scispace - formally typeset
Search or ask a question
Topic

Abscisic acid

About: Abscisic acid is a research topic. Over the lifetime, 12876 publications have been published within this topic receiving 587031 citations. The topic is also known as: (+)-Abscisic acid & Abscisic acid.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that A BA-dependent posttranscriptional activation of AREB 1 and AREb2, probably by phosphorylation, is necessary for their maximum activation by ABA.
Abstract: The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

1,282 citations

Journal ArticleDOI
01 Jun 1998
TL;DR: Substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction.
Abstract: The plant hormone abscisic acid (ABA) plays a major role in seed maturation and germination, as well as in adaptation to abiotic environmental stresses. ABA promotes stomatal closure by rapidly altering ion fluxes in guard cells. Other ABA actions involve modifications of gene expression, and the analysis of ABA-responsive promoters has revealed a diversity of potential cis-acting regulatory elements. The nature of the ABA receptor(s) remains unknown. In contrast, combined biophysical, genetic, and molecular approaches have led to considerable progress in the characterization of more downstream signaling elements. In particular, substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction. Exciting advances are being made in reassembling individual components into minimal ABA signaling cascades at the single-cell level.

1,212 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the expression of an NCED gene of Arabidopsis, AtNCED3, is induced by drought stress and controls the level of endogenous ABA under drought-stressed conditions.
Abstract: Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA biosynthesis. Here we demonstrate that the expression of an NCED gene of Arabidopsis, AtNCED3, is induced by drought stress and controls the level of endogenous ABA under drought-stressed conditions. Overexpression of AtNCED3 in transgenic Arabidopsis caused an increase in endogenous ABA level, and promoted transcription of drought- and ABA-inducible genes. Plants overexpressing AtNCED3 showed a reduction in transpiration rate from leaves and an improvement in drought tolerance. By contrast, antisense suppression and disruption of AtNCED3 gave a drought-sensitive phenotype. These results indicate that the expression of AtNCED3 plays a key role in ABA biosynthesis under drought-stressed conditions in Arabidopsis. We improved drought tolerance by gene manipulation of AtNCED3 causing the accumulation of endogenous ABA.

1,159 citations

Journal ArticleDOI
TL;DR: The net result is a slightly heterogeneous response, thereby providing more temporal options for successful germination.
Abstract: Seed dormancy provides a mechanism for plants to delay germina- tion until conditions are optimal for survival of the next generation. Dormancy release is regulated by a combination of environmental and endogenous signals with both synergistic and competing effects. Molecular studies of dormancy have correlated changes in transcrip- tomes, proteomes, and hormone levels with dormancy states ranging from deep primary or secondary dormancy to varying degrees of re- lease. The balance of abscisic acid (ABA):gibberellin (GA) levels and sensitivity is a major, but not the sole, regulator of dormancy status. ABA promotes dormancy induction and maintenance, whereas GA promotes progression from release through germination; environ- mental signals regulate this balance by modifying the expression of biosynthetic and catabolic enzymes. Mediators of environmental and hormonal response include both positive and negative regulators, many of which are feedback-regulated to enhance or attenuate the response. The net result is a slightly heterogeneous response, thereby providing more temporal options for successful germination.

1,153 citations

Journal ArticleDOI
TL;DR: Results suggest that OST1 acts in the interval between ABA perception and ROS production, and the relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1 and gca2) are discussed.
Abstract: During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed.

1,067 citations


Network Information
Related Topics (5)
Auxin
10.7K papers, 502.6K citations
96% related
Arabidopsis thaliana
19.1K papers, 1M citations
95% related
Arabidopsis
30.9K papers, 2.1M citations
94% related
Photosynthesis
19.7K papers, 895.1K citations
91% related
Shoot
32.1K papers, 693.3K citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023724
20221,548
2021679
2020666
2019637
2018564