 answers
The piezoelectric coefficient of BCZT ceramic varies based on the loading conditions. BCZT ceramic exhibits a piezoelectric coefficient of approximately 577 pC/N. On the other hand, PVDF, when incorporated into piezoelectric composites, shows a piezoelectric charge coefficient (d33) of around 26-27 pC/N and a piezoelectric voltage coefficient (g33) of 16.0 × 10−3 V·m/N when combined with BZT ceramic. Furthermore, the addition of BCZT nanowires into a PVDF-TrFE matrix enhances the piezoelectric properties, with a composite containing 15 wt % BCZT nanowires achieving a high energy harvesting figure of merit of 5.3 × 10–12 m2/N. These findings highlight the superior piezoelectric performance of BCZT ceramic compared to PVDF under different loading conditions, emphasizing the potential for BCZT-based composites in energy harvesting and sensor applications.
How does the chemical composition of Nb2O5 affect the redox properties of a GCE modified electrode?
5 answers
The chemical composition of Nb2O5 significantly influences the redox properties of a GCE modified electrode. Different studies have explored the synthesis and modification of Nb2O5 to enhance its electrochemical performance. For instance, the synthesis of Nb2O5/rGO composites has shown improved specific capacitance and electron transfer compared to rGO alone. Additionally, in situ doping of alkali metals in Nb2O5 has demonstrated a twofold enhancement in photoelectrochemical water splitting efficiencies, indicating improved charge carrier density and surface charge transfer. Moreover, Nb2O5/graphene nanocomposites have exhibited superior electrochemical conductivity and cyclic stability, making them effective electrodes for supercapacitor applications. These findings collectively highlight the crucial role of Nb2O5 chemical composition in enhancing the redox properties of GCE modified electrodes.
How does temperature effect the conductivity of polyester polymers?
5 answers
Temperature has a significant impact on the conductivity of polyester polymers. Studies on various polymer blends and composites reveal that an increase in temperature generally leads to enhanced conductivity. This phenomenon is often attributed to the rise in free ion mobility due to thermal energy, allowing for easier movement of charge carriers within the material. The conductivity-temperature relationship typically follows an Arrhenius-type thermally activated process, where conductivity shows a linear increase with temperature. Additionally, the activation energy required for conductivity decreases with an increase in the blend composition or filler content, indicating a more efficient charge carrier movement at elevated temperatures. Overall, temperature plays a crucial role in modulating the electrical properties of polyester polymers, influencing their conductivity behavior significantly.