scispace - formally typeset
Search or ask a question

Answers from top 19 papers

More filters
Papers (19)Insight
To the best of our knowledge, this is the best combination of output power and bandwidth for any solid-state MMIC amplifier operating up to the full Ku-band.
The results show that an optimized design of the per-finger-width is necessary for an rf MOSFET to achieve the lowest effective R/sub g/, which is desirable in rf applications.
Conventional approaches to audio power amplifiers have a rather limited efficiency, and are therefore not necessarily the best choice for integrated circuits.
In this paper, we propose a low cost step-gate-oxide (SGO) MOSFET that is suitable for RF power amplifiers.
A Class-D amplifier (CDA) is best suitable for audio mobile applications due to its high-power efficiency, thus enabling to remove a bulky heat sink.
For LOP applications including the effect of parasitic elements, the HTFET presents superior energy efficiency and desired low-power analog performance for VDD<;0.6V, while MOSFET is superior for VDD>;0.6V.
With the experimental results, usefulness of the proposed amplifier is confirmed.
To our best knowledge, the developed PA shows the highest gain ever achieved for W-band CMOS amplifier.
A new modified driver stage is proposed which drives the power amplifier efficiently.
The proposed optimization method is experimentally proven in an audio power amplifier leading to THD figures that are comparable to the state of the art.
The amplifier's bandwidth is the broadest ever reported for a Si MOSFET technology.
This MOSFET achieves high efficiency and high-power gain at low supply voltage by using a 0.5-/spl mu/m gate power MOSFET with an Al-shorted metal-silicide/Si gate structure, which improves the cut-off frequency and reduces the on-state resistance.
To the authors' best knowledge, this is the power amplifier with the highest gain and with good output power in K-band using standard CMOS process.
It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Proceedings ArticleDOI
C. Fallesen, P. Asbeck 
20 May 2001
19 Citations
The performance of the power amplifier is better than any other CMOS power amplifier reported and comparable to commercially available power amplifiers in other technologies.
Journal ArticleDOI
01 Dec 2000
Comparison with other recent designs shows that the proposed amplifier has the lowest P/sub d/ and the best noise performance.
This work shows that the hysteresis solution offers both lower power consumption and higher audio performances for embedded audio application.
Thus, the efficiency and power density of the proposed audio amplifier system can be improved.
A comparison of the performance of this audio amplifier with that of some commercial class-D audio amplifiers, reveals that our design can seriously compete with some of the ICs leading the market at a lower cost.

See what other people are reading

What is the advantage and disadvantage of MC-ICPMS compared to TIMS during stable metal isotopic measurement??
5 answers
Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) offers advantages and disadvantages compared to Thermal Ionization Mass Spectrometry (TIMS) for stable metal isotopic measurements. MC-ICP-MS provides rapid sample throughput and simultaneous measurement of multiple isotopes, enhancing efficiency. However, MC-ICP-MS may face challenges in achieving the same level of precision as TIMS due to potential spectral and non-spectral interferences, impacting accuracy. TIMS, on the other hand, is known for its exceptional precision in isotopic analysis but is slower and less efficient in processing samples compared to MC-ICP-MS. Therefore, while MC-ICP-MS offers speed and multi-isotope analysis capabilities, TIMS excels in precision, highlighting the trade-offs between the two techniques in stable metal isotopic measurements.
What is the purpose of constant in scientific research?
4 answers
The purpose of constants in scientific research varies depending on the context. In the realm of scientific revolutions, the "intelligence constant" serves as a parameter to gauge the complexity of research throughout history, indicating major scientific breakthroughs and potentially forecasting future revolutions. On the other hand, in the field of electrical engineering, constants like voltage and current are crucial for stable operation. Constant voltage circuits utilize feedback mechanisms to maintain a steady output voltage, reducing power consumption. Similarly, constant current circuits rely on offset voltages and differential amplifiers to ensure stable current output, simplifying operational control. Therefore, constants play a vital role in both predicting scientific advancements and maintaining stability in practical applications.
What are the difference between Online versus Offline HAR ?
5 answers
Online and offline techniques differ in various aspects for different applications. In the context of Raman pump power optimization, machine learning (offline) and evolutionary strategy (online) methods were compared. Online methods in distributed systems involve server operations triggered by online or offline instructions, ensuring client stability. On the other hand, an online and offline real-time interactive game system integrates cloud servers, internet clients, and offline player equipment for rapid synchronization and enhanced gaming experience. While online approaches are suitable for real-time interactions and quick data synchronization, offline methods are preferred for certain tasks like optimization where time-consuming reconfigurations are acceptable. Each method has its strengths and is chosen based on the specific requirements of the system or application.
What names are applied to the two types of BJT transistors?
5 answers
The two types of Bipolar Junction Transistors (BJTs) are named based on the arrangement of semiconductor materials within them. The first type is called NPN, which stands for Negative-Positive-Negative, while the second type is known as PNP, which stands for Positive-Negative-Positive. In an NPN transistor, the switch turns on when a current flows through the base, whereas in a PNP transistor, the switch turns on when there is no current through the base. These configurations are essential in determining the behavior and functionality of the transistors, influencing their applications in amplification, switching, and digital circuit elements.
What are the general characteristics of a low noise amplifier operating in high-frequency band for under water acoustics?
5 answers
A low noise amplifier (LNA) designed for high-frequency underwater acoustic applications typically exhibits characteristics such as low noise figure, good input impedance matching, and linearity enhancement. In the context of underwater electric field sensors, LNAs require low-noise amplification at ultra-low frequency bands, with noise characteristics significantly influenced by voltage noise density and transistor matching. Moreover, front-end circuits for underwater acoustic transmitters and receivers demonstrate capabilities like amplifying signals to high peak-to-peak voltages and achieving substantial amplification gains with out-band attenuation. These LNAs are crucial components in underwater systems, ensuring efficient signal amplification and reception for various underwater applications.
What is premises?
5 answers
Premises can be defined in various contexts. In the realm of arguments, a premise is a statement that supports a conclusion. It can also refer to a broadcasting system component that monitors and controls audio amplifiers to prevent energy waste and abnormalities. Moreover, in the field of data collection, "Premise" is a mobile-phone platform that incentivizes citizens to gather reliable data for economic indicators in developing countries like Nigeria and Liberia. Additionally, in electrical engineering, the National Electrical Code uses the term "premises" to describe the wiring within a facility, distinguishing it from internal equipment wiring. Lastly, in legal theory, "premise theory" is proposed to explain how international courts adapt legal principles to reflect the legal field, court premises, and individual cases, enhancing judicial transparency and predictability.
How accurate are pulse oximeters in measuring heart rate?
5 answers
Pulse oximeters are generally accurate in measuring heart rate. A study developed a transimpedance amplifier-based pulse oximeter with an accuracy of ±2 bpm for heart rate measurement, comparing it to a commercial pulse oximeter. Another research focused on a wearable wrist-worn device, BrOxy M, which demonstrated high accuracy and reliability in measuring heart rate, with a mean bias of 0.25 bpm and an accuracy of 3.7 bpm. Additionally, an optical device designed for measuring heart rate and blood oxygen saturation showed a final accuracy of 0.5 beats per minute for heart rate measurement. These studies collectively highlight the accuracy of pulse oximeters in measuring heart rate, making them valuable tools for monitoring this vital sign.
How does the mask's geometry affect the performance of the CMOS amplifier?
5 answers
The geometry of the mask significantly impacts the performance of CMOS amplifiers. Different layout techniques, such as serpentine, concentric, and interdigitated layouts, play a crucial role in enhancing amplifier characteristics like electrical gain, power consumption, and surface area reduction. Moreover, the ratio L/W of the Hall cells and the geometrical correction factor G influence figures of merit in Hall sensors, including sensitivity, Hall Voltage, and power dissipation within the device. Additionally, geometric programming models consider channel length modulation and layout-dependent effects like shallow trench isolation stress and well proximity effect, affecting circuit synthesis in nanometer processes. These findings emphasize the importance of optimizing mask geometry for improved CMOS amplifier performance.
Amplifier design for deep water echo sounding
5 answers
An essential component in deep water echo sounding systems is the amplifier, crucial for enhancing weak echo signals. Various amplifier designs have been proposed in research. One study presents a Class D power amplifier for sonar systems, operating at low frequencies with high output power. Another paper introduces a digitally controlled sonar power amplifier utilizing Sine Pulse Width Modulation signals for echo ranging sonar, demonstrating effective use in underwater transmitters. Additionally, a matching circuit design for broadband underwater acoustic transducers is highlighted as a key technology in sonar systems, emphasizing the importance of reducing energy loss, extending system bandwidth, and improving waveform distortion. These studies collectively contribute valuable insights into amplifier designs tailored for deep water echo sounding applications.
What were the key factors that contributed to Muldoon's rapid rise to the top of the competitive advertising industry?
5 answers
Paul Muldoon's rapid rise in the competitive advertising industry can be attributed to several key factors. Firstly, Muldoon's poetic practice is grounded in indeterminacy and reflects a pervasive skepticism regarding authorship, aligning with post-modern tendencies in poetry. Secondly, his ability to play with citational practices, ranging from conventional quotation to outright parody, showcases his versatility and creativity in engaging with literary traditions. Additionally, Muldoon's endorsement of critical models like American New Criticism highlights his ambition for critical totalization and a strong assertion of authorial prerogatives, setting him apart in the field. These factors, combined with his skill in utilizing various literary devices and his willingness to challenge dominant stances in contemporary criticism, have propelled Muldoon to the forefront of the advertising industry.
How does the conversion of weight affect the accuracy of measurements of stduents?
5 answers
The conversion of weight plays a crucial role in the accuracy of measurements. Utilizing a weight calibration-based high-precision analog-to-digital converter can significantly enhance accuracy by reducing design complexity, layout area, and power consumption. Electronic scale apparatus with differential amplifiers aids in determining weight accurately by balancing coarse and fine measurements. In electronic measuring systems, automatic gain correction counters drift due to temperature changes, aging, and supply conditions, maintaining measurement accuracy. A calibration apparatus for medical probes computes calibration coefficients based on measurements of tip deformation under force vectors, ensuring precise force assessment. These methods and technologies contribute to improving the accuracy of weight conversion and, consequently, the overall precision of measurements, benefiting students in various educational and research settings.