scispace - formally typeset
Search or ask a question

Showing papers on "Ab initio quantum chemistry methods published in 2017"


Journal ArticleDOI
TL;DR: In this paper, a new class of high-entropy alloys (HEAs), quinary (five-component) dual-phase (DP) HEAs revealing transformation-induced plasticity (TRIP), designed by using a quantum mechanically based and experimentally validated approach.

246 citations


Journal ArticleDOI
TL;DR: It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations can be systematically improved by including effects of dynamical electronic correlation and by admixing electronic configurations of the 5d shell.
Abstract: An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ]- (Pc=phthalocyanine) and Dy4 K2 ([Dy4 K2 O(OtBu)12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.

216 citations


Journal ArticleDOI
TL;DR: Ab initio ligand field theory (AILFT) as discussed by the authors allows one to unambiguously extract all ligand fields parameters from relatively straightforward multi-reference ab initio calculations, and applies to mononuclear complexes in d n or f n configurations.

153 citations


Journal ArticleDOI
TL;DR: In this article, a semi-coarse version of the Wannier-Fourier interpolation method was proposed for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation.
Abstract: We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm i...

118 citations


Journal ArticleDOI
TL;DR: Four intramolecular modes in the range of 1400-1600 cm-1, which are nearly resonant with the single-exciton/multiexciton energy gap, appear to play a key role and are almost entirely of "Holstein" type, modulating the site energies rather than the intersite couplings.
Abstract: Singlet fission proceeds rapidly and with high quantum efficiency in both crystalline tetracene and pentacene, which poses a conundrum given that the process in tetracene is disfavored by the electronic energetics. Here, we use an ab initio exciton model to compute nonadiabatic couplings in the unit cell of tetracene in order to identify the modes that promote this process. Four intramolecular modes in the range of 1400–1600 cm–1, which are nearly resonant with the single-exciton/multiexciton energy gap, appear to play a key role. Ab initio calculations of the electron/phonon coupling constants for these modes reveal that they are almost entirely of “Holstein” type, modulating the site energies rather than the intersite couplings. The constants are used to parametrize a vibronic Hamiltonian, simulations with which suggest a vibronically coherent singlet fission mechanism that proceeds spontaneously despite unfavorable electronic energetics. In the absence of vibronic coupling, there is no significant fiss...

91 citations


Journal ArticleDOI
TL;DR: In this paper, electrochemical measurements based on the point defect model and ab initio calculations were employed to investigate the properties of passive films formed on copper in anaerobic sulphide-containing solutions at different temperatures.

86 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that exact simulations of a finite model system (30,100 electrons) are possible, which avoid any simplifying approximations such as fixed nodes.
Abstract: Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for dense astrophysical objects and for novel laboratory experiments in which matter is being strongly compressed, e.g., by high-power lasers. Its description is theoretically very challenging as it contains correlated quantum electrons at finite temperature—a system that cannot be accurately modeled by standard analytical or ground state approaches. Recently, several breakthroughs have been achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact simulations of a finite model system ( 30…100 electrons) are possible, which avoid any simplifying approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a novel way to accurately extrapolate these results to the thermodynamic limit was reported by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for the warm dense electron gas are available, w...

82 citations


Journal ArticleDOI
TL;DR: Tests for the 3A″ state of SH2 suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number of ab initio points, but it needs substantially more points to converge reaction probabilities.
Abstract: Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3A″ state of SH2, which facilitates the SH + H ↔ S(3P) + H2 abstraction reaction and the SH + H′ ↔ SH′ + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 102) of ab initio points, but it needs substantially more points (∼1 × 103) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

70 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasi-random structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics) and their applications and limits in single phase HEAs is presented.
Abstract: Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs) results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasi-random structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics) and their applications and limits in single phase HEAs.

69 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the potential bubble structure of 34 Si on the basis of the self-consistent Green's function many-body method and showed a clear correlation between the occurrence of the bubble structure and the weakening of the 1/2 − − 3 / 2 − splitting in the spectrum of 35 Si as compared to 37 S.
Abstract: Background: The possibility that an unconventional depletion (referred to as a “bubble”) occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34 Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34 Si is currently out of reach, ( d , p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 / 2 − − 3 / 2 − splitting in the spectrum of 35 Si as compared to 37 S .Purpose: We study the potential bubble structure of 34 Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34 Si and 36 S . In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36 S . The next observable of interest is the low-lying spectroscopy of 35 Si and 37 S obtained from ( d , p ) experiments along with the spectroscopy of 33 Al and 35 P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to the many-body correlations included in the calculation, is studied in detail. We eventually compare our predictions to state-of-the-art multireference energy density functional and shell model calculations. Results: The prediction regarding the (non)existence of the bubble structure in 34 Si varies significantly with the nuclear Hamiltonian used. However, demanding that the experimental charge density distribution and the root-mean-square radius of 36 S be well reproduced, along with 34 Si and 36 S binding energies, only leaves the NNLO sat Hamiltonian as a serious candidate to perform this prediction. In this context, a bubble structure, whose fingerprint should be visible in an electron scattering experiment of 34 Si , is predicted. Furthermore, a clear correlation is established between the occurrence of the bubble structure and the weakening of the 1 / 2 − − 3 / 2 − splitting in the spectrum of 35 Si as compared to 37 S .Conclusions: The occurrence of a bubble structure in the charge distribution of 34 Si is convincingly established on the basis of state-of-the-art ab initio calculations. This prediction will have to be reexamined in the future when improved chiral nuclear Hamiltonians are constructed. On the experimental side, present results act as a strong motivation to measure the charge density distribution of 34 Si in future electron scattering experiments on unstable nuclei. In the meantime, it is of interest to perform one-neutron removal on 34 Si and 36 S in order to further test our theoretical spectral strength distributions over a wide energy range.

66 citations


Journal ArticleDOI
TL;DR: Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model,Macheret's exchange models, and Park's two-temperature model.
Abstract: Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ)+O(3P)→2N(4S)+O(3P) dissociation and N2(X1Σ)+O(3P)→NO(X2Π)+N(4S) exchange cross sections and rates based on the 13A″ and 13A′ ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545–2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret’s exchange model, and Park’s two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

Journal ArticleDOI
TL;DR: The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.
Abstract: A new ab initio interatomic potential energy curve for two ground-state xenon atoms is presented. It is based on supermolecular calculations at the coupled-cluster level with single, double, and perturbative triple excitations [CCSD(T)] employing basis sets up to sextuple-zeta quality, which were developed as part of this work. In addition, corrections were determined for higher coupled-cluster levels up to CCSDTQ as well as for scalar and spin-orbit relativistic effects at the CCSD(T) level. A physically motivated analytical function was fitted to the calculated interaction energies and used to compute the vibrational spectrum of the dimer, the second virial coefficient, and the dilute gas transport properties. The agreement with the best available experimental data for the investigated properties is excellent; the new potential function is superior not only to previous ab initio potentials but also to the most popular empirical ones.

Journal ArticleDOI
TL;DR: In this article, the effects of Cl addition on the structural, electronic, optical properties and material stability of organometal trihalide perovskites, the key component of perovsite solar cell (PSC), were investigated.

Journal ArticleDOI
TL;DR: In this paper, a theoretical framework for (2+1) resonantly enhanced multi-photon ionization is presented, which combines perturbation theory for the light-matter interaction with ab initio calculations for the two-phase absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions.
Abstract: Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionization of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected under exchange of handedness and light helicity. When applied to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which a sufficient d wave character of the electronically excited intermediate state is crucial.

Journal ArticleDOI
TL;DR: In this article, a synergistic approach based on time-resolved photoelectron spectroscopy (TRPES), timeresolved absorption spectroscope (TRAS), and ab initio computations has been particularly successful at unraveling the underlying photophysical principles and describing the dissimilarities between the natural and substituted nucleobases.
Abstract: Single-atom substitution within a natural nucleobase-such as replacing oxygen by sulfur in uracil-can result in drastic changes in the relaxation dynamics after UV excitation. While the photodynamics of natural nucleobases like uracil are dominated by pathways along singlet excited states, the photodynamics of thiobases like 2-thiouracil populate the triplet manifold with near unity quantum yield. In the present study, a synergistic approach based on time-resolved photoelectron spectroscopy (TRPES), time-resolved absorption spectroscopy (TRAS), and ab initio computations has been particularly successful at unraveling the underlying photophysical principles and describing the dissimilarities between the natural and substituted nucleobases. Specifically, we find that varying the excitation wavelength leads to differences between gas-phase and condensed-phase experimental results. Systematic trends are observed in the intersystem crossing time constants with varying excitation wavelength, which can be readily interpreted in the context of ab initio calculations performed both in vacuum and including solvent effects. Thus, the combination of TRPES and TRAS experiments with high-level computational techniques allows us to characterize the topology of the potential energy surfaces defining the relaxation dynamics of 2-thiouracil in both gas and condensed phases, as well as investigate the accessibility of conical intersections and crossings, and potential energy barriers along the associated relaxation coordinates.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics, and reveal the dissociation into three distinct exit channels.
Abstract: We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ${\mathrm{ZnO}}^{2+}$ in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.

Journal ArticleDOI
TL;DR: Lanthanide inverse sandwich compounds of the cycloheptatrienyl trianion give rise to ferromagnetic exchange and slow relaxation of the magnetisation.
Abstract: The preparation of η-cyclopentadienyl (η5-C5R5), η-arene (η6-C6R6), and η-cyclooctatetraenyl (η8-C8R8) bridging motifs are common in organometallic chemistry; however, the synthetic preparation of η-cycloheptatrienyl (η7-C7R7) bridging motifs has remained a synthetic challenge in 4f chemistry. To this end, we have developed a synthetic route towards a series of rare dinuclear organolanthanide inverse sandwich complexes containing the elusive η7-C7H7 bridge. Herein, we present the structures and magnetic properties of the lanthanide inverse sandwich complexes [KLn2(C7H7)(N(SiMe3)2)4] (Ln = GdIII (1), DyIII (2), ErIII (3)) and [K(THF)2Er2(C7H7)(N(SiMe3)2)4] (4). These compounds are the first single-molecule magnets (SMMs) to feature this type of bridging motif. Furthermore, η7-C7H7 was found to efficiently promote ferromagnetic exchange interactions between metal ions. Variable temperature dc magnetic susceptibility measurements and subsequent simulations give significant exchange constants of J = +1.384, +1.798, and +3.149 cm-1 and dipolar constants of J = -0.603, -0.601, and -0.475 cm-1 for compounds 2-4, respectively. Frequency dependent ac susceptibility measurements under an applied static field resulted in the observation of dual relaxation processes, and brought forth a greater understanding of the intermolecularly driven process at high frequency. In particular, this type of analysis of compound 3 under 800 Oe elicited an energy barrier of Ueff = 58 K. Ab initio calculations were performed in order to understand the nature of magnetic coupling and the origin of slow relaxation of magnetisation. Through these studies, the effect of the amido ancillary ligands on the magnetic axiality of the lanthanide ions was found to be competitive with the crystal field of the η7-C7H7 π-electron cloud. Our findings suggest that the tunability of the dipolar and exchange components of the magnetic interactions lie within the dihedral angle imposed by the amido ligands, thus offering potential for the development of new exchange coupled lanthanide systems.

Journal ArticleDOI
TL;DR: In this paper, the second-order hyperpolarizability contrasts upon commutation between their closed and open forms are characterized using hyper-Rayleigh scattering (HRS) measurements, and rationalized by means of density functional theory and post Hartree-Fock ab initio calculations.
Abstract: The linear and nonlinear optical (NLO) properties of two indolinooxazolidine derivatives acting as multiaddressable switches are reported. The second-order hyperpolarizability contrasts upon commutation between their closed and open forms are characterized using hyper-Rayleigh scattering (HRS) measurements, and rationalized by means of density functional theory and post Hartree–Fock ab initio calculations. It is evidenced that the addition of a withdrawing substituent on the indolinic subunit leads to a more effective photoinduced charge transfer while decreasing the transition energy of the S0 → S1 transition, which induces a significant enhancement of the HRS response of the open form. This substitution is however detrimental to the NLO contrast, due to the concomitant increase of the HRS response of the closed form.

Journal ArticleDOI
TL;DR: In this paper, the authors presented ab initio calculations of the in-plane and cross-plane thermal conductivities, κ in and κ out, of three common hexagonal polytypes of SiC: 2H, 4H and 6H.

Journal ArticleDOI
TL;DR: In this paper, the authors applied the ab initio calculations to study the magnetic properties of vanadium doped CdTe and calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants.

Journal ArticleDOI
TL;DR: The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities.
Abstract: The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3+ system (11A', 21A', and 31A') using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D+ + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3+. We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

Journal ArticleDOI
TL;DR: The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time, and calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Abstract: Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV3 values) that represented major difficulties for the previous ab ini...

Journal ArticleDOI
TL;DR: The study offers new insights into how the trans conformation is stabilized in TFE clusters of increasing size, and eventually becomes a dominant conformation in the liquid phase.
Abstract: Rotational spectra of the three most stable conformers (I, II, III) of the ternary 2,2,2-trifluoroethanol (TFE) cluster were measured using Fourier transform microwave spectrometers, and unambiguously assigned with the aid of ab initio calculations. The most stable conformer, I, contains one trans-TFE subunit which is unstable in its isolated gas phase form. The study offers new insights into how the trans conformation is stabilized in TFE clusters of increasing size, and eventually becomes a dominant conformation in the liquid phase. A detailed analysis shows that while O-H⋅⋅⋅O-H and O-H⋅⋅⋅F-C hydrogen bonds are the most significant attractive interactions which stabilize all three conformers, the main driving force for the stability of I over III, which has all gauche-TFE subunits, is the attractive interaction of C-F⋅⋅⋅F-C contact pairs. A new type of three-point F⋅⋅⋅F⋅⋅⋅F attractive contact interaction is also identified.

Journal ArticleDOI
TL;DR: The single-molecule magnetic properties can be reversibly tuned through the exchange of solvent molecules, confirmed by further measurements on the reverse solvated complexes 1-re and 2-re.
Abstract: [Er2(thd)4Pc]·2C6H6 (1) (Hthd = 2,2,6,6-tetramethylheptanedione), obtained as green crystals from the reaction of [Er(thd)3]·2H2O with lithium phthalocyanine, Li2Pc, is a stable dinuclear complex with two ErIII centers. Its lattice benzene solvent can be exchanged by soaking the crystals in dichloromethane to give [Er2(thd)4Pc]·2CH2Cl2 (2). The magnetic susceptibility data suggest different coupling interactions for the two complexes. While 1 exhibits fast relaxation and an estimated energy barrier of Ea = 2.6 cm-1 under 600 Oe dc field, the single-molecule magnet behavior of 2 is field-induced and the energy barrier is higher at 34.3 cm-1. Ab initio calculations were performed to understand the nature of the coupling interaction between two ErIII ions bridged by the phthalocyanine and the origin of different magnetic behavior. Importantly, the single-molecule magnetic properties can be reversibly tuned through the exchange of solvent molecules, confirmed by further measurements on the reverse solvated complexes 1-re and 2-re. This subtle control of relaxation by lattice solvents is rarely observed in single-molecule magnets, especially for ErIII-based complexes.

Journal ArticleDOI
TL;DR: In this article, simulations of deuterium (D) atom exposure in self-damaged polycrystalline tungsten at 500 and 600 K were performed using an evolution of the MHIMS (migration of hydrogen isotopes in materials) code in which a model to describe the interaction of D with the surface is implemented.
Abstract: Simulations of deuterium (D) atom exposure in self-damaged polycrystalline tungsten at 500 K and 600 K are performed using an evolution of the MHIMS (migration of hydrogen isotopes in materials) code in which a model to describe the interaction of D with the surface is implemented. The surface-energy barriers for both temperatures are determined analytically with a steady-state analysis. The desorption energy per D atom from the surface is 0.69 ± 0.02 eV at 500 K and 0.87 ± 0.03 eV at 600 K. These values are in good agreement with ab initio calculations as well as experimental determination of desorption energies. The absorption energy (from the surface to the bulk) is 1.33 ± 0.04 eV at 500 K, 1.55 ± 0.02 eV at 600 K when assuming that the resurfacing energy (from the bulk to the surface) is 0.2 eV. Thermal-desorption spectrometry data after D atom exposure at 500 K and isothermal desorption at 600 K after D atom exposure at 600 K can be reproduced quantitatively with three bulk-detrapping energies, namely 1.65 ± 0.01 eV, 1.85 ± 0.03 eV and 2.06 ± 0.04 eV, in addition to the intrinsic detrapping energies known for undamaged tungsten (0.85 eV and 1.00 eV). Thanks to analyses of the amount of traps during annealing at different temperatures and ab initio calculations, the 1.65 eV detrapping energy is attributed to jogged dislocations and the 1.85 eV detrapping energy is attributed to dislocation loops. Finally, the 2.06 eV detrapping energy is attributed to D trapping in cavities based on literature reporting observations on the growth of cavities, even though this could also be understood as D desorbing from the C-D bond in the case of hydrocarbon contamination in the experimental sample.

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of Dy(III-SIMs were investigated by ab initio calculations and the magnetic anisotropy of 1−4 was investigated by showing that the capping ligands could play an important role in the fine tuning of the SMM property via an effect on the equatorial electrostatic potential.
Abstract: To fine-tune the magnetic anisotropy and further modulate the magnetic properties and relaxation dynamics of dysprosium(III) single-ion magnets (SIMs), it is crucial to explore their controllable synthesis and conduct a systematic theoretical investigation. Herein, the mononuclear Dy(III) precursor, [Dy(DMF)2(tffb)3] (tffb = 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione), as a “metalloligand” towards different capping ligands, affords two new mononuclear Dy(III) complexes in different solvent systems, [Dy(bpy)(tffb)3]·(C4H8O2)1/3 (1) and [Dy(Phen)(tffb)3] (2) (bpy = 2,2′-bipyridine, Phen = 1,10-phenanthroline). Using 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb) as a ligand with the coligand bpy, [Dy(bpy)(tfmb)3] (3) is obtained. In 1,4-dioxane solution, interestingly, complex 3 undergoes a dissolution/reorganization process to transform into 4, [Dy(bpy)(tfmb)3]·0.5C4H8O2. Structural analyses indicate that Dy(III) in 1–4 adopts an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1–4 are investigated and the M versus H data exhibit evident butterfly-shaped hysteresis loops at 2 K for 1–4. Although all the Dy(III) ions in 1–4 adopt similar configurations, their magnetization dynamics are apparently different from each other, as shown by the various heights of the effective energy barrier (Ueff) of magnetization reversal. To deeply understand their different magnetic behaviours, the magnetic anisotropy of 1–4 is systematically studied by ab initio calculations. The theoretical results further indicate that the capping ligands could play an important role in the fine tuning of the SMM property via an effect on the equatorial electrostatic potential, whereas the inclusion of guest solvent molecules could significantly influence the axial electrostatic potential, leading to a strong effect on the SMM property.

Journal ArticleDOI
TL;DR: In this article, an intercomparison of ab initio against experimental water intensities is presented for a variety of infrared bands for H216O and some for H218O and H 2 17 O.
Abstract: Ab initio calculations of water intensities are becoming mature and are claimed to have 1% accuracy in many cases. Experimental intensities with 1% accuracy can be achieved with some care. An intercomparison of ab initio against experimental water intensities is presented for a variety of infrared bands for H216O and some for H218O and H 2 17 O. A new calculated H216O line list is presented for which uncertainties in the ab initio line intensities are evaluated. Much of the data show agreement within 2% between ab initio and experiment, however, for some bands, notably those involving excitation of some stretching modes, there are larger offsets of up to 8% attributed to ab initio calculation errors but still within the uncertainty of the ab initio calculation. In the ν1 fundamental band differences of between + 5 % and − 13 % are found which show systematic dependence on wavenumber, Δ K a , and Δ J , again attributable to ab initio calculation errors. In the ν2 band, intensity-dependent differences up to 2% originate from the analysis of the experimental data. At present experiments are important to validate ab initio calculations but ab initio predictions can be very useful in validating the experiment. As the two procedures display significantly different systematic errors, it is suggested that combining both gives the best results; this study will also facilitate further improvements of the theoretical methodology.

Book
29 Oct 2017
TL;DR: In this article, the best values for several observable properties including the total energy, dissociation energy, electron affinity, spectroscopic constants, electric moments, field gradients, polarizabilities, and magnetic constants are abstracted from the mass of data.
Abstract: : The number of ab initio molecular electronic calculations has increased dramatically in the last few years. Both the practitioners and other interested students of the results of the calculations have found it increasingly difficult to determine the present status of these calculations. This compendium references the work from 1960 to the present and abstracts from the mass of data the best values for several observable properties including the total energy, dissociation energy, electron affinity, spectroscopic constants, electric moments, field gradients, polarizabilities, and magnetic constants. In order to provide an insight into molecular electronic structure tables of orbital energies are also included. These tables are meant to direct attention to the successes and failures of the calculations by compiling a large percentage of the best results in a reasonably compact form. Its usefulness will be limited in time by rapid advance in the field. (Author)

Journal ArticleDOI
TL;DR: This study presents a quantum Monte Carlo study for the benchmark system H2 + Cu(111), focusing on the dissociative chemisorption barrier height, and outlines not only the achievable accuracy but also the challenges arising within QMC in such a calculation.
Abstract: Accurate modeling of heterogeneous catalysis requires the availability of highly accurate potential energy surfaces Within density functional theory, these can—unfortunately—depend heavily on the exchange-correlation functional High-level ab initio calculations, on the other hand, are challenging due to the system size and the metallic character of the metal slab Here, we present a quantum Monte Carlo (QMC) study for the benchmark system H2 + Cu(111), focusing on the dissociative chemisorption barrier height These computationally extremely challenging ab initio calculations agree to within 16 ± 10 kcal/mol with a chemically accurate semiempirical value Remaining errors, such as time-step errors and locality errors, are analyzed in detail in order to assess the reliability of the results The benchmark studies presented here are at the cutting edge of what is computationally feasible at the present time Illustrating not only the achievable accuracy but also the challenges arising within QMC in such

Journal ArticleDOI
TL;DR: In this article, the magnetic moment considered to lie along (001) axes is computed and the obtained value of magnetic moment is used as input for Monte Carlo simulations to calculate the magnetic parameters.