scispace - formally typeset
Topic

Ab initio

About: Ab initio is a(n) research topic. Over the lifetime, 57307 publication(s) have been published within this topic receiving 1624473 citation(s). The topic is also known as: ab init..

...read more

Papers
More filters

Journal ArticleDOI
Georg Kresse1, Jürgen Hafner1Institutions (1)
01 Jan 1993-Physical Review B
Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

...read more

27,360 citations


Journal ArticleDOI
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

...read more

16,002 citations


Journal ArticleDOI
Georg Kresse1, Jürgen Hafner1Institutions (1)
15 May 1994-Physical Review B
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.

...read more

Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

...read more

13,961 citations


Journal ArticleDOI
Abstract: Ab initio effective core potentials (ECP’s) have been generated to replace the innermost core electron for third‐row (K–Au), fourth‐row (Rb–Ag), and fifth‐row (Cs–Au) atoms The outermost core orbitals—corresponding to the ns2np6 configuration for the three rows here—are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals These ECP’s have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP The ECP’s for the forth and fifth rows also incorporate the mass–velocity and Darwin relativistic effects into the potentials Analytic fits to the potentials are presented for use in multicenter integral evaluation Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows

...read more

12,824 citations


Journal ArticleDOI
TL;DR: The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals.

...read more

Abstract: New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volume...

...read more

12,333 citations


Network Information
Related Topics (5)
Ab initio quantum chemistry methods

24.4K papers, 740.8K citations

98% related
Electronic correlation

7K papers, 284.5K citations

96% related
Atomic orbital

6.9K papers, 221.8K citations

96% related
Molecular orbital

22.2K papers, 613.9K citations

96% related
Basis set

9.1K papers, 489K citations

96% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202218
2021980
20201,094
20191,165
20181,210
20171,230

Top Attributes

Show by:

Topic's top 5 most impactful authors

Henry F. Schaefer

291 papers, 11.4K citations

James R. Durig

224 papers, 3.4K citations

Robert J. Buenker

164 papers, 5K citations

Sigrid D. Peyerimhoff

151 papers, 4.9K citations

Keiji Morokuma

148 papers, 7K citations