scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
Ben-Xin Wang1, Xiang Zhai1, Gui-Zhen Wang1, Wei-Qing Huang1, Ling-Ling Wang1 
TL;DR: In this paper, a dual-band terahertz metamaterial absorber formed by a patterned metallic strip and a dielectric layer on top of a metallic ground plane was presented.
Abstract: We present a new type of dual-band terahertz metamaterial absorber formed by a patterned metallic strip and a dielectric layer on top of a metallic ground plane. It is found that besides a strong absorption in the fundamental resonance, a prominent high-order resonance with near-unity absorption is also unveiled. The origin of the induced dual-band absorption was elucidated. Importantly, the quality factor (Q) and the figure of merit (FOM) of the high-order resonance are 8.4 and 22.7 times larger than that of the fundamental resonance, respectively, which makes the proposed absorber to have significant potential in biological monitoring and sensing. Moreover, we demonstrate a dual-band and insensitive for two orthogonal polarizations terahertz absorber based on a metallic cross and a metallic ground plane separated by a dielectric layer. The Q and FOM of the high-order resonance are still larger than that of the fundamental resonance. The proposed absorbers appear to be very promising for solar cells, detection, and imaging applications.

273 citations

Journal ArticleDOI
TL;DR: In this paper, a model is presented that estimates the enhancement of optical absorption that can be obtained from light scattering in the porous nanocrystalline films used in these cells and from reflection at the back electrode.

272 citations

Journal ArticleDOI
TL;DR: Multidistance time-resolved diffuse reflectance spectroscopy of the head of a healthy adult after intravenous administration of a bolus of indocyanine green is reported on.
Abstract: We report on multidistance time-resolved diffuse reflectance spectroscopy of the head of a healthy adult after intravenous administration of a bolus of indocyanine green. Intracerebral and extracerebral changes in absorption are deduced from moments (integral, mean time of flight, and variance) of the distributions of times of flight of photons (DTOFs), recorded simultaneously at four different source-detector separations. We calculate the sensitivity factors converting depth-dependent changes in absorption into changes of moments of DTOFs by Monte Carlo simulations by using a layered model of the head. We validate our method by analyzing moments of DTOFs simulated for the assumed changes in absorption in different layers of the head model.

271 citations

Journal ArticleDOI
TL;DR: This work presents what is to their knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber of a 600-MW lignite-fired power plant.
Abstract: We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.

271 citations

Journal ArticleDOI
TL;DR: This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.
Abstract: Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi2Se3 single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi2Se3 SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck c...

271 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679