scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dispersion and absorption properties in the visible and near-infrared wavelength region have been determined for distilled water, heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon disulfide, and nitrobenzene at a temperature of 20 °C.
Abstract: Liquid-filled photonic crystal fibers and optofluidic devices require infiltration with a variety of liquids whose linear optical properties are still not well known over a broad spectral range, particularly in the near infrared. Hence, dispersion and absorption properties in the visible and near-infrared wavelength region have been determined for distilled water, heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon disulfide, and nitrobenzene at a temperature of 20 °C. For the refractive index measurement a standard Abbe refractometer in combination with a white light laser and a technique to calculate correction terms to compensate for the dispersion of the glass prism has been used. New refractive index data and derived dispersion formulas between a wavelength of 500 nm and 1600 nm are presented in good agreement with sparsely existing reference data in this wavelength range. The absorption coefficient has been deduced from the difference of the losses of several identically prepared liquid filled glass cells or tubes of different lengths. We present absorption data in the wavelength region between 500 nm and 1750 nm.

521 citations

Journal ArticleDOI
TL;DR: In this paper, a new method is presented which determines the aerosol light absorption from the simultaneous measurement of radiation passing through and scattered back from a particle-loaded /bre /lter.

520 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency.
Abstract: Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

518 citations

Journal ArticleDOI
TL;DR: In this paper, a facile method for the synthesis of size and shape-controlled CuInS2 semiconductor nanocrystals was developed by thermolysis of a mixed solution of CuAc, In(Ac)3, and dodecanethiol in noncoordinating solvent 1-octadecene (ODE) at 240 °C.
Abstract: A facile method for the synthesis of size- and shape-controlled CuInS2 semiconductor nanocrystals was developed by thermolysis of a mixed solution of CuAc, In(Ac)3 (molar ratio of CuAc to In(Ac)3 = 1:1) and dodecanethiol in noncoordinating solvent 1-octadecene (ODE) at 240 °C. CuInS2 nanoparticles with size of 2 to ∼5 nm and nanorods with aspect ratio of 1 to ∼3 were obtained by adjusting the reaction parameters such as temperature and time. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, selected area electron diffraction spectroscopy, inductively coupled plasma atomic emission spectroscopy, UV−vis absorption, and photoluminescence (PL) spectroscopy. The nanoparticle solutions exhibit tunable absorption and PL spectra with the absorption edge ranging from 550 to 750 nm and PL emission peaks from 600 to 750 nm, indicating a strong size-dependent quantum confinement effect. Optical measurements of the CuI...

515 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured a wide range of species to determine the influence of variable tissue morphologies and canopy structures on the relationship between water spectral reflectance and vegetation properties.

513 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679