scispace - formally typeset
Search or ask a question
Topic

3D cell culture

About: 3D cell culture is a research topic. Over the lifetime, 1237 publications have been published within this topic receiving 42579 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is believed that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.
Abstract: Cell monolayers have serious limitations for cell biological investigations and for cell-based assays in drug screening and toxicity studies. However, the establishment of three-dimensional cultures as a mainstream approach requires the development of reliable protocols, new cell lines and suitable imaging techniques.

2,413 citations

Journal ArticleDOI
TL;DR: The use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogel hybrids that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix are discussed.
Abstract: Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.

2,298 citations

Journal ArticleDOI
TL;DR: The characteristics of 3D cell culture systems in comparison to the two-dimensional monolayer culture are discussed, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles.
Abstract: Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review.

1,784 citations

Journal ArticleDOI
TL;DR: New advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell-culture microen environments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs are reviewed.

1,501 citations

Journal ArticleDOI
TL;DR: The focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats.
Abstract: Summary Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which – in turn – regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.

1,438 citations


Network Information
Related Topics (5)
Stem cell
129.1K papers, 5.9M citations
81% related
Cellular differentiation
90.9K papers, 6M citations
80% related
Cell growth
104.2K papers, 3.7M citations
79% related
Cell culture
133.3K papers, 5.3M citations
79% related
Programmed cell death
60.5K papers, 3.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202398
2022151
2021184
2020140
2019145
2018143