scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the spectral properties of very high energy (VHE: E > 100 GeV) gamma-ray sources at redshifts up to z = 0.536 without strong indications for the presence of absorption features in the energy spectra.
Abstract: In the recent years, the number of detected very high energy (VHE: E > 100 GeV) gamma-ray sources has increased rapidly. The sources have been observed at redshifts up to z = 0.536 without strong indications for the presence of absorption features in the energy spectra. Absorption is however expected due to pair-production processes of the propagating photons with the photon bath in intergalactic space. Even though this photon density is not well known, lower limits can be firmly set by the resolved emission from galaxy counts. Using this guaranteed background light, we investigate the behaviour of the energy spectra in the transition region from the optically thin to the optically thick regime. Among the sample of 50 energy spectra, 7 spectra cover the the range from optical depth τ 2. For these sources, the transition to τ > 2 takes place at widely different energies ranging from 0.4 TeV to 21 TeV. Consistently, in all of these sources, an upturn of the absorption-corrected spectrum is visible at this transition with a combined significance of 4.2 standard deviations. Given the broad range of energies and redshifts covered by the sample, source-intrinsic features are unlikely to explain the observed effect. Systematic effects related to observations have been investigated and found to be not sufficient to account for the observed effect. The pair-production process seems to be suppressed in a similar way as expected in the extension of the standard model by a light ( < neV) pseudoscalar (axion-like) particle.

192 citations

Journal ArticleDOI
TL;DR: A low-bandgap polymer:fullerene blend that has significantly reduced energetic losses from photon absorption to VOC is described, yet the short-circuit current still reaches 14 mA cm(-2).
Abstract: A low-bandgap polymer:fullerene blend that has significantly reduced energetic losses from photon absorption to VOC is described. The charge-transfer state and polymer singlet are of nearly equal energy, yet the short-circuit current still reaches 14 mA cm(-2).

192 citations

Journal ArticleDOI
TL;DR: In this paper, quasi-static energy absorption of six polymeric lattice structures of different unit cell topologies and deformation behaviors with identical relative density is investigated for the first time, a recently developed powerful 3D printing technology namely Multi Jet Fusion (MJF) is utilized to produce high quality and performance lattices.

192 citations

Journal ArticleDOI
TL;DR: Experimental tests confirmed that the system could identify and locate both scattering and absorbing inhomogeneities in a tissue-simulating phantom and accuracy of the initial estimates for the optical properties was confirmed.
Abstract: Diffuse optical tomography is an imaging technique whereby spatial maps of absorption and scattering coefficients are derived from the characteristics of multiply scattered light transmitted through the object. The system described here used four intensity-modulated light sources and measurements of the intensity and phase (relative to each source) at 16 or 20 detectors on the surface of a 10 cm diameter cylinder. An iterative Newton-Raphson algorithm was used to estimate the absorption and scattering coefficients at each pixel in a 17 x 17 array minimizing the difference between measured and calculated values of the intensity and phase at the measurement sites. Forward calculations of the intensity and phase were based on a multigrid finite-difference solution of the frequency domain diffusion equation. Numerical simulations were used to examine the resolution, contrast, and accuracy of the reconstructions as well as the effects of measurement noise, systematic uncertainties in source-detector location, and accuracy of the initial estimates for the optical properties. Experimental tests also confirmed that the system could identify and locate both scattering and absorbing inhomogeneities in a tissue-simulating phantom.

192 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679