Topic
1,3-Dipolar cycloaddition
About: 1,3-Dipolar cycloaddition is a(n) research topic. Over the lifetime, 5560 publication(s) have been published within this topic receiving 98615 citation(s).
Papers
More filters
Book•
24 May 1984-
Abstract: Historical Note, General Principle and Mechanistic Criteria. Nitrile Ylides. Nitrile Oxides and Nitrile Imines. Diazoalkanes. Azides and Nitrous Oxide. Azomethine Ylides. Azomethine Imines. Mesoionic Ring Systems. Nitrones. Azimines, Azoxy Compounds and Nitro Compounds. Ozone and Carbonyl Oxides. Intramolecular Dipolar Cycloadditions. Theory of 1,3--Dipolar Cycloadditions. 1,3--Dipolar Cycloreversions. Higher Order Dipolar Cycloadditions.
2,048 citations
1,585 citations
Abstract: The modification of polymers after the successful achievement of a polymerization process represents an important task in macromolecular science. Cycloaddition reactions, among them the metal catalyzed azide/alkyne ‘click’ reaction (a variation of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides) represents an important contribution towards this endeavor. They combine high efficiency (usually above 95%) with a high tolerance of functional groups and solvents, as well as moderate reaction temperatures (25–70 °C). The present review assembles recent literature for applications of this reaction in the field of polymer science (linear polymers, dendrimers, gels) as well as the use of this and related reactions for surface modification on carbon nanotubes, fullerenes, and on solid substrates, and includes the authors own publications in this field. A number of references (>100) are included.
1,405 citations
TL;DR: Huisgen's 1,3-dipolar cycloadditions become nonconcerted when copper(I) acetylides react with azides and nitrile oxides, providing ready access to 1,4-disubstituted 1,2, 3-triazoles and 3, 4-disubsided isoxazoles, respectively.
Abstract: Huisgen's 1,3-dipolar cycloadditions become nonconcerted when copper(I) acetylides react with azides and nitrile oxides, providing ready access to 1,4-disubstituted 1,2,3-triazoles and 3,4-disubstituted isoxazoles, respectively. The process is highly reliable and exhibits an unusually wide scope with respect to both components. Computational studies revealed a stepwise mechanism involving unprecedented metallacycle intermediates, which appear to be common for a variety of dipoles.
1,358 citations
Abstract: The metal catalyzed azide/alkyne ‘click’ reaction (a variation of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides) has vastly increased in broadness and application in the field of polymer science. Thus, this reaction represents one of the few universal, highly efficient functionalization reactions, which combines both high efficiency with an enormously high tolerance of functional groups and solvents under highly moderate reaction temperatures (25–70 °C). The present review assembles an update of this reaction in the field of polymer science (linear polymers, surfaces) with a focus on the synthesis of functionalized polymeric architectures and surfaces.
710 citations