scispace - formally typeset
Search or ask a question
Topic

AC/AC converter

About: AC/AC converter is a research topic. Over the lifetime, 9843 publications have been published within this topic receiving 117813 citations.


Papers
More filters
Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,851 citations

Journal ArticleDOI
TL;DR: A hybrid ac/dc micro grid is proposed to reduce the processes of multiple dc-ac-dc or ac-dc-ac conversions in an individual ac or dc grid to maintain stable operation under the proposed coordination control schemes.
Abstract: This paper proposes a hybrid ac/dc micro grid to reduce the processes of multiple dc-ac-dc or ac-dc-ac conversions in an individual ac or dc grid. The hybrid grid consists of both ac and dc networks connected together by multi-bidirectional converters. AC sources and loads are connected to the ac network whereas dc sources and loads are tied to the dc network. Energy storage systems can be connected to dc or ac links. The proposed hybrid grid can operate in a grid-tied or autonomous mode. The coordination control algorithms are proposed for smooth power transfer between ac and dc links and for stable system operation under various generation and load conditions. Uncertainty and intermittent characteristics of wind speed, solar irradiation level, ambient temperature, and load are also considered in system control and operation. A small hybrid grid has been modeled and simulated using the Simulink in the MATLAB. The simulation results show that the system can maintain stable operation under the proposed coordination control schemes when the grid is switched from one operating condition to another.

1,058 citations

Journal ArticleDOI
TL;DR: It is demonstrated that this converter concept fulfils the demanding requirements for future ac-fed traction vehicles very well and results in a very cost-efficient and versatile converter construction.
Abstract: A new ac/ac modular multilevel converter (M/sup 2/LC) family will be introduced. The new concept stands out due to its modularity and superior control characteristics. The stringent modularity results in a very cost-efficient and versatile converter construction. This new M/sup 2/LC concept is well suited to a wide range of multiphase ac/ac converters. The basic working principle together with the static and dynamic behavior are explained in detail on a single-phase ac/ac converter enabling four-quadrant operation. It is demonstrated that this converter concept fulfils the demanding requirements for future ac-fed traction vehicles very well.

749 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter, which is intended to be used in uninterruptible power supply and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed.
Abstract: This paper proposes a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter. The main attribute of the new inverter topology is the fact that it generates an AC output voltage larger than the DC input one, depending on the instantaneous duty cycle. This property is not found in the classical VSI, which produces an AC output instantaneous voltage always lower than the DC input one. For the purpose of optimizing the boost inverter dynamics, while ensuring correct operation in any working condition, a sliding mode controller is proposed. The main advantage of the sliding mode control over the classical control schemes is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state response in the ideal case. Operation, analysis, control strategy, and experimental results are included in this paper. The new inverter is intended to be used in uninterruptible power supply (UPS) and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed, with no need of a second power conversion stage.

685 citations


Network Information
Related Topics (5)
Power factor
60.5K papers, 768.2K citations
92% related
AC power
80.9K papers, 880.8K citations
91% related
Stator
112.5K papers, 814.8K citations
87% related
Electric power system
133K papers, 1.7M citations
86% related
Voltage
296.3K papers, 1.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
202188
2020130
2019189
2018389
2017611