scispace - formally typeset
Search or ask a question
Topic

Acetone

About: Acetone is a research topic. Over the lifetime, 9458 publications have been published within this topic receiving 120867 citations. The topic is also known as: propanone & dimethylketone.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a membrane-based method using nanofiltration (NF) membranes is presented to extract edible oil from soybean oil/solvent mixtures at various separation pressures and constant temperature in a dead-end filtration set up.
Abstract: The extraction stage of edible oil in the oil industry is commonly performed by using toxic solvents (e.g. hexane) and processes with high energy consumption (e.g. distillation, evaporation) to recover the solvent, which represents around 70–75 wt% in the oil–solvent mixture. In this paper, a membrane-based extraction method using nanofiltration (NF) membranes is presented. Commercial nanofiltration membranes made of different polymers (Desal-DK-polyamide NF from GE-osmonics®, NF30 polyethersulfone NF from Nadir®, STARMEMTM122 polyimide from MET® and SOLSEP NF030306 silicone base polymer SOLESP®) were selected and tested to recover the solvent from soybean oil/solvent (10–20–30% w/w oil) mixtures at various separation pressures and constant temperature in a dead-end filtration set up. The selection of the solvent was made in order to compare solvents obtainable from renewable resources, such as ethanol, iso-propanol and acetone, with solvents traditionally used in the industry (i.e. cyclohexane and n-hexane). The structural stability of the membranes towards the different solvents used in this work was verified visually, by the variation of the membrane area and by means of permeate flux assessments. Desal-DK and NF30 showed poor filtration performance and even visible defects after exposure to acetone but a good performance was obtained for the nanofiltration membranes STARMEMTM122 and SOLSEP NF030306 with ethanol, iso-propanol and acetone. For example, considering a mixture with 30% edible oil in acetone, STARMEMTM122 shows a flux and oil rejection of 16.8 L m−2 h and 70%, respectively. For the same conditions, SOLSEP NF030306 exhibited a flux of 4.8 L m−2 h with 78% rejection, which shows the potential application of nanofiltration membranes in the oil industry.

77 citations

Journal ArticleDOI
TL;DR: It is shown that a trace amount of residual acetone in the precipitated protein, can, after proteolysis, lead to selective modification of peptides predominantly those in which a glycine residue is the second amino acid, probably generating a relatively stable derivative that, under gas phase conditions, generates a y(1) ion of the same mass as proline.
Abstract: Acetone precipitation is a common method for precipitation and concentration of proteins. We show here that a trace amount of residual acetone in the precipitated protein, can, after proteolysis, lead to selective modification of peptides predominantly those in which a glycine residue is the second amino acid, probably generating a relatively stable derivative that, under gas phase conditions, generates a y(1) ion of the same mass as proline. This modification is detectable by either MALDI-ToF or ESI-ion trap mass spectrometry and under normal sample preparation conditions is incomplete. The derivatization occurs in the condensed phase and is sufficiently stable that the modified peptide can elute on reversed phase chromatography at a different time to the unmodified peptide. Acetone precipitation is such a commonly used procedure in protein sample preparation for proteomics that some caution may be warranted. A significant number of peptides (about 5% of a typical proteome) meet the requirements for this reaction and could, therefore, change the outcome of studies.

77 citations

Journal ArticleDOI
TL;DR: In this paper, carboxylic acid was used to crosslink poly(ether ether ketone) membranes via the phase inversion process, and diamines were varied in their concentration and structure to find the optimal crosslinking conditions.

77 citations

Journal ArticleDOI
TL;DR: Ionic liquid can dramatically dissolve in supercritical (sc) CO2 with polar organic compounds (ethanol, acetone) especially as the concentration of the compounds in scCO2 exceeds 10 mol%, while the effect of a nonpolar organic compound (n-hexane) in sc CO2 on the solubility is very limited.

77 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical walnut-like Fe-C-codoped WO3 microspheres were synthesized and characterized by X-ray diffraction (XRD), Raman spectra, XPS, scanning electron microscopy (SEM), and transmission electron microscope (TEM).
Abstract: Current metal-oxide-based sensing materials are confronted with several challenges, especially in sensitivity, selectivity and stability, for their application in the breath acetone analysis. Herein, hierarchical walnut-like Fe-C-codoped WO3 microspheres were synthesized and characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The amount of Fe doping was optimized based on detecting the acetone responses dependent on the operating temperature. The sensor based on the optimal Fe-C-codoped WO3 (FW3) exhibited high response to acetone and very low responses to NH3, CO, toluene, methanol, ethanol and NO. The results indicate that the optimized material possesses high sensitivity and good selectivity toward acetone vapor. Besides, the FW3 sensor presented superior anti-interferential ability to various mixed-gas systems. More importantly, the responses of the sensor exhibited no obvious fluctuation over 12 weeks, implying good long-term stability of the synthesized material. We suggest that the phase, morphology and the increased number of oxygen vacancies induced by Fe doping are the underlying reason for the improved gas sensing performance of the Fe-C-codoped WO3 microspheres.

77 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
91% related
Reagent
60K papers, 1.2M citations
89% related
Alkyl
223.5K papers, 2M citations
88% related
Adsorption
226.4K papers, 5.9M citations
87% related
Ionic liquid
57.2K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023663
20221,301
2021169
2020193
2019259
2018226