scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a few-layered WS2 is synthesized by chemical vapor deposition on quartz, which is successfully used as light sensors and the results indicate that the electrical response strongly depends on the photon energy from the excitation lasers.
Abstract: Few-layered films of WS2, synthesized by chemical vapor deposition on quartz, are successfully used as light sensors. The film samples are structurally characterized by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The produced samples consist of few layered sheets possessing up to 10 layers. UV–visible absorbance spectra reveals absorption peaks at energies of 1.95 and 2.33 eV, consistent with the A and B excitons characteristic of WS2. Current–voltage (I–V) and photoresponse measurements carried out at room temperature are performed by connecting the WS2 layered material with Au/Ti contacts. The photocurrent measurements are carried out using five different laser lines ranging between 457 and 647 nm. The results indicate that the electrical response strongly depends on the photon energy from the excitation lasers. In addition, it is found that the photocurrent varies non-linearly with the incident power, and the generated photocurrent in the WS2 samples varies as a squared root of the incident power. The excellent response of few-layered WS2 to detect different photon wavelengths, over a wide range of intensities, makes it a strong candidate for constructing novel optoelectronic devices.

566 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties of humic-like substances (HULIS) isolated from the fine fraction of biomass-burning aerosol collected in the Amazon basin during the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia? SMOke aerosols, Clouds, rainfall and Climate) experiment in September 2002 were analyzed.
Abstract: We present here the optical properties of humic-like substances (HULIS) isolated from the fine fraction of biomass-burning aerosol collected in the Amazon basin during the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia ? SMOke aerosols, Clouds, rainfall and Climate) experiment in September 2002. From the isolated HULIS, aerosol particles were generated and their scattering and absorption coefficients measured. The size distribution and mass of the particles were also recorded. The value of the index of refraction was derived from "closure" calculations based on particle size, scattering and absorption measurements. On average, the complex index of refraction at 532 nm of HULIS collected during day and nighttime was 1.65?0.0019i and 1.69?0.0016i, respectively. In addition, the imaginary part of the complex index of refraction was calculated using the measured absorption coefficient of the bulk HULIS. The mass absorption coefficient of the HULIS at 532 nm was found to be quite low (0.031 and 0.029 m2 g?1 for the day and night samples, respectively). However, due to the high absorption Angstrom exponent (6?7) of HULIS, the specific absorption increases substantially towards shorter wavelengths (~2?3 m2 g?1 at 300 nm), causing a relatively high (up to 50%) contribution to the light absorption of our Amazonian aerosol at 300 nm. For the relative contribution of HULIS to light absorption in the entire solar spectrum, lower values (6.4?8.6%) are obtained, but those are still not negligible.

562 citations

Book
29 Dec 1995
TL;DR: In this paper, the principles for photothermal spectroscopy of homogeneous samples are discussed. But they do not consider the effect of the temperature change and optical elements in homogeneous sample.
Abstract: Absorption, Energy Transfer, and Excited-State Relaxation. Hydrodynamic Relaxation: Heat Transfer and Acoustics. Optical Principles for Photothermal Spectroscopy. Temperature Change and Optical Elements in Homogeneous Samples. Photothermal Spectroscopy in Homogeneous Samples. Analytical Measurement and Data Processing Considerations. Analytical Applications. Photothermal Spectroscopy of Heterogeneous Samples. Index.

562 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined absorption spectra of primary organic carbon (OC) emitted from solid fuel pyrolysis and found that more than 92% was extractable by methanol or acetone compared with 73% for water and 52% for hexane.
Abstract: . Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC) is highly absorbing, some organic carbon (OC) also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright surfaces.

562 citations

01 Jan 1974
TL;DR: In this paper, the use of the compressional hydromagnetic mode (also called the magnetosonic or simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium.
Abstract: The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ωC (deuterons), with Qwave 100. Reasonable efficiencies are found also for electron heating, but coherence effects between transit-time and Landau damping for electrons reduce the total absorption for both processes to one-half of the transit-time power, calculated separately.The fusion output of a two-component neutral-injected plasma can be enhanced by selective heating of the injected deuterons. Also, selective deuteron absorption may be used for ion-tail creation by radiofrequency excitation alone, as an alternative to neutral injection. The dominant behaviour of the high-energy deuteron distribution function is found to be f(v) ~ exp[(3/2)∫vdv / ], where is the Chandrasekhar-Spitzer drag coefficient, and is the Kennel-Engelmann quasi-linear diffusion coefficient for wave-particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker-Planck equation, with r.f.-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear-fusion power output from an r.f.-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input.

557 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679