scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
01 Dec 2013-Carbon
TL;DR: In this paper, the authors evaluated the dielectric properties and microwave attenuation performances over the full X-band (8.2-12.4 GHz) at a wide temperature ranging from 100 to 500 °C.

961 citations

Journal ArticleDOI
TL;DR: Cavity ring-down (CRD) spectroscopy as mentioned in this paper is a direct absorption technique, which can be performed with pulsed or continuous light sources and has a significantly higher sensitivity than obtainable in conventional absorption Spectroscopy.
Abstract: Cavity ring-down (CRD) spectroscopy is a direct absorption technique, which can be performed with pulsed or continuous light sources and has a significantly higher sensitivity than obtainable in conventional absorption spectroscopy. The CRD technique is based upon the measurement of the rate of absorption rather than the magnitude of absorption of a light pulse confined in a closed optical cavity with a high Q factor. The advantage over normal absorption spectroscopy results from, firstly, the intrinsic insensitivity to light source intensity fluctuations and, secondly, the extremely long effective path lengths (many kilometres) that can be realized in stable optical cavities. In the last decade, it has been shown that the CRD technique is especially powerful in gas-phase spectroscopy for measurements of either strong absorptions of species present in trace amounts or weak absorptions of abundant species. In this review, we emphasize the various experimental schemes of CRD spectroscopy, and we show how th...

953 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the results of a joint study with the Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26, 194021 St. Petersburg, Russia and the Belarus Academy of Sciences, Brovki 17, 220072 Minsk, Belarus.
Abstract: (a) Ioffe Physico-Technical Institute, Russian Academy of Science, Polytekhnicheskaya 26, 194021 St. Petersburg, Russia (b) Institut für Festkörpertheorie and Theoretische Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany (c) Department of Electronics and Information Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan (d) Institute of Solid State and Semiconductor Physics, Belarus Academy of Sciences, Brovki 17, 220072 Minsk, Belarus (e) LfI, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany

942 citations

Journal ArticleDOI
TL;DR: In this paper, a method to realize multiple electron-hole pair generation per incident photon is proposed, and the theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell's band gap using detailed balance calculations.
Abstract: One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron–hole pair can be generated per incident photon. A method to realize multiple electron–hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell’s band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, whi...

938 citations

Journal ArticleDOI
TL;DR: In this paper, a calibration of a recently developed filter-based instrument for continuous measurement of light absorption (model PSAP, Radiance Research, Seattle, WA) that has been incorporated in several measurement programs is presented.
Abstract: Data on light absorption by atmospheric particles are scarce relative to the need for global characterization. Most of the existing data come from methods that measure the change in light transmission through a filter on which particles are collected. We present a calibration of a recently developed filter-based instrument for continuous measurement of light absorption (model PSAP, Radiance Research, Seattle, WA) that has been incorporated in several measurement programs. This calibration uses a reference absorption determined as the difference between light extinction and light scattering by unaltered (suspended) particles. In addition, we perform the same calibration for two other common filter-based methods: an Integrating Plate and the Hybrid Integrating Plate System. For each method, we assess the responses to both particulate light scattering and particulate light absorption. We find that each of the instruments exhibits a significant response to nonabsorbing aerosols and overestimates absorption at...

936 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679