scispace - formally typeset
Search or ask a question
Topic

2,3-Butanediol

About: 2,3-Butanediol is a research topic. Over the lifetime, 299 publications have been published within this topic receiving 6016 citations. The topic is also known as: Pseudobutylene glycol & Dimethylene glycol.


Papers
More filters
Journal ArticleDOI
TL;DR: Results are the highest report for 2,3-BD fermentation from biodiesel-derived glycerol in the presence of beet molasses as a co-substrate and simultaneously reduced the duration of fermentation.
Abstract: Cultivation in glycerol instead of sugars inhibits 2,3-butanediol (2,3-BD) production by Bacillus amyloliquefaciens. In this study, we report that B. amyloliquefaciens readily produces 2,3-BD from biodiesel-derived glycerol in the presence of beet molasses as a co-substrate. Unexpectedly, the molasses stimulated 2,3-BD production and simultaneously reduced the duration of fermentation. Productivity of 2,3-BD was enhanced at the start of fermentation, and yields increased under continuous molasses supply. Subsequently, 2,3-BD production in molasses-supplemented fed-batch culture was observed. Prior to inoculation of fed-batch fermentation culture, 15 g/l of molasses was added to the bioreactor. After 6 h of incubation, the bioreactor was fed with a solution containing 80 % glycerol and 15 % molasses. The 2,3-BD concentration, yield, and productivity significantly improved, reaching 83.3 g/l, 0.42 g/g, and 0.87 g/l·h, respectively. To our knowledge, these results are the highest report for 2,3-BD fermentation from biodiesel-derived glycerol.

45 citations

Patent
29 Sep 2009
TL;DR: A high flux of metabolites from pyruvate to 2,3-butanediol in Lactobacillus plantarum was achieved through genetic engineering as mentioned in this paper, where substantial elimination of lactate dehydrogenase activity in the presence of heterologously expressed butanediol dehydrogenases was achieved.
Abstract: A high flux of metabolites from pyruvate to 2,3-butanediol in Lactobacillus plantarum was achieved through genetic engineering. Substantial elimination of lactate dehydrogenase activity in the presence of heterologously expressed butanediol dehydrogenase activity led to 2,3 butanediol production that was at least 49% of the total of major pyruvate-derived products.

45 citations

Journal ArticleDOI
TL;DR: In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts, and the knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2, 3-BD production and minimization of by products formation.
Abstract: Klebsiella oxytoca naturally produces a large amount of 2,3-butanediol (2,3-BD), a promising bulk chemical with wide industrial applications, along with various byproducts. In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts. The knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2,3-BD production and minimization of byproducts formation. The constructed K. oxytoca ΔldhA ΔpflB strain showed higher 2,3-BD yields and higher final concentrations than those obtained from the wild-type and ΔldhA strains. However, the simultaneous deletion of both genes caused about a 50 % reduction in 2,3-BD productivity compared with K. oxytoca ΔldhA strain. Based on previous studies and in silico investigation that the agitation speed during 2,3-BD fermentation strongly affected cell growth and 2,3-BD synthesis, the effect of agitation speed on 2,3-BD production was investigated from 150 to 450 rpm in 5-L bioreactors containing 3-L culture media. The highest 2,3-BD productivity (2.7 g/L/h) was obtained at 450 rpm in batch fermentation. Considering the inhibition of acetoin for 2,3-BD production, fed-batch fermentations were performed using K. oxytoca ΔldhA ΔpflB strain to enhance 2,3-BD production. Altering the agitation speed from 450 to 350 rpm at nearly 10 g/L of acetoin during the fed-batch fermentation allowed for the production of 113 g/L 2,3-BD, with a yield of 0.45 g/g, and for the production of 2.1 g/L/h of 2,3-BD.

44 citations

Journal ArticleDOI
Yang Taowei1, Xian Zhang1, Zhiming Rao1, Shenghui Gu1, Haifeng Xia1, Zhenghong Xu1 
TL;DR: B batch fermentation shows similar amount of 2,3-BD obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.
Abstract: The effects of culture conditions on 2,3-butanediol (2,3-BD) production and its possible scale-up have been studied. A newly isolated Bacillus amyloliquefaciens B10-127, belonged to GRAS microorganisms and showed a remarkable 2,3-BD producing potency, was used for this experiment. Corn steep liquor, soybean meal and ammonium citrate were found to be the key factors in the fermentation according to the results obtained from the Plackett–Burman experimental design. The optimal concentration range of the three factors was examined by the steepest ascent path, and their optimal concentration were further optimized via response surface methodological approach and determined to be 31.9, 22.0 and 5.58 g/l, respectively. The concentration of the obtained 2,3-BD increased significantly with optimized medium (62.7 g/l) when compared with unoptimized medium (45.7 g/l) and the 2,3-BD productivity was about 2.4-fold (The fermentation time was shorten from 72 to 42 h). To observe scale-up effects, batch fermentation was carried out at various working volumes. At a working volume of 20.0 l, the final 2,3-BD concentration and yield were 61.4 and 0.38 g/g at 36 h with a 2,3-BD productivity of 1.71 g/l h. This result shows similar amount of 2,3-BD obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.

41 citations

Journal ArticleDOI
TL;DR: The potential of engineering P. pastoris into a microbial cell factory for biofuel production was evaluated in this work using (2R, 3R)-2,3-BD as an example.
Abstract: 2,3-butanediol (2,3-BD) is a bulk platform chemical with various potential applications such as aviation fuel. 2,3-BD has three optical isomers: (2R, 3R)-, (2S, 3S)- and meso-2,3-BD. Optically pure 2,3-BD is a crucial precursor for the chiral synthesis and it can also be used as anti-freeze agent due to its low freezing point. 2,3-BD has been produced in both native and non-native hosts. Several pathogenic bacteria were reported to produce 2,3-BD in mixture of its optical isomers including Klebsiella pneumoniae and Klebsiella oxytoca. Engineered hosts based on episomal plasmid expression such as Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis are not ideal for industrial fermentation due to plasmid instability. Pichia pastoris is generally regarded as safe and a well-established host for high-level heterologous protein production. To produce pure (2R, 3R)-2,3-BD enantiomer, we developed a P. pastoris strain by introducing a synthetic pathway. The alsS and alsD genes from B. subtilis were codon-optimized and synthesized. The BDH1 gene from S. cerevisiae was cloned. These three pathway genes were integrated into the genome of P. pastoris and expressed under the control of GAP promoter. Production of (2R, 3R)-2,3-BD was achieved using glucose as feedstock. The optical purity of (2R, 3R)-2,3-BD was more than 99%. The titer of (2R, 3R)-2,3-BD reached 12 g/L with 40 g/L glucose as carbon source in shake flask fermentation. The fermentation conditions including pH, agitation speeds and aeration rates were optimized in batch cultivations. The highest titer of (2R, 3R)-2,3-BD achieved in fed-batch fermentation using YPD media was 45 g/L. The titer of 2,3-BD was enhanced to 74.5 g/L through statistical medium optimization. The potential of engineering P. pastoris into a microbial cell factory for biofuel production was evaluated in this work using (2R, 3R)-2,3-BD as an example. Engineered P. pastoris could be a promising workhorse for the production of optically pure (2R, 3R)-2,3-BD.

40 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
76% related
Hydrolysis
33.5K papers, 755.9K citations
75% related
Lignin
18.3K papers, 659.8K citations
74% related
Yeast
31.7K papers, 868.9K citations
74% related
Cellulose
59K papers, 1.4M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202235
202110
20207
201911
201815