scispace - formally typeset

Topic

3D single-object recognition

About: 3D single-object recognition is a(n) research topic. Over the lifetime, 5446 publication(s) have been published within this topic receiving 229067 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

42,225 citations

Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

15,597 citations

Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Abstract: Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.

6,644 citations

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,316 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work proposes to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network, and shows that this 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
Abstract: 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.

3,142 citations


Network Information
Related Topics (5)
Feature extraction

111.8K papers, 2.1M citations

90% related
Image segmentation

79.6K papers, 1.8M citations

89% related
Feature (computer vision)

128.2K papers, 1.7M citations

89% related
Convolutional neural network

74.7K papers, 2M citations

86% related
Robustness (computer science)

94.7K papers, 1.6M citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20192
201812
2017134
2016278
2015326
2014346