scispace - formally typeset
Search or ask a question
Topic

Acacetin

About: Acacetin is a research topic. Over the lifetime, 442 publications have been published within this topic receiving 10458 citations. The topic is also known as: 5,7-Dihydroxy-2-(4-methoxyphenyl)-4-benzopyrone & Linarigenin.


Papers
More filters
Journal ArticleDOI
TL;DR: Out of the 30 flavonoids tested, 7 significantly inhibited CYP3A4, most prominent being acacetin that inhibited 95% of enzyme activity at 1 µM concentration, and Apigenin showed reversible inhibition, acacetIn, and chrysin showed combined irreversible and reversible inhibition while tangeretin showed pure irreversible inhibition.
Abstract: Flavonoids are natural compounds that have been extensively studied due to their positive effects on human health. There are over 4000 flavonoids found in higher plants and their beneficial effects have been shown in vitro as well as in vivo. However, data on their pharmacokinetics and influence on metabolic enzymes is scarce. The aim of this study was to focus on possible interactions between the 30 most commonly encountered flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. 6β-hydroxylation of testosterone was used as marker reaction of CYP3A4 activity. Generated product was determined by HPLC coupled with diode array detector. Metabolism and time dependence, as well as direct inhibition, were tested to determine if inhibition was reversible and/or irreversible. Out of the 30 flavonoids tested, 7 significantly inhibited CYP3A4, most prominent being acacetin that inhibited 95% of enzyme activity at 1 µM concentration. Apigenin showed reversible inhibition, acacetin, and chrysin showed combined irreversible and reversible inhibition while chrysin dimethylether, isorhamnetin, pinocembrin, and tangeretin showed pure irreversible inhibition. These results alert on possible flavonoid–drug interactions on the level of CYP3A4.

35 citations

Journal ArticleDOI
TL;DR: The antimetastatic effects of acacetin on the TPA-induced A549 cells might be by reducing MMP-2 and u-PA expressions through inhibiting phosphorylation of JNK and reducing NF-kappaB and AP-1 binding activities.
Abstract: Acacetin (5,7-dihydroxy-4'-methoxyflavone), a flavonoid compound, has antiperoxidative and antiinflammatory effects. The effect of acacetin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMPs and u-PA expressions in human lung cancer A549 cells was investigated. First, the result demonstrated acacetin could inhibit TPA-induced the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay and Boyden chamber assay. Data also showed acacetin could inhibit phosphorylation of c-Jun N-terminal kinase 1 and 2 (JNK1/2) involved in the down-regulating protein expressions and transcriptions of matrix metalloproteinase-2 (MMP-2) and urokinase-type plasminogen activator (u-PA) induced by TPA. Next, acacetin also strongly inhibited TPA-stimulated the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1) by acacetin treatment was further observed. Further, the treatment of specific inhibitor for JNK (SP600125) to A549 cells could inhibit TPA-induced MMP-2 and u-PA expressions along with an inhibition on cell invasion and migration. Taken together, these results suggest the antimetastatic effects of acacetin on the TPA-induced A549 cells might be by reducing MMP-2 and u-PA expressions through inhibiting phosphorylation of JNK and reducing NF-kappaB and AP-1 binding activities.

34 citations

Journal ArticleDOI
TL;DR: The binding modes of acacetin at the enzymatic site of MAO-A and -B were predicted through molecular modeling algorithms, illustrating the high importance of ligand interaction with negative and positive free energy regions of the enzyme active site.
Abstract: Calea urticifolia (Asteraceae: Asteroideae) has long been used as a traditional medicine in El Salvador to treat arthritis and fever, among other illnesses. The chloroform extract of the leaves of C. urticifolia showed potent inhibition of recombinant human monoamine oxidases (MAO-A and -B). Further bioassay-guided fractionation led to the isolation of a flavonoid, acacetin, as the most prominent MAO inhibitory constituent, with IC50 values of 121 and 49 nM for MAO-A and -B, respectively. The potency of MAO inhibition by acacetin was >5-fold higher for MAO-A (0.121 μM vs 0.640 μM) and >22-fold higher for MAO-B (0.049 μM vs 1.12 μM) as compared to apigenin, the closest flavone structural analogue. Interaction and binding characteristics of acacetin with MAO-A and -B were determined by enzyme-kinetic assays, enzyme–inhibitor complex binding, equilibrium–dialysis dissociation analyses, and computation analysis. Follow-up studies showed reversible binding of acacetin with human MAO-A and -B, resulting in comp...

34 citations

Journal ArticleDOI
TL;DR: These results provide the first evidence that the vasodilation induced by Z. clinopodioides Lam.

33 citations

Journal ArticleDOI
TL;DR: Conclusions: Acacetin blocks the Kv1.3 channel and inhibits human T cell activation, which most likely contributes to its immunomodulatory and anti-inflammatory actions.
Abstract: Backgrounds/Aims: Acacetin, a natural flavonoid compound, has been proven to exert anti-inflammatory and immunomodulatory effects. Kv1.3 channels, highly expressed in human T cells, are attractive therapeutic targets to treat inflammatory and immunological disorders. The present study was designed to characterize the inhibition of Kv1.3 channels by Acacetin in human T cells and examine its role in T cell activation. Methods: Whole-cell patch-clamp was applied to record the Kv1.3 and KCa currents in human T cells; Western blot was used to detect Kv1.3 expression as well as NFAT1 and NF-κB activity; Fluo-4, CCK-8 and an ELISA kit were used to measure Ca2+ influx, proliferation, and IL-2 secretion, respectively. Results: Acacetin decreased the Kv1.3 current, accelerated the decay rate and negatively shifted the steady-state inactivation curves in a concentration-dependent manner. The IC50 values at +40 mV for peak and the current at end of pulse were 21.09 ± 2.75 and 3.63 ± 0.25 µmol/L, respectively. Treatment with Acacetin for 24 h significantly inhibited Kv1.3 protein expression. Additionally, paralleling Kv1.3 inhibition, Acacetin also inhibited Ca2+ influx, the Ca2+-activated transcription factors NFAT1, NF-κB p65/p50 activity, and proliferation as well as IL-2 production. Small interfering RNA against Kv1.3 reduced the inhibitory effect of Acacetin on IL-2 secretion. Conclusions: Acacetin blocks the Kv1.3 channel and inhibits human T cell activation. This action most likely contributes to its immunomodulatory and anti-inflammatory actions.

33 citations


Network Information
Related Topics (5)
Quercetin
7.7K papers, 333.3K citations
82% related
Chlorogenic acid
6.8K papers, 179.3K citations
80% related
Ginseng
11.3K papers, 151.8K citations
79% related
Kaempferol
5.7K papers, 166.1K citations
78% related
DPPH
30.1K papers, 759.9K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202252
202127
202031
201923
201818