Topic
Absorption edge
About: Absorption edge is a research topic. Over the lifetime, 10126 publications have been published within this topic receiving 240138 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, the optical constants of amorphous Ge were determined for the photon energies from 0.08 to 1.6 eV, and the absorption is due to k-conserving transitions of holes between the valence bands as in p-type crystals.
Abstract: The optical constants of amorphous Ge are determined for the photon energies from 0.08 to 1.6 eV. From 0.08 to 0.5 eV, the absorption is due to k-conserving transitions of holes between the valence bands as in p-type crystals; the spin-orbit splitting is found to be 0.20 and 0.21 eV in non-annealed, and annealed samples respectively. The effective masses of the holes in the three bands are 0.49 m (respectively 0.43 m); 0.04 m, and 0.08 m. An absorption band is observed below the main absorption edge (at 300 °K the maximum of this band is at 0.86 eV); the absorption in this band increases with increasing temperature. This band is considered to be due to excitons bound to neutral acceptors, and these are presumably the same ones that play a decisive role in the transport properties and which are considered to be associated with vacancies. The absorption edge has the form: ω2ϵ2∼(hω−Eg)2 (Eg = 0.88 eV at 300 °K). This suggests that the optical transitions conserve energy but not k vector, and that the densities of states near the band extrema have the same energy-dependence as in crystalline Ge. A simple theory describing this situation is proposed, and comparison of it with the experimental results leads to an estimate of the localization of the conduction-band wavefunctions.
6,773 citations
[...]
TL;DR: In this article, the experimental evidence concerning the density of states in amorphous semiconductors and the ranges of energy in which states are localized is reviewed; this includes d.c and a.c. conductivity, drift mobility and optical absorption.
Abstract: The experimental evidence concerning the density of states in amorphous semiconductors and the ranges of energy in which states are localized is reviewed; this includes d.c. and a.c. conductivity, drift mobility and optical absorption. There is evidence that for some chalcogenide semiconductors the model proposed by Cohen, Fritzsche and Ovshinsky (1969) should be modified by introducing a band of localized states, near the centre of the gap. The values of C, when the d.c. conductivity is expressed as C exp (- E/kT), are considered. The behaviour of the optical absorption coefficient near the absorption edge and its relation to exciton formation are discussed. Finally, an interpretation of some results on photoconductivity is offered.
3,013 citations
[...]
TL;DR: Using highly sensitive photothermal deflection and photocurrent spectroscopy, the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature is measured, finding a high absorption coefficient with particularly sharp onset and a compositional change of the material.
Abstract: Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm–1. These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.
1,688 citations
[...]
TL;DR: In this paper, the optical properties of InSb are analyzed and precise values for the position and temperature dependence of the absorption edge are given, which is explained by the very low effective mass of the conduction electrons, estimated by three methods to be about 0.03 of the free electron mass.
Abstract: The data given on the optical properties of InSb are analysed and precise values for the position and temperature dependence of the absorption edge are given. The variation of the position of the absorption edge with impurity concentration is explained by the very low effective mass of the conduction electrons, which is estimated by three methods to be about 0.03 of the free electron mass.
1,521 citations
[...]
TL;DR: In this paper, the authors used ab initio band calculations to find that mixing of the S 3p states with the valence band can contribute to the band gap narrowing, based on the theoretical analyses.
Abstract: Titanium dioxide (TiO2) doped with sulfur (S) was synthesized by oxidation annealing of titanium disulfide (TiS2). According to the x-ray diffraction patterns, TiS2 turned into anatase TiO2 when annealed at 600 °C. The residual S atoms occupied O-atom sites in TiO2 to form Ti–S bonds. The S doping caused the absorption edge of TiO2 to be shifted into the lower-energy region. Based on the theoretical analyses using ab initio band calculations, mixing of the S 3p states with the valence band was found to contribute to the band gap narrowing.
1,268 citations