scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
15 Mar 2018
TL;DR: Electromagnetic analysis reveals that the excellent microwave absorption of sample S4 benefits from its preferable matching of characteristic impedance and good attenuation ability toward incident electromagnetic waves, which provides new insight into the fabrication of carbon-based magnetic composites with enhanced microwave absorption.
Abstract: A series of magnetic FeCo alloy/carbon composites have been successfully prepared through in situ pyrolysis of Prussian blue analogues (PBAs) with different Fe/Co ratios. The Fe/Co ratio can affect the crystalline phase, particle size, and magnetic property of the FeCo alloy particles, as well as the relative graphitization degree of the carbon frameworks. As a result, the electromagnetic functions of these composites will be highly associated with the Fe/Co ratio, where high Co content is beneficial to the formation of strong dielectric loss and moderate Co content can facilitate the magnetic loss. When Fe/Co ratio reaches 1:1, the as-obtained composite (sample S4) displays excellent reflection loss characteristics with powerful absorption in a very broad frequency range (over −10 dB in 3.2–18.0 GHz), which is superior to those of single magnetic metal (Fe or Co)/carbon composite derived from PBAs, as well as many previously reported FeCo alloy/carbon composites. Electromagnetic analysis reveals that the excellent microwave absorption of sample S4 benefits from its preferable matching of characteristic impedance and good attenuation ability toward incident electromagnetic waves. These results provide new insight into the fabrication of carbon-based magnetic composites with enhanced microwave absorption by rationally manipulating the chemical composition of magnetic components.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of environmental factors on the degradation process of P3HT film has been investigated quantitatively, and the decay kinetics of the polymer absorption during variation of intensity and spectral distribution of the incident light, oxygen concentration, humidity level as well as temperature are monitored using infrared and UV/vis absorption spectroscopy.
Abstract: The influence of environmental factors on the degradation process of P3HT film has been investigated quantitatively. The decay kinetics of the polymer absorption during variation of intensity and spectral distribution of the incident light, oxygen concentration, humidity level as well as temperature are monitored using infrared and UV/vis absorption spectroscopy. Additionally, the oxygen diffusion into the polymer film has been investigated using fluorescence spectroscopy under the same experimental conditions. The degradation process is light initiated with a strong increase of the effectiveness toward the ultraviolet region of the spectrum. The observed photo oxidation is not oxygen diffusion limited although an activation energy of 26 kJmol−1 was observed for both degradation and oxygen diffusion. The observed kinetics, especially its dependence on wavelength of the incident light, point to a radical-based degradation process in the solid state rather than a singlet oxygen-based mechanism as it is obse...

222 citations

Journal ArticleDOI
TL;DR: This paper theoretically propose and experimentally demonstrate a unique broadband plasmonic-metamaterial absorber by utilizing a sub-10 nm meta-surface film structure to replace the precisely designed metamaterial crystal in the common metal-dielectric-metal absorbers.
Abstract: Broadband electromagnetic wave absorbers are highly desirable in numerous applications such as solar-energy harvesting, thermo-photovoltaics, and photon detection. The aim to efficiently achieve ultrathin broadband absorbers with high-yield and low-cost fabrication process has long been pursued. Here, we theoretically propose and experimentally demonstrate a unique broadband plasmonic-metamaterial absorber by utilizing a sub-10 nm meta-surface film structure to replace the precisely designed metamaterial crystal in the common metal–dielectric–metal absorbers. The unique ultrathin meta-surface can be automatically obtained during the metal film formation process. Spectral bandwidth with absorbance above 80% is up to 396 nm, where the full absorption width at half-maximum is about 92%. The average value of absorbance across the whole spectral range of 370–880 nm reaches 83%. These super absorption properties can be attributed to the particle plasmon resonances and plasmon near-field coupling by the automati...

222 citations

Journal ArticleDOI
TL;DR: In this article, a module for the ZEUS-2D code is described that may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation.
Abstract: A module for the ZEUS-2D code is described that may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation. In this approximation, the factor Eddington tensor f, which closes the radiation moment equations, is chosen to be an empirical function of the radiation energy density. This is easier to implement and faster than full-transport techniques, in which f is computed by solving the transfer equation. However, FLD is less accurate when the flux has a component perpendicular to the gradient in radiation energy density and in optically thin regions when the radiation field depends strongly on angle. The material component of the fluid is here assumed to be in local thermodynamic equilibrium. The energy equations are operator split, with transport terms, radiation diffusion term, and other source terms evolved separately. Transport terms are applied using the same consistent transport algorithm as in ZEUS-2D. The radiation diffusion term is updated using an alternating direction-implicit method with convergence checking. Remaining source terms are advanced together implicitly using numerical root finding. However, when absorption opacity is zero, accuracy is improved by instead treating the compression and expansion source terms using a time-centered differencing scheme. Results are discussed for test problems including radiation-damped linear waves, radiation fronts propagating in optically thin media, subcritical and supercritical radiating shocks, and an optically thick shock in which radiation dominates downstream pressure.

221 citations

Journal ArticleDOI
TL;DR: This work provides an approach to design hybrid materials having a complex structure to enhance the microwave absorption properties of hybrid nanorings via a hydrothermal method coupled with a chemical catalytic vapor deposition technique.
Abstract: Microwave absorption is a critical challenge with progression in electronics, where fine structural designing of absorbent materials plays an effective role in optimizing their microwave absorption properties. Here, we have developed Fe3O4@C (FC) and Fe-Fe3O4@C (FFC) hybrid nanorings via a hydrothermal method coupled with a chemical catalytic vapor deposition technique. FC and FFC hybrid nanorings have fine carbon coating while their size can easily be tunable in a certain range from 80-130 to 90-140 nm. The optimized FC and FFC hybrid nanorings bear minimum reflection loss (RL) values of -39.1 dB at 15.9 GHz and -32.9 dB at 17.1 GHz, respectively, whereas FFC shows an effective absorption bandwidth (RL values < -10 dB) ranged from 5.2 to 18 GHz. Such an enhanced microwave absorption performance of hybrid nanorings is mainly due to the suitable impedance characteristics, multilevel interfaces, and polarization features in nanorings. This work provides an approach to design hybrid materials having a complex structure to enhance the microwave absorption properties.

221 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679