scispace - formally typeset
Search or ask a question
Topic

3D single-object recognition

About: 3D single-object recognition is a research topic. Over the lifetime, 5446 publications have been published within this topic receiving 229067 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a precise definition of the 3D object recognition problem is proposed, and basic concepts associated with this problem are discussed, and a review of relevant literature is provided.
Abstract: A general-purpose computer vision system must be capable of recognizing three-dimensional (3-D) objects. This paper proposes a precise definition of the 3-D object recognition problem, discusses basic concepts associated with this problem, and reviews the relevant literature. Because range images (or depth maps) are often used as sensor input instead of intensity images, techniques for obtaining, processing, and characterizing range data are also surveyed.

1,146 citations

Book
31 Aug 1999
TL;DR: Pattern Recognition, Cluster Analysis for Object Data, Classifier Design, and Image Processing and Computer Vision are studied.
Abstract: Pattern Recognition.- Cluster Analysis for Object Data.- Cluster Analysis for Relational Data.- Classifier Design.- Image Processing and Computer Vision.

1,133 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: This paper describes face data as resulting from a generative model which incorporates both within- individual and between-individual variation, and calculates the likelihood that the differences between face images are entirely due to within-individual variability.
Abstract: Many current face recognition algorithms perform badly when the lighting or pose of the probe and gallery images differ. In this paper we present a novel algorithm designed for these conditions. We describe face data as resulting from a generative model which incorporates both within-individual and between-individual variation. In recognition we calculate the likelihood that the differences between face images are entirely due to within-individual variability. We extend this to the non-linear case where an arbitrary face manifold can be described and noise is position-dependent. We also develop a "tied" version of the algorithm that allows explicit comparison across quite different viewing conditions. We demonstrate that our model produces state of the art results for (i) frontal face recognition (ii) face recognition under varying pose.

1,099 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work proposes a saliency-inspired neural network model for detection, which predicts a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its likelihood of containing any object of interest.
Abstract: Deep convolutional neural networks have recently achieved state-of-the-art performance on a number of image recognition benchmarks, including the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model on the localization sub-task was a network that predicts a single bounding box and a confidence score for each object category in the image. Such a model captures the whole-image context around the objects but cannot handle multiple instances of the same object in the image without naively replicating the number of outputs for each instance. In this work, we propose a saliency-inspired neural network model for detection, which predicts a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its likelihood of containing any object of interest. The model naturally handles a variable number of instances for each class and allows for cross-class generalization at the highest levels of the network. We are able to obtain competitive recognition performance on VOC2007 and ILSVRC2012, while using only the top few predicted locations in each image and a small number of neural network evaluations.

1,076 citations

Proceedings ArticleDOI
06 Nov 2011
TL;DR: While scene text recognition has generally been treated with highly domain-specific methods, the results demonstrate the suitability of applying generic computer vision methods.
Abstract: This paper focuses on the problem of word detection and recognition in natural images. The problem is significantly more challenging than reading text in scanned documents, and has only recently gained attention from the computer vision community. Sub-components of the problem, such as text detection and cropped image word recognition, have been studied in isolation [7, 4, 20]. However, what is unclear is how these recent approaches contribute to solving the end-to-end problem of word recognition. We fill this gap by constructing and evaluating two systems. The first, representing the de facto state-of-the-art, is a two stage pipeline consisting of text detection followed by a leading OCR engine. The second is a system rooted in generic object recognition, an extension of our previous work in [20]. We show that the latter approach achieves superior performance. While scene text recognition has generally been treated with highly domain-specific methods, our results demonstrate the suitability of applying generic computer vision methods. Adopting this approach opens the door for real world scene text recognition to benefit from the rapid advances that have been taking place in object recognition.

1,074 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
90% related
Image segmentation
79.6K papers, 1.8M citations
89% related
Feature (computer vision)
128.2K papers, 1.7M citations
89% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202223
20192
201812
2017134
2016278