scispace - formally typeset
Search or ask a question
Topic

Absorption (electromagnetic radiation)

About: Absorption (electromagnetic radiation) is a research topic. Over the lifetime, 76674 publications have been published within this topic receiving 1381221 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the transition to single crystal of ion-implanted amorphous Si and Ge layers is described in terms of a liquid phase epitaxy occurring during pulsing-laser irradiation.
Abstract: The transition to single crystal of ion‐implanted amorphous Si and Ge layers is described in terms of a liquid‐phase epitaxy occurring during pulsing‐laser irradiation. A standard heat equations including laser light absorption was solved numerically to give the time evolution of temperature and melting as a function of the pulse energy density and its duration. The structure dependence of the absorption coefficient and the temperature dependence of the thermal conductivity were accounted for in the calculations. In this model the transition to single crystal occurs above a well‐defined threshold energy density at which the liquid layer wets the underlying single‐crystal substrate. Experiments were performed in ion‐implanted amorphous layers of thicknesses ranging between 500 and 9000 A. The energy densities of the Q‐switched ruby laser ranged between 0.2 and 3.5 J/cm2; time durations of 20 and 50 ns were used. The experimental data are in good agreement with the calculated values for the amorphous thickness–energy−density threshold. The model deals mainly with plausibility arguments and does not account for processes occuring in the near‐threshold region or below the melting temperature.

352 citations

Journal ArticleDOI
TL;DR: The generation of a femtosecond pulse in a fiber ring laser by using a polyvinyl alcohol (PVA)-based molybdenum disulfide (MoS(2) SA) saturable absorber indicates that the filmy PVA-based MoS( 2) SA is indeed a good candidate for an ultrafast saturable absorption device.
Abstract: We report on the generation of a femtosecond pulse in a fiber ring laser by using a polyvinyl alcohol (PVA)-based molybdenum disulfide (MoS2) saturable absorber (SA). With a saturable optical intensity of 34 MW/cm2 and a modulation depth of ∼4.3%, the PVA-based MoS2 SA had been employed with an erbium-doped fiber ring laser as a mode locker. The mode-locking operation could be achieved at a low pump threshold of 22 mW. A ∼710 fs pulse centered at 1569.5 nm wavelength with a repetition rate of 12.09 MHz had been achieved with proper cavity dispersion. With the variation of net cavity dispersion, output pulses with durations from 0.71 to 1.46 ps were obtained. The achievement of a femtosecond pulse at 1.55 μm waveband demonstrates the broadband saturable absorption of MoS2, and also indicates that the filmy PVA-based MoS2 SA is indeed a good candidate for an ultrafast saturable absorption device.

351 citations

Journal ArticleDOI
TL;DR: In this paper, the third-order nonlinearities of glasses doped with a large number of copper or silver particles are studied by degenerate four-wave mixing with an emphasis on particle size dependence.
Abstract: Third-order nonlinearities of glasses doped with a large number of copper or silver particles are studied by degenerate four-wave mixing with an emphasis on particle-size dependence. The nonlinear susceptibility χ(3) exhibits a peak at the wavelength of the absorption peak, with a maximum value of the order of 10−7 esu. The value of χ(3)/α is roughly independent of the absorption coefficient α and increases as the particle radius increases. This result is well explained by the size dependence of the imaginary part of the dielectric constant of metal particles and the local-field factor. The time response of the nonlinearity exhibits two-component behavior: the fast decay time is shorter than the pulse width of the laser (~12 ps), whereas the slow one is 120–200 ps, being weakly dependent on the radius.

351 citations

Patent
03 Sep 1992
TL;DR: In this article, a method and apparatus for determining the presence of an analyte in a medium or the composition of a medium wherein a volume of material is irradiated with temporally-modulated electromagnetic energy at multiple wavelengths is presented.
Abstract: A method and apparatus for determining the presence of an analyte in a medium or the composition of a medium wherein a volume of material is irradiated with temporally-modulated electromagnetic energy at multiple wavelengths. The electromagnetic radiation is detected after it has traversed a portion of the material. Representation signals related to the degree of absorption of electromagnetic energy at various wavelengths in the material and signals related to the path lengths travelled by the electromagnetic radiation in the material are generated, and signals representative of the optical absorption per unit path length at various wavelengths in the medium are derived. The derived wavelength dependence of the optical absorption per unit path length is compared with a calibration model, and the comparison is analyzed to derive concentrations of specific chemical species within the material and the presence of an analyte or composition of the medium. An output indicative of the concentration and composition is then provided.

350 citations


Network Information
Related Topics (5)
Carbon
129.8K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
85% related
Graphene
144.5K papers, 4.9M citations
84% related
Silicon
196K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2022185
20213,106
20202,866
20192,953
20182,876
20172,679