scispace - formally typeset
Search or ask a question

Showing papers on "2,3-Butanediol published in 2020"


Journal ArticleDOI
TL;DR: The improved strain showed 45% increased productivity, reaching a final concentration of 43.8 g L-1 butanediol, accounting for 86% of the theoretical maximum, and six metabolic mutant variants were generated and compared in batch fermentations for the first time.

24 citations


Journal ArticleDOI
TL;DR: This study details the microbial production of R-BDO at the highest fermentation temperature reported to date and demonstrates that P. thermoglucosidasius DSM2542T is a promising cell factory for the production of fuels and chemicals using high-temperature fermentation.
Abstract: High-temperature fermentation using thermophilic microorganisms may provide cost-effective processes for the industrial production of fuels and chemicals, due to decreased hygiene and cooling costs. In the present study, the genetically trackable thermophile Parageobacillus thermoglucosidasius DSM2542T was engineered to produce (2R, 3R)-butanediol (R-BDO), a valuable chemical with broad industrial applications. The R-BDO biosynthetic pathway was optimized by testing different combinations of pathway enzymes, with acetolactate synthase (AlsS) from Bacillus subtilis and acetolactate decarboxylase (AlsD) from Streptococcus thermophilus yielding the highest production in P. thermoglucosidasius DSM2542T. Following fermentation condition optimization, shake flask fermentation at 55 °C resulted in the production of 7.2 g/L R-BDO with ~ 72% theoretical yield. This study details the microbial production of R-BDO at the highest fermentation temperature reported to date and demonstrates that P. thermoglucosidasius DSM2542T is a promising cell factory for the production of fuels and chemicals using high-temperature fermentation.

11 citations


Journal ArticleDOI
Ji Won Cha1, Seung Hoon Jang1, Yong Jae Kim1, Yong Keun Chang1, Ki Jun Jeong1 
TL;DR: The engineered Klebsiella oxytoca strain can be a potential host in the development of economic bioprocess for 2,3‐BDO through efficient utilization of mixed sugars derived from lignocellulosic biomass.
Abstract: 2,3‐Butanediol (2,3‐BDO) is a promising bulk chemical owing to its high potential in industrial applications. Here, we engineered Klebsiella oxytoca for the economic production of 2,3‐BDO using mixed sugars from renewable biomass. First, to improve xylose consumption, the xylose transporter gene (xylE) was integrated into the methylglyoxal synthase A (mgsA)‐coding gene loci, and the engineered CHA004 strain showed much faster consumption of xylose than wild‐type (WT) strain with 1.4‐fold increase of overall sugar consumption rate. To further improve sugar utilization, we performed adaptive laboratory evolution for 90 days. The evolved strain (CHA006) was evaluated by cultivating it in the media containing single‐ or mixed‐sugars, and it was clearly observed that CHA006 has improved sugar consumption and 2,3‐BDO production than those of the parental strain. Finally, we demonstrated the superiority of CHA006 by culturing in two lignocellulosic hydrolysates derived from sunflower or pine tree. Particularly, in the pine tree hydrolysate containing xylose, glucose, galactose, and mannose, the CHA006 strain showed much improved consumption rates for all sugars, and 2,3‐BDO productivity (0.73 g L−1 hr−1) increased by 3.2‐fold compared to WT strain. We believe that the engineered CHA006 strain can be a potential host in the development of economic bioprocess for 2,3‐BDO through efficient utilization of mixed sugars derived from lignocellulosic biomass.

9 citations


Journal ArticleDOI
TL;DR: A biological route of 2,3-dihydroxyisovalerate production with high conversion ratio and final titer was developed, providing a basis for an industrial process.
Abstract: 2,3-Dihydroxyisovalerate is an intermediate of valine and leucine biosynthesis pathway; however, no natural microorganism has been found yet that can accumulate this compound. Klebsiella pneumoniae is a useful bacterium that can be used as a workhorse for the production of a range of industrially desirable chemicals. Dihydroxy acid dehydratase, encoded by the ilvD gene, catalyzes the reaction of 2-ketoisovalerate formation from 2,3-dihydroxyisovalerate. In this study, an ilvD disrupted strain was constructed which resulted in the inability to synthesize 2-ketoisovalerate, yet accumulate 2,3-dihydroxyisovalerate in its culture broth. 2,3-Butanediol is the main metabolite of K. pneumoniae and its synthesis pathway and the branched-chain amino acid synthesis pathway share the same step of the α-acetolactate synthesis. By knocking out the budA gene, carbon flow into the branched-chain amino acid synthesis pathway was upregulated, which resulted in a distinct increase in 2,3-dihydroxyisovalerate levels. Lactic acid was identified as a by-product of the process and by blocking the lactic acid synthesis pathway, a further increase in 2,3-dihydroxyisovalerate levels was obtained. The culture parameters of 2,3-dihydroxyisovalerate fermentation were optimized, which include acidic pH and medium level oxygen supplementation to favor 2,3-dihydroxyisovalerate synthesis. At optimal conditions (pH 6.5, 400 rpm), 36.5 g/L of 2,3-dihydroxyisovalerate was produced in fed-batch fermentation over 45 h, with a conversion ratio of 0.49 mol/mol glucose. Thus, a biological route of 2,3-dihydroxyisovalerate production with high conversion ratio and final titer was developed, providing a basis for an industrial process. Key Points • A biological route of 2,3-dihydroxyisovalerate production was setup. • Disruption of budA causes 2,3-dihydroxuisovalerate accumulation in K. pneumoniae. • Disruption of ilvD prevents 2,3-dihydroxyisovalerate reuse by the cell. • 36.5 g/L of 2,3-dihydroxyisovalerate was obtained in fed-batch fermentation.

8 citations


Journal ArticleDOI
TL;DR: Inulin could be converted to bio-based chemicals by an inulin enzyme producer without external inulinase, and the production of 2,3-butanediol was less than 50 g/L, and acidic pretreatment was developed to increase inulin utilization by adjusting medium pH to 3.0 prior to sterilization.

7 citations


Journal ArticleDOI
TL;DR: Elimination of acidic by-products by ldhA and ack knockdown significantly improved (2,3-BD) production and form a molecular basis for the improvement this process by genetic modification in the future.
Abstract: 2,3-Butanediol (2,3-BD) is widely used in several chemical syntheses as well as the manufacture of plastics, solvents, and antifreeze formulations, and can be manufactured by microbial glucose fermentation. Conventional (2,3-BD) fermentation typically has low productivity, yield, and purity, and is expensive for commercial applications. We aimed to delete the lactate dehydrogenase and acetate kinase (ldhA and ack) genes in Klebsiella pneumoniae HD79 by using λRed homologous recombination technology, to eliminate by-products and thereby improve (2,3-BD) production. We also analyzed the resulting gene changes by using transcriptomics. The yield of (2,3-BD) from the mutant Klebsiella strain was 46.21 g/L, the conversion rate was 0.47 g/g, and the productivity was 0.64 g/L·h, which represented increases of 54.9%, 20.5%, and 106.5% respectively, compared to (WT) strains. Lactate and acetate decreased by 48.2% and 62.8%, respectively. Transcriptomics analysis showed that 4628 genes were differentially expressed (404 significantly up-regulated and 162 significantly down-regulated). Moreover, the (2,3-BD) operon genes were differentially expressed. Our data showed that the biosynthesis of (2,3-BD) was regulated by inducers (lactate and acetate), a regulator (BudR), and carbon flux. Elimination of acidic by-products by ldhA and ack knockdown significantly improved (2,3-BD) production. Our results provide a deeper understanding of the mechanisms underlying (2,3-BD) production, and form a molecular basis for the improvement this process by genetic modification in the future.

5 citations


Journal ArticleDOI
TL;DR: The influence of nitrogen on ABD yield was tested adding sodium nitrate (NaNO3) or urea ((NH2)2CO) to M9 culture medium at three different nitrogen concentrations (2.5, 5.0 and 7.0 g N/L) and the use of NaNO3 had no significant effect on theABD yield.
Abstract: Glucose is one of the most abundant monosaccharides and the easiest carbon source to be consumed by bacteria. In this study, four culture media (LB, M9, M63 and MOPS) were supplemented with...

3 citations