scispace - formally typeset
Search or ask a question

Showing papers on "AC power published in 2015"


Journal ArticleDOI
TL;DR: This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers.
Abstract: Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional voltage source, current source as well as various classical buck-boost, unidirectional, and bidirectional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the system power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance-source converters/inverters will be presented in Part II.

601 citations


Journal ArticleDOI
TL;DR: In this paper, a distributed controller for secondary frequency and voltage control in islanded microgrids is proposed, which uses localized information and nearest-neighbor communication to collectively perform secondary control actions.
Abstract: In this paper, we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive tradeoff between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances, or loads. The distributed architecture allows for flexibility and redundancy, eliminating the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.

600 citations


Journal ArticleDOI
TL;DR: In this paper, restorations for both voltage and frequency in the droop-controlled inverter-based islanded microgrid (MG) are addressed and a consensus-based distributed frequency control is proposed for frequency restoration, subject to certain control input constraints.
Abstract: In this paper, restorations for both voltage and frequency in the droop-controlled inverter-based islanded microgrid (MG) are addressed. A distributed finite-time control approach is used in the voltage restoration which enables the voltages at all the distributed generations (DGs) to converge to the reference value in finite time, and thus, the voltage and frequency control design can be separated. Then, a consensus-based distributed frequency control is proposed for frequency restoration, subject to certain control input constraints. Our control strategies are implemented on the local DGs, and thus, no central controller is required in contrast to existing control schemes proposed so far. By allowing these controllers to communicate with their neighboring controllers, the proposed control strategy can restore both voltage and frequency to their respective reference values while having accurate real power sharing, under a sufficient local stability condition established. An islanded MG test system consisting of four DGs is built in MATLAB to illustrate our design approach, and the results validate our proposed control strategy.

538 citations


Journal ArticleDOI
TL;DR: A state-feedback quasi-static SRF-PLL model is proposed, which can identify and quantify the inherent frequency self-synchronization mechanism in the converter control system and explain the PLL instability issues and the related islanding-detection methods in early publications and industry reports.
Abstract: Synchronous reference frame (SRF) phase-locked loop (PLL) is a critical component for the control and grid synchronization of three-phase grid-connected power converters. The PLL behaviors, especially its low-frequency dynamics, influenced by different grid and load impedances as well as operation mode have not been investigated yet, which may not be captured by conventional linear PLL models. In this paper, we propose a state-feedback quasi-static SRF-PLL model, which can identify and quantify the inherent frequency self-synchronization mechanism in the converter control system. This self-synchronization effect is essentially due to the converter interactions with grid impedance and power flow directions. The low-frequency nonlinear behaviors of the PLL under different grid impedance conditions are then analyzed, which forms the framework of evaluating the impacts of the large penetration level of distributed generation units, weak grid, microgrid, and large reactive power consumption in terms of the frequency stability of PLL. Specifically, the PLL behavior of the converter system under islanded condition is investigated to explain the PLL instability issues and the related islanding-detection methods in early publications and industry reports.

482 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network.
Abstract: Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory’s WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

398 citations


Journal ArticleDOI
TL;DR: In this article, a detailed review of a vehicle-to-grid (V2G) technology, in conjunction with various charging strategies of electric vehicles (EVs), and analyzes their impacts on power distribution networks is presented.

396 citations


Journal ArticleDOI
TL;DR: In this article, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of power sharing in an islanded microgrid, where the communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders.
Abstract: In this paper, a reactive power sharing strategy that employs communication and the virtual impedance concept is proposed to enhance the accuracy of reactive power sharing in an islanded microgrid. Communication is utilized to facilitate the tuning of adaptive virtual impedances in order to compensate for the mismatch in voltage drops across feeders. Once the virtual impedances are tuned for a given load operating point, the strategy will result in accurate reactive power sharing even if communication is disrupted. If the load changes while communication is unavailable, the sharing accuracy is reduced, but the proposed strategy will still outperform the conventional droop control method. In addition, the reactive power sharing accuracy based on the proposed strategy is immune to the time delay in the communication channel. The sensitivity of the tuned controller parameters to changes in the system operating point is also explored. The control strategy is straightforward to implement and does not require knowledge of the feeder impedances. The feasibility and effectiveness of the proposed strategy are validated using simulation and experimental results from a 2-kVA microgrid.

376 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed four basic IPT circuits with series-series (SS), series-parallel (SP), parallel series (PS), and parallel parallel (PP) compensations systematically to identify conditions for realizing load-independent output current or voltage, as well as resistive input impedance.
Abstract: The inductive power transfer (IPT) technique in battery charging applications has many advantages compared to conventional plug-in systems. Due to the dependencies on transformer characteristics, loading profile, and operating frequency of an IPT system, it is not a trivial design task to provide the battery the required constant charging current (CC) or constant battery charging voltage (CV) efficiently under the condition of a wide load range possibly defined by the charging profile. This paper analyzes four basic IPT circuits with series–series (SS), series–parallel (SP), parallel–series (PS), and parallel–parallel (PP) compensations systematically to identify conditions for realizing load-independent output current or voltage, as well as resistive input impedance. Specifically, one load-independent current output circuit and one load-independent voltage output circuit having the same transformer, compensating capacitors, and operating frequency can be readily combined into a hybrid topology with fewest additional switches to facilitate the transition from CC to CV. Finally, hybrid topologies using either SS and PS compensation or SP and PP compensation are proposed for battery charging. Fixed-frequency duty cycle control can be easily implemented for the converters.

342 citations


Journal ArticleDOI
TL;DR: The proposed reduced OSS-DPC algorithm belongs to the predictive-D PC family and provides the desired power references by calculating globally OSSs and has the potential to provide high performance during both transient and steady states.
Abstract: Grid-connected power converters play a key role in several applications such as the integration of renewable energy sources and motor drives. For this reason, the development of high performance control strategies for this particular class of power converters has increasingly attracted the interest of both academic and industry researchers. This paper presents the predictive optimal switching sequence (OSS) direct power control (DPC) (OSS-DPC) algorithm for grid-connected converters. The OSS-DPC method belongs to the predictive-DPC family and provides the desired power references by calculating globally OSSs. To address computational and implementation issues, an efficient control algorithm, named reduced OSS-DPC, is introduced. The implementation of the proposed control strategy in a standard DSP is evaluated on a two-level power converter prototype working as a STATCOM. Experimental results show the algorithm's potential to provide high performance during both transient and steady states.

329 citations


Journal ArticleDOI
TL;DR: This paper provides sufficient conditions under which the optimization problem can be solved via its convex relaxation, and demonstrates the operation of the algorithm, including its robustness against communication link failures, through several case studies involving 5-, 34-, and 123-bus power distribution systems.
Abstract: This paper addresses the problem of voltage regulation in power distribution networks with deep-penetration of distributed energy resources, e.g., renewable-based generation, and storage-capable loads such as plug-in hybrid electric vehicles. We cast the problem as an optimization program, where the objective is to minimize the losses in the network subject to constraints on bus voltage magnitudes, limits on active and reactive power injections, transmission line thermal limits and losses. We provide sufficient conditions under which the optimization problem can be solved via its convex relaxation. Using data from existing networks, we show that these sufficient conditions are expected to be satisfied by most networks. We also provide an efficient distributed algorithm to solve the problem. The algorithm adheres to a communication topology described by a graph that is the same as the graph that describes the electrical network topology. We illustrate the operation of the algorithm, including its robustness against communication link failures, through several case studies involving 5-, 34-, and 123-bus power distribution systems.

314 citations


Journal ArticleDOI
TL;DR: In this paper, a backtracking search optimization algorithm (BSOA) is addressed to assign the distributed generators (DGs) along radial distribution networks, which is adapted with weighting factor to reduce the network real loss and enhance the voltage profile with the purpose of improving the operating performance.

Journal ArticleDOI
TL;DR: In this article, an online virtual impedance adjustment is proposed to address inaccurate power sharing problems in autonomous islanding microgrids, where a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power-frequency droop control to realize DG series virtual impedance tuning.
Abstract: To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through online virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power-frequency droop control. The transient real power variations caused by this term are captured to realize DG series virtual impedance tuning. With the regulation of DG virtual impedance at fundamental positive sequence, fundamental negative sequence, and harmonic frequencies, an accurate power sharing can be realized at the steady state. In order to activate the compensation scheme in multiple DG units in a synchronized manner, a low-bandwidth communication bus is adopted to send the compensation command from a microgrid central controller to DG unit local controllers, without involving any information from DG unit local controllers. The feasibility of the proposed method is verified by simulated and experimental results from a low-power three-phase microgrid prototype.

Journal ArticleDOI
01 Jul 2015
TL;DR: The results of this research show that GWO is able to achieve less power loss and voltage deviation than those determined by other techniques.
Abstract: Gray wolf optimizer (GWO) is employed in solving the optimal reactive power dispatch (ORPD) problems.Three case studies have been utilized to show the effectiveness of GWO.GWO able to find minimum loss and voltage deviation solution than those determined by other techniques. This paper presents the use of a new meta-heuristic technique namely gray wolf optimizer (GWO) which is inspired from gray wolves' leadership and hunting behaviors to solve optimal reactive power dispatch (ORPD) problem. ORPD problem is a well-known nonlinear optimization problem in power system. GWO is utilized to find the best combination of control variables such as generator voltages, tap changing transformers' ratios as well as the amount of reactive compensation devices so that the loss and voltage deviation minimizations can be achieved. In this paper, two case studies of IEEE 30-bus system and IEEE 118-bus system are used to show the effectiveness of GWO technique compared to other techniques available in literature. The results of this research show that GWO is able to achieve less power loss and voltage deviation than those determined by other techniques.

Journal ArticleDOI
TL;DR: The design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery is presented.
Abstract: This paper presents the design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery. The topology consists of two-stages: a full-bridge ac-dc boost converter; and a half-bridge bidirectional dc-dc converter. The charger operates in two quadrants in the active-reactive power (PQ) power plane with five different operation modes (i.e., charging-only, charging-capacitive, charging-inductive, capacitive-only, and inductive-only). This paper also presents a unified controller to follow utility PQ commands in a smart grid environment. The cascaded two-stage system controller receives active and reactive power commands from the grid, and results in line current and battery charging current references while also providing a stable dynamic response. The vehicle's battery is not affected during reactive power operation in any of the operation modes. Testing the unified system controller with a 1.44 kVA experimental charger design demonstrates the successful implementation of reactive power support functionality of PEVs for future smart grid applications.

Journal ArticleDOI
TL;DR: A unified energy management scheme is proposed for renewable grid integrated systems with battery-supercapacitor hybrid storage that enables the real power transfer along with ancillary services such as current harmonic mitigation, reactive power support, and power factor improvement at the point of common coupling.
Abstract: In this paper, a unified energy management scheme is proposed for renewable grid integrated systems with battery–supercapacitor hybrid storage. The intermittent nature of renewable-energy resources (RES), coupled with the unpredictable changes in the load, demands high-power and high-energy-density storage systems to coexist in today's microgrid environment. The proposed scheme dynamically changes the modes of renewable integrated systems based on the availability of RES power and changes in load as well. The participation of battery–supercapacitor storage to handle sudden/average changes in power surges results in fast dc link voltage regulation, effective energy management, and reduced current stress on battery. In addition, the proposed energy management scheme enables the real power transfer along with ancillary services such as current harmonic mitigation, reactive power support, and power factor improvement at the point of common coupling. The proposed scheme is validated through both simulation and experimental studies.

Journal ArticleDOI
TL;DR: A reference generator capable to accomplish these two objectives: to keep the injected currents within safety values and to compute the power references for a better utilization of the inverter power capacity is presented.
Abstract: Distributed generation inverters have become a key element to improve grid efficiency and reliability, particularly during grid faults. Under these severe perturbations, inverter-based power sources should accomplish low-voltage ride-through requirements in order to keep feeding the grid and support the grid voltage. Also, rated current can be required to better utilize reactive power provisions. This paper presents a reference generator capable to accomplish these two objectives: to keep the injected currents within safety values and to compute the power references for a better utilization of the inverter power capacity. The reference generator is fully flexible since positive and negative active and reactive powers can be simultaneously injected to improve ride-through services. Selected experimental results are reported to evaluate the performance of the proposed reference generator under different control strategies.

Journal ArticleDOI
TL;DR: Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other.
Abstract: We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from duality-based methods applied to the optimal reactive power flow problem. Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other. Simulations are provided in order to illustrate the performance and the robustness of the algorithm, and the innovative feedback nature of such strategy is discussed.

Journal ArticleDOI
Hua Han1, Yao Liu1, Yao Sun1, Mei Su1, Josep M. Guerrero2 
TL;DR: In this article, an improved droop control method was proposed to improve the reactive power sharing accuracy, which mainly includes two important operations: error reduction operation and voltage recovery operation, which is activated by the low-bandwidth synchronization signals.
Abstract: For microgrid in islanded operation, due to the effects of mismatched line impedance, the reactive power could not be shared accurately with the conventional droop method. To improve the reactive power sharing accuracy, this paper proposes an improved droop control method. The proposed method mainly includes two important operations: error reduction operation and voltage recovery operation. The sharing accuracy is improved by the sharing error reduction operation, which is activated by the low-bandwidth synchronization signals. However, the error reduction operation will result in a decrease in output voltage amplitude. Therefore, the voltage recovery operation is proposed to compensate the decrease. The needed communication in this method is very simple, and the plug-and-play is reserved. Simulations and experimental results show that the improved droop controller can share load active and reactive power, enhance the power quality of the microgrid, and also have good dynamic performance.

Journal ArticleDOI
TL;DR: In this paper, the most interesting topologies of hybrid ac/dc microgrids based on the interconnection of the ac and dc networks and the conventional power network are discussed.
Abstract: Microgrids have been widely studied in the literature as a possible approach for the integration of distributed energy sources with energy storage systems in the electric network. Until now the most used configuration has been the ac microgrid, but dc-based microgrids are gaining interest due to the advantages they provide over their counterpart (no reactive power, no synchronization, increasing number of dc devices, etc.). Therefore, hybrid ac/dc microgrids are raising as an optimal approach as they combine the main advantages of ac and dc microgrids. This paper reviews the most interesting topologies of hybrid ac/dc microgrids based on the interconnection of the ac and dc networks and the conventional power network. After performing a description and analysis of each configuration, a comparative evaluation has been performed to highlight the most important features of each one. The future trends identified during the study also show that several features such as the scalability, modeling or design require further research towards the integration of hybrid microgrids in the power network.

01 Jan 2015
TL;DR: In this paper, a directional control method for power flows on a set of interface lines between two regions of power system considering static voltage stability margin is developed, where a surface approximation approach is firstly used to obtain the relationship between the interface flow solution and the generation direction of generator (the portion of generation variation in each participating generator to satisfy the desired power increase on the interface and the system loss).
Abstract: A directional control method (DCM) for power flows on a set of interface lines between two regions of power system considering static voltage stability margin is developed in this paper. A surface approximation approach is firstly used to obtain the relationship between the interface flow solution and the generation direction of generator (the portion of generation variation in each participating generator to satisfy the desired power increase on the interface and the system loss). Then, an optimization model is built to determine the optimum dispatching scheme of generators. This method not only can control the total power on the interface to satisfy the power demand but also can realize the directional control of power on each interface line based on the needs of operation. The proposed DCM is further extended to determine the optimum dispatching scheme of generators for maximizing the interface flow margin (IFM), which is the active power margin of the key transmission lines between two regions of power system constrained by static voltage stability. A modified continuation power flow (MCPF) is used to show and evaluate the impacts of the DCM on the IFM. The New England 39-bus system and the IEEE 300-bus system have been employed to verify the effectiveness of the DCM.


Journal ArticleDOI
TL;DR: In this article, a general and systematic comparison of eight compensation schemes in the inductive power transfer system (IPTS) of single magnetic coupling and two capacitors is proposed in terms of maximum efficiency, maximum power transfer, load-independent output voltage or current, magnetic coupling coefficient (k ) independency, and allowance of no magnetic coupling ( $k = 0$ ).
Abstract: A general and systematic comparison of eight compensation schemes in the inductive power transfer system (IPTS) of single magnetic coupling and two capacitors is proposed in this paper. The characteristics of series–series (SS), series–parallel (SP), parallel–series (PS), and parallel–parallel (PP) compensation schemes for a voltage source or a current source are widely explored in terms of maximum efficiency, maximum power transfer, load-independent output voltage or current, magnetic coupling coefficient ( k ) independency, and allowance of no magnetic coupling ( $k = 0$ ). Through comparative analyses using a general unified IPTS model, the current-source-type SS and SP are found to be superior to other compensation schemes in terms of the five criteria mentioned above, and they are found to have nearly the same efficiency, load power, and component stress characteristics for the same load quality factor. A design guideline for the current­-source-type SS and SP is suggested and experimentally verified by a 200-W prototype of air coils at 100 kHz.

Journal ArticleDOI
TL;DR: New distributed controllers for secondary frequency and voltage control in islanded microgrids Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions.
Abstract: In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.

Journal ArticleDOI
TL;DR: In this paper, a generalized voltage droop (GVD) control strategy for dc voltage control and power sharing in voltage source converter (VSC)-based multiterminal dc (MTDC) grids is proposed.
Abstract: This paper proposes a generalized voltage droop (GVD) control strategy for dc voltage control and power sharing in voltage source converter (VSC)-based multiterminal dc (MTDC) grids The proposed GVD control is implemented at the primary level of a two-layer hierarchical control structure of the MTDC grid, and constitutes an alternative to the conventional voltage droop characteristics of voltage-regulating VSC stations, providing higher flexibility and, thus, controllability to these networks As a difference with other methods, the proposed GVD control strategy can be operated in three different control modes, including conventional voltage droop control, fixed active power control, and fixed dc voltage control, by adjusting the GVD characteristics of the voltage-regulating converters Such adjustment is carried out in the secondary layer of the hierarchical control structure The proposed strategy improves the control and power-sharing capabilities of the conventional voltage droop, and enhances its maneuverability The simulation results, obtained by employing a CIGRE B4 dc grid test system, demonstrate the efficiency of the proposed approach and its flexibility in active power sharing and power control as well as voltage control In these analysis, it will be also shown how the transitions between the operating modes of the GVD control does not give rise to active power oscillations in the MTDC grids

Journal ArticleDOI
TL;DR: In this article, an advanced vector current control for a voltage source converter (VSC) connected to a weak grid is proposed, which permits high-performance regulation of the active power and the voltage for the feasible VSC range of operation.
Abstract: This paper addresses an advanced vector current control for a voltage source converter (VSC) connected to a weak grid. The proposed control methodology permits high-performance regulation of the active power and the voltage for the feasible VSC range of operation. First, the steady state characteristics for a power converter connected to a very weak system with a short circuit ratio (SCR) of 1 are discussed in order to identify the system limits. Then, the conventional vector control (inner loop) and the conventional power/voltage control (outer loop) stability and frequency responses are analyzed. From the analysis of the classic structure, an enhanced outer loop based on a decoupled and gain-scheduling controller is presented and its stability is analyzed. The proposed control is validated by means of dynamic simulations and it is compared with classic vector current control. Simulation results illustrate that the proposed control system could provide a promising approach to tackle the challenging problem of VSC in connection with weak AC grids.

Journal ArticleDOI
TL;DR: In this paper, the impact of doubly fed induction generator (DFIG) control and operation on rotor angle stability was investigated and a control strategy for both the rotor-side converter (RSC) and grid side converter (GSC) of the DFIG was proposed to mitigate DFIGs impacts on the system stability.
Abstract: With the integration of wind power into power systems continues to increase, the impact of high penetration of wind power on power system stability becomes a very important issue. This paper investigates the impact of doubly fed induction generator (DFIG) control and operation on rotor angle stability. Acontrol strategy for both the rotor-side converter (RSC) and grid-side converter (GSC) of the DFIG is proposed to mitigate DFIGs impacts on the system stability. DFIG-GSC is utilized to be controlled as static synchronous compensator (STATCOM) to provide reactive power support during grid faults. In addition, a power system stabilizer (PSS) is implemented in the reactive power control loop of DFIG-RSC. The proposed approaches are validated on a realistic Western System Coordinating Council (WSCC) power system under both small and large disturbances. The simulation results show the effectiveness and robustness of both DFIG-GSC control strategy and PSS to enhance rotor angle stability of power system.

Journal ArticleDOI
TL;DR: The proposed FORC offers fast online tuning of the FD and the fast update of the coefficients, and then provides APFs with a simple but very accurate real-time frequency-adaptive control solution to the elimination of harmonic distortions under grid frequency variations.
Abstract: Repetitive control (RC), which can achieve zero steady-state error tracking of any periodic signal with known integer period, offers active power filters (APFs) a promising accurate current control scheme to compensate the harmonic distortion caused by nonlinear loads. However, classical RC cannot exactly compensate periodic signals of variable frequency and would lead to significant performance degradation of APFs. In this paper, a fractional-order RC (FORC) strategy at a fixed sampling rate is proposed to deal with any periodic signal of variable frequency, where a Lagrange-interpolation-based fractional delay (FD) filter is used to approximate the factional delay items. The synthesis and analysis of FORC systems are also presented. The proposed FORC offers fast online tuning of the FD and the fast update of the coefficients, and then provides APFs with a simple but very accurate real-time frequency-adaptive control solution to the elimination of harmonic distortions under grid frequency variations. A case study on a single-phase shunt APF is conducted. Experimental results are provided to demonstrate the validity of the proposed FORC.

Journal ArticleDOI
Biao Zhao1, Qiang Song1, Wenhua Liu1, Liu Guowei, Zhao Yuming 
TL;DR: In this paper, a universal steady-state model was developed to simply and accurately describe the analytical expressions for the highfrequency-link (HFL) electrical quantities of isolated dual-active-bridge (DAB) dc-dc converter under PWM plus phase shift control.
Abstract: This letter first develops a universal steady-state model to simply and accurately describe the analytical expressions for the high-frequency-link (HFL) electrical quantities of isolated dual-active-bridge (DAB) dc–dc converter under PWM plus phase-shift control. Second, a universal reactive power interaction among the HFL electrical quantities is present; using this interaction, the circulating current characteristic of DAB can be described accurately by HFL power factor. On this basis, a practical HFL fundamental-optimal strategy is proposed to decrease the circulating current and increase the efficiency. At last, experimental results verify the correctness of the universal model and the effectiveness of the fundamental-optimal strategy.

Journal ArticleDOI
TL;DR: In this paper, a decoupled active and reactive power control strategy was proposed to enhance system operation performance in large-scale grid-connected photovoltaic (PV) systems.
Abstract: Large-scale grid-connected photovoltaic (PV) systems significantly contribute to worldwide renewable energy growth and penetration, which has inspired the application of cascaded modular multilevel converters due to their unique features such as modular structures, enhanced energy harvesting capability, scalability and so on However, power distribution and control in the cascaded PV system faces tough challenge on output voltage overmodulation when considering the varied and nonuniform solar energy on segmented PV arrays This paper addresses this issue and proposes a decoupled active and reactive power control strategy to enhance system operation performance The relationship between output voltage components of each module and power generation is analyzed with the help of a newly derived vector diagram which illustrates the proposed power distribution principle On top of this, an effective control system including active and reactive components extraction, voltage distribution and synthesization, is developed to achieve independent active and reactive power distribution and mitigate the aforementioned issue Finally, a 3-MW, 12-kV PV system with the proposed control strategy is modeled and simulated in MATLAB and PSIM cosimulation platform A downscaled PV system including two cascaded 5-kW converters with proposed control strategy is also implemented in the laboratory Simulation and experimental results are provided to demonstrate the effectiveness of the proposed control strategy for large-scale grid-connected cascaded PV systems

Journal ArticleDOI
TL;DR: A control scheme for the dynamic performance improvement of an AC/DC converter using the model predictive direct power control (MPDPC) with a duty cycle to minimize the decline of the system dynamics that is caused by the mutual interference.
Abstract: This paper presents a control scheme for the dynamic performance improvement of an AC/DC converter using the model predictive direct power control (MPDPC) with a duty cycle. In the MPDPC, the active and reactive power is simultaneously controlled with a single cost function. If either of the two control targets has a large power variation, the control weight is concentrated on one side, which causes mutual interference. Because of such mutual interference, the control dynamics of the AC/DC converter deteriorates. Due to the control weight being concentrated on one side using the single cost function, even if the control dynamics of the other side decreases, the dynamic performance of the system is improved by reconfiguring the cost function that has the weighting factor to minimize the decline of the system dynamics that is caused by the mutual interference. The effectiveness of the proposed control scheme is verified by comparing its results with those of the conventional MPDPC. The results are obtained through the simulations and experiments.