scispace - formally typeset
Search or ask a question

Showing papers on "AC power published in 2007"



Journal ArticleDOI
TL;DR: In this article, the authors proposed a high performance single-stage inverter topology for grid connected PV systems, which can not only boost the usually low photovoltaic (PV) array voltage, but can also convert the solar dc power into high quality ac power for feeding into the grid, while tracking the maximum power from the PV array.
Abstract: This paper proposes a high performance, single-stage inverter topology for grid connected PV systems. The proposed configuration can not only boost the usually low photovoltaic (PV) array voltage, but can also convert the solar dc power into high quality ac power for feeding into the grid, while tracking the maximum power from the PV array. Total harmonic distortion of the current, fed into the grid, is restricted as per the IEEE-519 standard. The proposed topology has several desirable features such as better utilization of the PV array, higher efficiency, low cost and compact size. Further, due to the very nature of the proposed topology, the PV array appears as a floating source to the grid, thereby enhancing the overall safety of the system. A survey of the existing topologies, suitable for single-stage, grid connected PV applications, is carried out and a detailed comparison with the proposed topology is presented. A complete steady-state analysis, including the design procedure and expressions for peak device stresses, is included. Necessary condition on the modulation index "M" for sinusoidal pulsewidth modulated control of the proposed inverter topology has also been derived for discontinuous conduction mode operation. All the analytical, simulation and experimental results are presented.

636 citations


Journal ArticleDOI
TL;DR: In this article, a doubly-fed induction generator (DFIG)-based wind generation system operating under unbalanced network conditions is analyzed and control design of a DFIG system model in the positive and negative synchronous reference frames is presented.
Abstract: This paper presents an analysis and control design of a doubly-fed induction generator (DFIG)-based wind generation system operating under unbalanced network conditions. A DFIG system model in the positive and negative synchronous reference frames is presented. Variations of stator active and reactive powers and generator torque are fully defined in the presence of negative sequence voltage and current. Alternative DFIG control targets during network unbalance, such as reducing stator current unbalance, torque, and power pulsations minimization, are identified. A rotor current control strategy based on positive and negative (dq) reference frames is used to provide precise control of the rotor positive and negative sequence currents. Simulation results using EMTDC/PSCAD are presented for a 2-MW DFIG wind generation system. It shows that conventional vector control of DFIG without considering network unbalance results in excessive oscillations on the stator active/reactive power, electromagnetic torque, and stator/rotor currents even with a small stator voltage unbalance. In contrast, with the proposed control strategy, enhanced system control and operation such as minimizing oscillations in either active power, or electromagnetic torque, or stator or rotor currents can be achieved

617 citations


Journal ArticleDOI
TL;DR: In this paper, a three-phase transformerless cascade PWM static synchronous compensator (STATCOM) is proposed for installation on industrial and utility power distribution systems, which devotes itself to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors.
Abstract: This paper presents a three-phase transformerless cascade pulsewidth-modulation (PWM) static synchronous compensator (STATCOM) intended for installation on industrial and utility power distribution systems. It proposes a control algorithm that devotes itself not only to meeting the demand of reactive power but also to voltage balancing of multiple galvanically isolated and floating dc capacitors. The control algorithm based on a phase-shifted carrier modulation strategy is prominent in having no restriction on the cascade number. Experimental waveforms verify that a 200-V 10-kVA cascade PWM STATCOM with star configuration has the capability of inductive to capacitive (or capacitive to inductive) operation at the rated reactive power of 10 kVA within 20 ms while keeping the nine dc mean voltages controlled and balanced even during the transient state.

600 citations


Journal ArticleDOI
TL;DR: In this paper, strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source and load conditions with the new IEEE Standard 1459 power definitions.
Abstract: Strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source and load conditions with the new IEEE Standard 1459 power definitions. The study was applied to a three-phase four-wire system in order to include imbalance. Under balanced and sinusoidal voltages, harmonic cancellation and reactive power compensation can be attained in all the methods. However, when the voltages are distorted and/or unbalanced, the compensation capabilities are not equivalent, with some strategies unable to yield an adequate solution when the mains voltages are not ideal. Simulation and experimental results are included

578 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a control scheme that allows doubly fed induction wind generators (DFIWG) to participate effectively in system frequency regulation. But, the control strategy defined at the wind generator to supply primary frequency regulation capability exploits a combination of control of the static converters and pitch control, adjusting the rotor speed and the active power according to the deloaded optimum power extraction curve.
Abstract: This paper proposes a control scheme that allows doubly fed induction wind generators (DFIWG) to participate effectively in system frequency regulation. In this control approach, wind generators operate according to a deloaded optimum power extraction curve such that the active power provided by each wind turbine increases or decreases during system frequency changes. The control strategy defined at the wind generator to supply primary frequency regulation capability exploits a combination of control of the static converters and pitch control, adjusting the rotor speed and the active power according to the deloaded optimum power extraction curve. Results obtained in a small isolated system are presented to demonstrate the effectiveness of the approach.

571 citations


Journal ArticleDOI
TL;DR: In this article, a new current control scheme for selective harmonic compensation is proposed for shunt active power filters, which employs an array of resonant current controllers, one for the fundamental, and one for each harmonic, implemented in fundamental reference frame in order to reduce the overall computational effort.
Abstract: A new current control scheme for selective harmonic compensation is proposed for shunt active power filters The method employs an array of resonant current controllers, one for the fundamental, and one for each harmonic, implemented in fundamental reference frame in order to reduce the overall computational effort The proposed controller design is based on the pole-zero cancellation technique, taking into account the load transfer function at each harmonic frequency Two design methods are provided, which give controller transfer functions with superior frequency response The complete current controller is realized as the superposition of all individual harmonic controllers The frequency response of the entire closed loop control is optimal with respect to filtering objectives, ie, the system provides good overall stability and excellent selectivity for interesting harmonics This conclusion is supported by experimental results on a 76-kVA laboratory filter, indicating a reduction in current THD factor from 34% to 2%, while the highest harmonic compensated is the 37th harmonic current

493 citations


Journal ArticleDOI
TL;DR: In this article, a survey of the commonly used methods for harmonic detection in active power filters (APFs) is presented, and a simulation setup that decouples the harmonic detection method from the active filter model and its controllers is proposed.
Abstract: This article gives a survey of the commonly used methods for harmonic detection in active power filters (APFs). The work proposes a simulation setup that decouples the harmonic detection method from the active filter model and its controllers. In this way, the selected methods can be equally analyzed and compared with respect to their performance, which helps in anticipating possible implementation issues. A comparison is given that may be used to decide the future hardware setup implementation. The comparison shows that the choice of numerical filtering is a key factor for obtaining a good accuracy and dynamic performance of an active power filter.

425 citations


Journal ArticleDOI
TL;DR: In this article, a single-stage three-phase grid-connected photovoltaic (PV) system is implemented to realize the maximum power point tracking (MPPT), synchronization with the utility voltage, and harmonics reduction for output current.
Abstract: Single-stage grid-connected photovoltaic (PV) systems have advantages such as simple topology, high efficiency, etc. However, since all the control objectives such as the maximum power point tracking (MPPT), synchronization with the utility voltage, and harmonics reduction for output current need to be considered simultaneously, the complexity of the control scheme is much increased. This paper presents the implementation of a single-stage three-phase grid-connected PV system. In addition to realize the aforementioned control objectives, the proposed control can also remarkably improve the stability of the MPPT method with a modified incremental conductance MPPT method. The reactive power compensation for local load is also realized, so as to alleviate grid burden. A DSP is employed to implement the proposed MPPT controller and reactive power compensation unit. Simulation and experimental results show the high stability and high efficiency of this single-stage three-phase grid-connected PV system.

382 citations


Journal ArticleDOI
TL;DR: The effect of load models on distributed generation (DG) planning in distribution system is investigated in this paper, where it is shown that load models can significantly affect the DG planning.
Abstract: The effect of load models on distributed generation (DG) planning in distribution system is investigated in this work. It is shown that load models can significantly affect the DG planning. Normally a constant power (real and reactive) load model is assumed in most of the studies. Such assumptions may lead to inconsistent and misleading results about deferral values, loss reduction, payback period, and other subsequent calculations. It has been demonstrated that DG planning based on such assumptions would not be effective after implementation. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. A comparative study of real and reactive power loss, real and reactive power intake at the main substation and MVA support provided by installing DG resources for different type of loads models has been performed.

368 citations


Journal ArticleDOI
TL;DR: In this article, a new direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind turbine system is proposed, which eliminates active and reactive power errors within each fixed time period.
Abstract: This paper proposes a new direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind turbine system. The required rotor control voltage, which eliminates active and reactive power errors within each fixed time period, is directly calculated based on stator flux, rotor position, and active and reactive powers and their corresponding errors. No extra power or current control loops are required, simplifying the system design, and improving transient performance. Constant converter switching frequency is achieved that eases the design of the power converter and the ac harmonic filter. Rotor voltage limit during transients is investigated, and a scheme is proposed that prioritizes the active and reactive power control such that one remains fully controlled while the error of the other is reduced. The impact of machine parameter variations on system performance is investigated and found negligible. Simulation results for a 2 MW DFIG system demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, machine parameters, and wind speed

Journal ArticleDOI
TL;DR: In this article, trust region based augmented Lagrangian method (TRALM), step-controlled primal-dual interior point method (SCIPM), and constrained cost variable (CCV) OPF formulation are proposed.
Abstract: The deregulated electricity market calls for robust optimal power flow (OPF) tools that can provide a) deterministic convergence; b) accurate computation of nodal prices; c) support of both smooth and nonsmooth costing of a variety of resources and services, such as real energy, reactive energy, voltages support, etc.; d) full active and reactive power flow modeling of large-scale systems; and e) satisfactory worst-case performance that meets the real-time dispatching requirement. Most prior research on OPF has focused on performance issues in the context of regulated systems, without giving much emphasis to requirements a)-c). This paper discusses the computational challenges brought up by the deregulation and attempts to address them through the introduction of new OPF formulations and algorithms. Trust-region- based augmented Lagrangian method (TRALM), step-controlled primal-dual interior point method (SCIPM), and constrained cost variable (CCV) OPF formulation are proposed. The new formulations and algorithms, along with several existing ones, are tested and compared using large-scale power system models.

Journal ArticleDOI
TL;DR: This paper presents a DFIG control strategy that enhances the standard speed and reactive power control with controllers that can compensate for the problems caused by an unbalanced grid by balancing the stator currents and eliminating torque and reactivePower pulsations.
Abstract: Wind energy is often installed in rural, remote areas characterized by weak, unbalanced power transmission grids. In induction wind generators, unbalanced three-phase stator voltages cause a number of problems, such as overcurrent, unbalanced currents, reactive power pulsations, and stress on the mechanical components from torque pulsations. Therefore, beyond a certain amount of unbalance, induction wind generators are switched out of the network. This can further weaken the grid. In doubly fed induction generators (DFIGs), control of the rotor currents allows for adjustable speed operation and reactive power control. This paper presents a DFIG control strategy that enhances the standard speed and reactive power control with controllers that can compensate for the problems caused by an unbalanced grid by balancing the stator currents and eliminating torque and reactive power pulsations

Journal ArticleDOI
TL;DR: In this paper, the performance of alternative voltage control strategies applied to doubly fed induction generator (DFIG) is investigated for voltage control purposes, using detailed models built in DIgSILENT PowerFactory to illustrate the influence of controllers on transient stability and steady-state operation of the DFIG-based wind plant.
Abstract: This paper explores and compares the performance of alternative voltage control strategies applied to doubly fed induction generator (DFIG) Different combinations of reactive power control of rotor- and grid-side converters are investigated for voltage-control purposes Simulations are performed using detailed models built in DIgSILENT PowerFactory in order to illustrate the influence of controllers on transient stability and steady-state operation of the DFIG-based wind plant This paper also proposes appropriate control strategies for different sets of network operating conditions and topologies Operational limits, such as current margins and pulse-width modulation limits, are also taken into account

Journal ArticleDOI
TL;DR: In this paper, a systematic approach to small-signal modeling of a micro-grid system that includes conventional (rotating machine) and electronically interfaced distributed resource (DR) units is presented.
Abstract: A systematic approach to small-signal modelling of a micro-grid system that includes conventional (rotating machine) and electronically interfaced distributed resource (DR) units is presented here. The proposed approach incorporates fundamental frequency deviations in the overall system model and provides a methodology for the analysis of autonomous micro-grid, which inherently is more prone to frequency changes than the conventional utility grid. The model represents (i) electro-mechanical dynamics of the synchronous machine including the exciter and the governor systems, (ii) dynamics of the voltage-sourced converter and its real/reactive power controllers and (iii) the network dynamics. The model is intended for the controller design/optimisation, evaluation of angle/voltage stability, investigation of torsional dynamics, controller interactions of electronically interfaced DR units and low-frequency power quality issues. Typical results from application of the proposed modelling approach to a study system are presented. The results are qualitatively verified on the basis of the comparison with those obtained from time-domain simulation in the PSCAD/EMTDC environment

Patent
12 Feb 2007
TL;DR: In this article, a power transmission system for wirelessly powering a power harvesting device is described. But the system comprises at least one RF power transmitter, and the system can include an AC power grid, or a DC grid to which the transmitter is electrically connected, and it can include a computer with an antenna or a lighting fixture or a light or battery charging unit or a battery.
Abstract: Disclosed is a power transmission system for wirelessly powering a power harvesting device. The system comprises at least one RF power transmitter. The system includes an AC power grid, or a DC grid to which the transmitter is electrically connected. Also disclosed is an adjustable RF power transmitter for powering wirelessly an RF power harvesting device. Also disclosed is a power transmission system for wirelessly powering an RF power harvesting device. The system can include a computer with an antenna or a lighting fixture or a light or a battery charging unit or a battery. Also disclosed is an apparatus for wirelessly powering a power harvesting device. Also disclosed is a method for wirelessly powering a power harvesting device.

Journal ArticleDOI
TL;DR: In this article, a cooperative harmonic filtering strategy for the interface converters of distributed generation sources is proposed, and a droop control method based on the reactive volt-ampere consumption of harmonics of each interface converter is implemented.
Abstract: Increasing demand for premium electric power, in terms of both quality and reliability, and emerging new energy technologies have led to the development of distributed generation systems Due to rapid penetration of power electronics equipment, many of the loads within distributed generation systems are nonlinear in nature, and the resulting harmonics pollution needs to be addressed This paper proposes a new cooperative harmonic filtering strategy for the interface converters of distributed generation sources A droop control method based on the reactive volt-ampere consumption of harmonics of each interface converter is designed and implemented In this strategy, the overall harmonic filtering workload can be evenly shared without any communications The operation principle is explained in detail Computer simulations and laboratory test results validate the distributed harmonic damping capability of the proposed strategy

Journal ArticleDOI
TL;DR: By their learning capabilities, artificial neural networks are able to take into account time-varying parameters, and thus appreciably improve the performance of traditional compensating methods.
Abstract: In this paper, an efficient and reliable neural active power filter (APF) to estimate and compensate for harmonic distortions from an AC line is proposed. The proposed filter is completely based on Adaline neural networks which are organized in different independent blocks. We introduce a neural method based on Adalines for the online extraction of the voltage components to recover a balanced and equilibrated voltage system, and three different methods for harmonic filtering. These three methods efficiently separate the fundamental harmonic from the distortion harmonics of the measured currents. According to either the Instantaneous Power Theory or to the Fourier series analysis of the currents, each of these methods are based on a specific decomposition. The original decomposition of the currents or of the powers then allows defining the architecture and the inputs of Adaline neural networks. Different learning schemes are then used to control the inverter to inject elaborated reference currents in the power system. Results obtained by simulation and their real-time validation in experiments are presented to compare the compensation methods. By their learning capabilities, artificial neural networks are able to take into account time-varying parameters, and thus appreciably improve the performance of traditional compensating methods. The effectiveness of the algorithms is demonstrated in their application to harmonics compensation in power systems

Journal ArticleDOI
TL;DR: In this article, a series dynamic braking resistor (SDBR) is proposed to dissipate active power and boost generator voltage, potentially displacing the need for pitch control and dynamic reactive power compensation.
Abstract: Fault ride-through (FRT) is required for large wind farms in most power systems. Fixed speed wind turbines (FSWTs) are a diminishing but significant sector in the fast-growing wind turbine (WT) market. State-of-art techniques applied to meet grid requirements for FSWT wind farms are blade pitching and dynamic reactive power compensation (RPC). Blade pitching is constrained by the onerous mechanical loads imposed on a wind turbine during rapid power restoration. Dynamic RPC is constrained by its high capital cost. These present technologies can therefore be limiting, especially when connecting to smaller power systems. A novel alternative technology is proposed that inserts series resistance into the generation circuit. The series dynamic braking resistor (SDBR) dissipates active power and boosts generator voltage, potentially displacing the need for pitch control and dynamic RPC. This paper uses a representative wind farm model to study the beneficial effect of SDBR compared to dynamic RPC. This is achieved by quasi-steady-state characterization and transient FRT stability simulations. The analysis shows that SDBR can substantially improve the FRT performance of a FSWT wind farm. It also shows that a small resistance, inserted for less than one

Journal ArticleDOI
TL;DR: Various objectives of reactive power planning are reviewed and various optimization models, identified as optimal power flow model, security-constrained OPF model, and SCOPF with voltage-stability consideration are discussed.
Abstract: The key of reactive power planning (RPP), or Var planning, is the optimal allocation of reactive power sources considering location and size. Traditionally, the locations for placing new Var sources were either simply estimated or directly assumed. Recent research works have presented some rigorous optimization-based methods in RPP. This paper will first review various objectives of RPP. The objectives may consider many cost functions such as variable Var cost, fixed Var cost, real power losses, and fuel cost. Also considered may be the deviation of a given voltage schedule, voltage stability margin, or even a combination of different objectives as a multi-objective model. Secondly, different constraints in RPP are discussed. These different constraints are the key of various optimization models, identified as optimal power flow (OPF) model, security-constrained OPF (SCOPF) model, and SCOPF with voltage-stability consideration. Thirdly, the optimization-based models will be categorized as conventional algorithms, intelligent searches, and fuzzy set applications. The conventional algorithms include linear programming, nonlinear programming, mixed-integer nonlinear programming, etc. The intelligent searches include simulated annealing, evolutionary algorithms, and tabu search. The fuzzy set applications in RPP address the uncertainties in objectives and constraints. Finally, this paper will conclude the discussion with a summary matrix for different objectives, models, and algorithms.

Patent
01 May 2007
TL;DR: In this article, a computer-implemented system for assessing economic value of a vehicle to grid arrangement includes a computer circuit configured to calculate a total revenue amount due to providing one or more of peak power, spinning reserves, and regulation services.
Abstract: A method for calculating power available for sale from an electric vehicle to an electric power market on a grid includes determining maximum DC power available from the electric vehicle; determining an electrical conversion efficiency related to a conversion of DC power from the electric vehicle to AC power; accounting for a time period in which the DC power is available from the electric vehicle; and calculating the power available for sale from the electric vehicle. A method of assessing economic value of a vehicle to grid arrangement includes calculating a total revenue amount due to providing one or more of peak power, spinning reserves, and regulation services; calculating a cost for each of producing energy, degradation due to wear, and annualized capitalization; summing the calculated costs; and determining the economic value of the vehicle to grid arrangement by comparing the summed calculated costs to the total revenue amount. A computer-implemented system for assessing economic value of a vehicle to grid arrangement includes a computer circuit configured to calculate a total revenue amount due to providing one or more of peak power, spinning reserves, and regulation services; calculate a cost for each of producing energy, degradation due to wear, and annualized capitalization; sum the calculated costs; and determine the economic value of the vehicle to grid arrangement by comparing the summed calculated costs to the total revenue amount.

Journal ArticleDOI
15 Oct 2007
TL;DR: In this paper, a droop control technique for imbalance compensation within the three-phase AC distributed generation system is proposed for micro-grid converters, which allows even sharing of imbalance current among various converters.
Abstract: Distributed generation has attracted great attention in recent years, thanks to the progress in new generation technologies and advanced power electronics. The Micro-grid has been a successful example by integrating various generation sources with the existing power distribution network through power electronics converters. The Micro-grid converters are required to operate in a de-centralized fashion, and the power- frequency droop control and reactive power-voltage droop control have been adopted for this purpose. In this paper, a droop control technique for imbalance compensation within the three- phase AC distributed generation system is proposed for Micro- grid converters. The proposed technique allows even sharing of imbalance current among various converters, can be seamlessly integrated with existing active power-frequency droop control and reactive power-voltage droop control to improve the power quality within the distributed power system. Its control functionalities are discussed, simulation and laboratory test results are also presented to validate the proposed method.

Journal ArticleDOI
TL;DR: In this article, an unbalanced three-phase load flow algorithm that can handle multiple sources is described, which is capable of switching the DG mode of operation from constant voltage to constant power factor.
Abstract: With the increased installations of distributed generators (DGs) within power systems, load flow analysis of distribution systems needs special models and algorithms to handle multiple sources. In this paper, the development of an unbalanced three-phase load flow algorithm that can handle multiple sources is described. This software is capable of switching the DG mode of operation from constant voltage to constant power factor. The algorithm to achieve this in the presence of multiple DGs is proposed. Shipboard power systems (SPS) have other special characteristics apart from multiple sources, which make the load flow difficult to converge. The developed software is verified for a distribution system without DG using the Radial Distribution Analysis Package (RDAP). The developed software analyzes an IEEE test case and an icebreaker ship system. System studies for the IEEE 37-node feeder without the regulator show the effect of different models and varying DG penetration related to the increase in loading. System losses and voltage deviations are compared.

Journal ArticleDOI
TL;DR: An all-digital approach based on a particular repetitive control technique for odd-harmonic discrete-time periodic references and disturbances is used for the current control loops of the active filter to improve robustness of the controlled system.
Abstract: Shunt active power filters have been proved as useful elements to correct distorted currents caused by nonlinear loads in power distribution systems. This paper presents an all-digital approach based on a particular repetitive control technique for their control. Specifically, a digital repetitive plug-in controller for odd-harmonic discrete-time periodic references and disturbances is used for the current control loops of the active filter. This approach does not introduce a high gain at those frequencies for which it is not needed and, thus, improves robustness of the controlled system. The active power balance of the whole system is assured by an outer control loop, which is designed from an energy-balancing perspective. The design is performed for a three-phase four-wire shunt active filter with a full-bridge boost topology. Several experimental results are also presented to show the good behavior of the closed-loop system

Journal ArticleDOI
TL;DR: In this paper, a radial distribution probabilistic load flow (PLF) program that has been developed by using Monte Carlo techniques has been used to solve the load flow problem in distribution networks with photovoltaic (PV) DG.

Journal ArticleDOI
TL;DR: In this paper, a shunt active power filter based on a pulsewidth modulation dc-to-ac voltage source converter has been designed to compensate harmonic currents of nonlinear loads connected to the mains.
Abstract: This paper presents the detailed design, analysis, and application of the controller for a shunt active power filter based on a pulsewidth modulation dc-to-ac voltage source converter. The controller is mainly tailored to compensate harmonic currents of nonlinear loads connected to the mains. However, it can also achieve reactive-power compensation and mains-current balancing when required. The controller has a two-layer structure. The outer layer generates the current references for the inner layer. The former uses a plug-in discrete-time repetitive algorithm for current-harmonic compensation, a proportional-integral algorithm to maintain the dc-capacitor voltage in spite of unmodeled losses and a reactive-power-reference generator. The inner layer uses state-feedback with integral action for current control. The repetitive controller is justified to improve the tracking of the periodic current references required by the active filters. The stability of the resulting closed-loop system is studied and some indication of the system robustness is given. The proposed controller has been tested in a prototype with balanced and unbalanced nonlinear loads. A discrete-time model of the filter has been used from the beginning. The microcomputer delay when calculating the controller output and the delay due to the anti-aliasing filters have been included in the inner system state-variable model

Journal ArticleDOI
TL;DR: In this paper, the p-q theory was proposed to define instantaneous active and reactive power in three-phase circuits for arbitrary voltage and current waveforms without any restriction, which is called the instantaneous reactive power theory.
Abstract: The conventional theory of active and reactive power in single-phase or three-phase systems is based on an average value concept, thus making it impossible to define instantaneous active and reactive power in a real sense. On the basis of an instantaneous value concept, the authors have already proposed a new definition of instantaneous active and reactive power in three-phase circuits for arbitrary voltage and current waveforms without any restriction. This is called the instantaneous reactive power theory or the p-q theory, which is considered a basic theory of active power line conditioners such as reactive power compensators and active power filters for harmonic compensation

Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of current-source and voltage-source active power filters with different kinds of nonlinear load and the power losses of the active filters.
Abstract: In recent years, active power filters have been widely studied. The research has mainly concentrated on voltage-source active filters, but some attention has also been paid to an alternative-to current-source active filters. Since voltage-source pulsewidth modulation (PWM) technology is widely used in industrial applications, this has also been more common in active filter use. In addition, current-source technology has been said to have drawbacks compared to voltage-source systems, such as high on-state losses in the PWM bridge and inefficient inductive energy storage element on the dc side of the bridge. In the paper, the two active filter topologies are compared. First, the main circuits and space-vector modulation techniques used are studied and the digital control systems are presented. The filtering performances of the systems with different kinds of nonlinear load are examined and finally the power losses of the active filters are studied. The comparison is based on measurements with the prototypes built. The results clearly show the properties of the active filters examined. In addition, the results prove that current-source active filters also offer a considerable choice for harmonic filtering

Journal ArticleDOI
TL;DR: An analytical express for the optimal frequency of a coil in terms of the design parameters is presented and it is shown to be useful in optimizing coil Index performance.
Abstract: This paper describes the ac power dissipation of coils as well as their self-capacitance, self-resonant frequency, and quality factor Q. In the past, self-resonant frequency was rarely calculated during design because of the lack of suitable closed-form design equations. However, coils are widely used in biomedical applications as inductive links for both power and data, and the power transfer capacity and the data rate of inductive links are determined by the operating frequency of the coils. The maximum operating frequency is limited by the self-resonant frequency of the coil. We present here an analytical express for the optimal frequency of a coil in terms of the design parameters. By varying the design parameters, we can move the optimal frequency close to the operating frequency, thereby boosting the efficiency of the inductive link. We have verified the derivation experimentally and shown it to be useful in optimizing coil Index performance.

Journal ArticleDOI
TL;DR: In this article, the ability of three interior-point (IP) based algorithms, namely the pure primal-dual (PD), the predictor-corrector (PC) and the multiple centrality corrections (MCC), to solve various classical OPF problems: minimization of overall generation cost, minimisation of active power losses, maximization of power system loadability and minimizing the amount of load curtailment.