scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 2007
TL;DR: Terahertz time-domain spectroscopy is used to study properties of nonpolar amorphous materials and the results were correlated with material properties.
Abstract: Terahertz time-domain spectroscopy is used to study properties of nonpolar amorphous materials. Terahertz absorption spectra and refractive indices were measured in a number of glasses, lubricating oils, and polymers, and the results were correlated with material properties.

420 citations

Journal ArticleDOI
TL;DR: Ultrafast x-ray techniques using diffraction and absorption are discussed with an emphasis on the absorption techniques, and sources and detectors for use in x-rays absorption spectroscopy are reviewed.
Abstract: A review. Ultrafast x-ray techniques using diffraction and absorption are discussed with an emphasis on the absorption techniques. Ultrafast x-ray sources and detectors for use in x-ray absorption spectroscopy are also reviewed. [on SciFinder (R)]

418 citations

Journal ArticleDOI
TL;DR: In this paper, a simple chemical vapor deposition (CVD) route for the direct growth of edge-rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported.
Abstract: High-performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave-transmitting matrices is of paramount importance to bring it to real-world application. Herein, a simple chemical vapor deposition (CVD) route for the direct growth of edge-rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported. The large O/C atomic ratio of CH3OH helps to build a mild oxidizing atmosphere and leads to a unique structure featuring open graphite nanosteps and freestanding nanoplanes, endowing the ERG/Si3N4 hybrid with an appropriate balance between good impedance matching and strong loss capacity. Accordingly, the prepared materials exhibit superior electromagnetic wave absorption, far surpassing that of traditional CVD graphene and reduced graphene oxide-based materials, achieving an effective absorption bandwidth of 4.2 GHz covering the entire X band, with a thickness of 3.75 mm and a negligibly low loading content of absorbents. The results provide new insights for developing novel microwave absorption materials with strong reflection loss and wide absorption frequency range.

417 citations

Journal ArticleDOI
TL;DR: In this paper, both the linear and nonlinear inter-subband optical absorption coefficients and the refractive index changes are calculated for the uniform, triangular and Gaussian-like donor distribution.
Abstract: In this study, both the linear and nonlinear intersubband optical absorption coefficients and the refractive index changes are calculated for the uniform, triangular and Gaussian-like donor distribution. The Gaussian-like distribution differs from the Gaussian distribution other authors use. The electronic structure of n-type Si δ-doped GaAs has been theoretically calculated by solving the Schrodinger and Poisson equations self-consistently. Our results show that the location and the size of the linear and total absorption coefficients and refractive index changes depend on the donor distribution type. The shape of δ-effective potential profile and the subband properties are changed as dependent on the donor distribution model. Therefore, the variation of the absorption coefficients and refraction index changes, which can be appropriate for various optical modulators and infrared optical device applications can be smooth obtained by the alteration donor distribution model.

413 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679